hospital discharge of which 328 of 534 (61%) patients were either discharged to home or transferred to another facility. Significant predictors for outpatient echinocandin use were osteomyelitis (OR 4.07, 95% CI: 1.06-15.66; p=0.041) and other deep-seated infection (OR 4.44; 95% CI: 1.65-11.96; p=0.003). Stewardship analysis identified the majority of patients (54%) had the possibility for at least one day earlier discharge (potential earlier discharge:1.65±1.16 days). The quantitative model identified major barriers to be transition of care-, other medical care-, and infectious diseases-related. The qualitative model largely agreed with the quantitative model with additional psychosocial and health care access variables identified.

Conclusion. Using a mixed method approach, barriers to hospital discharge and potential use of new antifungal therapies were identified. These data could be used to assist transitions of care in patients with invasive candidiasis.

Disclosures. Truc T. Tran, PharmD, Merck (Grant/Research Support) Kevin W. Garey, Pharm.D., M.S., FASHP, Summit Therapeutics (Research Grant or Support)

158. National Cross-Sectional Study of Factors Influencing the Decision of Prescribing Penicillin as First Choice among Dentists in Japan

Ryuji Koizumi, n/a¹; Masahiro Ishikane, MD, PhD²; Yoshiki Kusama, M.D.³; Shinya Tsuzuki, MD, MSc³; Yusuke Asai, Ph. D.³; Yasuyuki Shimada, DDS, PhD³; Chika Tanaka, B.Pharm⁴; Akane ono, MD.¹; Akihiro Kaneko, DDS, PhD⁵; Norio Ohmagari, MD, MSc, PhD⁶; ¹National Center for Global health and Medicine hospital, Shinjuku, Tokyo, Japan; ²Division of Pharmacoepidemiology, AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan; ³National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan; ⁴National Center for Global and health Medicine, chinjuku-ku, Tokyo, Japan; ⁵Tokai University, Isehara, Kanagawa, Japan; ⁶National Center for Global Health and Medicine Hospital, Shinjuku, Tokyo, Japan

Session: P-09. Antimicrobial Stewardship: Trends in Antimicrobial Prescribing

Background. Antimicrobial stewardship programs are needed to improve antimicrobial use among not only physicians but also dentists. This study aimed to investigate the factors influencing the decision of prescribing penicillin as first choice among dentists at clinics in Japan.

Methods. We conducted a nationwide cross-sectional study of dental clinics in Japan between July and September 2020. Data on the following were collected using questionnaires: basic information, types of antimicrobials stocked, first-choice antimicrobials, and knowledge and practice of antimicrobial resistance and infectious endocarditis. Using logistic regression, odds ratios (ORs) and 95% confidence intervals (CIs) were estimated to assess the factors influencing penicillin prescription.

Results. Among the 1700 participating dental clinics, 342 dental clinics responded. The median age of the study cohort was 57 (49–65) years, and there were 298 (87.1%) men. The first choice of antimicrobials was third-generation cephalosporin (169 [49.4%]), followed by penicillin (103 [30.1%]) and macrolide (19 [5.6%]). In multivariate analysis, clinics with stocked penicillin (OR = 27.30 [95% CI: 12.04–63.00]) and with more than two dentists (OR = 0.48 [95% CI: 0.24–0.92]) were associated with penicillin use as first choice.

Table 1. Multivariate analysis of factors influencing penicillin use as first choice, n(%)					
Variables	Penicillin (n=103)	Other antibiotics (n = 239)	Adjusted odds ratio (95% confidence interval)	Adjusted P value	
Post-graduated year (median [interquartile range])	30 [19.5–37]	33 [24-41]	0.97 (0.95–1.43)	0.047	
Sex (Male)	90 (89)	208 (87)	0.72 (0.27-1.90)	0.513	
Clinics with more than two dentists	39 (38)	38 (16)	0.48 (0.24-0.92)	0.003	
Implemented countermeasures for antimicrobial resistance	85 (83)	45 (19)	1.10 (0.48–1.49)	0.817	
Follow infectious endocarditis guidelines	43 (42)	78 (33)	0.76 (0.49–2.67)	0.424	
Participated at least one seminar per 6 months	86 (83)	177 (74)	1.14 (0.49–2.67)	0.761	
Clinics with stocked penicillin	89 (86)	59 (25)	27.30 (12.04-63.00)	< 0.001	

Conclusion. This is the first study investigating the factors influencing the decision of prescribing penicillin as first choice among dentists in Japan. Further studies evaluating the relationships between penicillin use as first choice and stocked penicillin in the clinic and the number of working dentists are needed.

Disclosures. All Authors: No reported disclosures

159. Characterization of Suboptimal Discharge Antimicrobial Prescriptions and Effect of Inpatient Audit and Feedback on Quality of Antimicrobial Prescribing Lauren M. Puckett, PharmD¹; Laura Bio, PharmD, BCPS²; Sean Cornell, n/a¹; Torsten Joerger, MD³; Hayden T. Schwenk, MD, MPH⁴; Hayden T. Schwenk, MD, MPH⁴; ¹Lucile Packard Children's Hospital Stanford, Stanford, California; ²Stanford Children's Health, Palo Alto, CA; ³Stanford University School of Medicine, Stanford, California; ⁴Stanford University, Stanford, CA

Session: P-09. Antimicrobial Stewardship: Trends in Antimicrobial Prescribing

Background. Approximately 30% of children are discharged from the hospital with an antimicrobial prescription; nearly a third of these prescriptions are suboptimal. Although the best approach to antimicrobial stewardship of discharge prescriptions remains uncertain, prospective audit and feedback (PAF) has improved inpatient

antimicrobial use. We aimed to identify and characterize suboptimal discharge antimicrobial prescribing and assess the impact of inpatient PAF on the quality of discharge antimicrobial prescribing at a free-standing children's hospital.

