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Stanniocalcin 2 (STC2), a secreted glycoprotein hormone, regulates many biological
processes, including cell proliferation, apoptosis, tumorigenesis, and atherosclerosis.
However, its role in hepatic triglyceride metabolism remains unknown. In the present
study, we found that expression levels of STC2 were significantly reduced in the livers
of leptin-deficient and high fat diet-induced obese mice. Systemic administration of
STC2 recombinant protein or adenovirus-mediated overexpression of STC2 markedly
attenuated hepatosteatosis and hypertriglyceridemia in obese mice. At the molecular
level, we found that STC2 activated the STAT3 signaling pathway to inhibit lipogenic
gene expression. Consistently, in vitro studies further showed that inhibition of STAT3
signaling abolished the anti-steatotic effects of STC2. Together, our results revealed an
important role of STC2 in the regulation of hepatic triglyceride metabolism, which might
provide a potential therapeutic target for the treatment of fatty liver and related metabolic
disorders.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD), defined as excess accumulation of triglycerides (TGs)
in hepatocytes, has become the most common chronic liver condition and is estimated to impact
at least 30% of Americans or Chinese (Browning et al., 2004; Williams et al., 2011; Wong et al.,
2012). NAFLD can trigger a progressive cascade of liver disorders, ranging from hepatosteatosis
to non-alcoholic steatohepatitis, liver cirrhosis, and even hepatocellular carcinoma (Farrell and
Larter, 2006). Moreover, NAFLD is tightly associated with the development of type 2 diabetes,
hypertension, atherosclerosis, and coronary heart disease (Marignani and Angeletti, 2002; Cohen
et al., 2011).

Hepatosteatosis occurs when TG homeostasis is disrupted, due to increased TG synthesis
and/or decreased TG clearance. In obesity-associated NAFLD, de novo lipogenesis (DNL) is
increased, at least in part, by hyperinsulinemia as well as excess availability of carbohydrates
(Lambert et al., 2014). Hepatic lipogenesis is mainly regulated by the transcription factor sterol
regulatory element binding transcription protein 1c (SREBP-1c), which transcriptionally activates
the expression of genes involved in DNL, including fatty acid synthetase (FASN), acetyl-CoA
carboxylase (ACC1), and stearoyl-CoA desaturase-1 (SCD1). Indeed, increased hepatic expression
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levels of SREBP-1c and its target genes have been observed in
obese rodents and humans (Shimomura et al., 1999; Horton et al.,
2002).

Stanniocalcins (STC1 and STC2) were initially identified in
bony fish as a calcium/phosphate-regulating hormone produced
by the corpuscles of Stannius (Wagner et al., 1986). STC2 has
the full-length of stanniocalcin sequence, while STC1 lacks a
cysteine residue corresponding to Cys120 of STC2. Subsequent
studies revealed that STC2 is ubiquitously expressed and acts as
an endocrine, paracrine, or autocrine factor to regulate many
biological processes, including tissue remodeling, cell survival,
and stress responses (Law and Wong, 2010; Jepsen et al., 2016;
Wu et al., 2017). Recently, increasing evidence highlighted
its potential role in tumorigenesis, because its expression was
markedly upregulated in several types of human malignancy,
including stomach, colon, renal, and liver cancers (Meyer et al.,
2009; Arigami et al., 2013; Chen et al., 2016; Wu et al.,
2017). However, the role of STC2 in the regulation of hepatic
TG homeostasis and in the pathogenesis of NAFLD remains
unknown.

In the present study, we found that STC2 expression was
reduced in the livers of leptin-deficient and high fat diet (HFD)
-induced obese mice. Overexpression of STC2 significantly
attenuated fatty liver and hypertriglyceridemia in obese mice
through activation of the STAT3 signaling pathway. These
findings revealed a vital role of STC2 in the regulation of hepatic
TG homeostasis and suggested a promising therapeutic target for
the related diseases.

MATERIALS AND METHODS

Animal Experiments
Male C57BL/6 mice aged 8 weeks were purchased from the
Shanghai Laboratory Animal Company (Shanghai, China). ob/ob
mice were purchased from Nanjing Biomedical Research Institute
of Nanjing University (Nanjing, Jiangsu Province, China). HFD-
induced obese mice were maintained with free access to HFD
(D12492; Research Diet, New Brunswick, NJ, United States) for
12 weeks, and control mice were fed with normal chow diet
(NCD) (D12450B; Research Diet). STC2 recombinant protein
was purchased from Shanghai Boyi Biotechnology Company
(Shanghai, China). For systemic STC2 treatments, ob/ob mice
received daily intraperitoneal (i.p.) injections of recombinant
STC2 protein (0.5 mg/kg). Adenoviruses expressing murine STC2
gene or green fluorescent protein (GFP) (Ad-STC2 and Ad-GFP)
were constructed by Genechem Company (Shanghai, China).
Overexpression of STC2 or GFP in the liver of ob/ob mice was
achieved by means of tail vein injection of Ad-STC2 or Ad-GFP
[2 × 109 plaque-forming units (pfu) for each mouse]. All animal
experiments were conducted in accordance with the guidelines of
Animal Care Committee of Shanghai Jiao Tong University School
of Medicine.

Cell Culture
Mouse primary hepatocytes (MPHs) were isolated from adult
mice and maintained in hepatocyte medium (Sciencell, Carlsbad,

CA, United States). HepG2 cells were cultured in DMEM (Gibco,
Gaithersburg, MD, United States) containing 10% fetal bovine
serum (FBS; Gibco), 100 IU/mL penicillin, and 100 µg/mL
streptomycin. For the in vitro model of cellular steatosis, HepG2
cells were exposed to palmitic acid (PA) (200 µM) for 24 h
to induce cellular TG accumulation, then were treated with
recombinant STC2 protein (20 ng/mL) or vehicle control for
another 24 h. To explore the potential signaling pathway affected
by STC2, MPHs and HepG2 cells were starved in serum-free
DMEM overnight and then treated with recombinant STC2
protein (20 ng/mL) for 1 h. To further investigate the role of
STAT3 activation, HepG2 cells were pretreated with S31-201
(50 µM), a STAT3 inhibitor, to block STAT3 function, and then