Methods. A retrospective review of enteral discharge antimicrobial prescriptions between 12/1/20-5/31/21 and parenteral antimicrobial prescriptions sent to our hospital's infusion pharmacy between 3/1/21-5/31/21 was performed to determine if suboptimal or not. A prescription was determined to be suboptimal if the antimicrobial choice, dose, frequency, duration, formulation, or indication was not consistent with institutional and/ or national guidelines. Data collection included the antimicrobial, indication, and prescriptions were evaluated for a corresponding inpatient PAF for the same drug and indication and then stratified based on inpatient PAF completion.

Results. A total of 1192 discharge prescriptions for 698 unique patients over 834 hospital encounters were reviewed. Overall, 243 (20%) prescriptions were identified as suboptimal; reasons were duration (16%), dose (8%), frequency (5%), or antimicrobial choice, formulation, or route (\leq 1%). Prescriptions for cephalexin had the highest rate of suboptimal prescribing (80/167, 48%), followed by amoxicillin-clavulanate (89/203, 44%). A corresponding inpatient PAF was identified for 675 (57%) of discharge antimicrobial prescriptions. Inpatient PAF prior to discharge resulted in fewer suboptimal discharge prescriptions for the same antimicrobial (8% vs. 36%, p < 0.001).

 $\label{eq:table1.} \textbf{Table 1. Suboptimal prescription characterization by antimicrobial type, indication, and prescribing medical service$

Variables	Total N=1192	Suboptimal N=243
Antimicrobial type (%)		
Narrow spectrum antibiotics	599	125 (51)
Broad spectrum antibiotics	356	113 (47)
Antifungals	113	4 (2)
Antivirals	124	1 (0.4)
Antibiotic type (%)		
Beta-lactam/Beta-lactamase inhibitor	203	89 (37)
First-generation cephalosporin	167	80 (33)
Fluoroquinolones	113	15 (6)
Sulfamethoxazole-trimethoprim	207	12 (5)
Amoxicillin, penicillin, ampicillin	58	11 (5)
Third-generation cephalosporin	18	7 (3)
Other	189	24 (10)
Indication (%)		
Prophylaxis	627	137 (56)
Gastrointestinal/Intra-abdominal infection	98	27 (11)
Urinary tract infection	74	12 (5)
Skin and soft tissue infection	111	11 (5)
Lower respiratory infection	82	8 (3)
Oral, middle, and upper respiratory infections	30	5 (2)
Non-infectious	48	16 (7)
Other	122	27 (11)
Medical service (%)		
Otolaryngology	111	67 (28)
Plastic Surgery	37	32 (13)
Cardiology	80	24 (10)
General Surgery	80	22 (9)
General Pediatrics	161	20 (8)
Gastroenterology	47	18 (7)
Hematology/Oncology	268	10 (4)
Intensive Care	50	5 (2)
Pulmonology	37	3 (1)
Urology	45	3 (1)
Cardiovascular Intensive Care Unit	31	2 (1)
Liver Transplant	54	2 (1)
Nephrology	42	2 (1)
Stem Cell Transplant	66	2 (1)
Other	83	31 (13)

Conclusion. Antimicrobial prescribing at inpatient discharge was suboptimal in 1 of every 5 prescriptions. Inpatient PAF was associated with improved antimicrobial prescribing at hospital discharge. Antimicrobial stewardship programs should continue to explore ways to capture and intervene on antimicrobials prescribed at discharge.

Disclosures. Hayden T. Schwenk, MD, MPH, Nothing to disclose

160. Urgent Care Prescriber Perspectives on Antibiotic Prescribing During the COVID-19 Pandemic

Brooke Betts, PharmD, MS-HSA¹; David R. Ha, PharmD, BCIDP²; Marisa Holubar, MD, MS³; Marisa Holubar, MD, MS³; Maja Artandi, MD⁴; Sharon Onguti, MD, MPH¹; Ian Nelligan, MD¹; ¹Stanford Health Care, Stanford, California; ²Stanford Antimicrobial Safety and Sustainability Program, Stanford, California; ³Stanford University School of Medicine, Stanford, CA; ⁴Stanford University, Palo Alto, California

Session: P-09. Antimicrobial Stewardship: Trends in Antimicrobial Prescribing

Background. Urgent care practices were significantly impacted by the COVID-19 pandemic. Studies conducted early in the pandemic demonstrated dramatic decreases in outpatient antibiotic prescribing, particularly amongst agents typically used for respiratory infections. We observed a 33% decline in urgent care antibiotics prescribing during the COVID-19 pandemic in our urgent care clinics. We investigated the prescriber experience to elucidate factors influencing antibiotic use for respiratory conditions during the COVID-19 pandemic at two academic urgent care clinics.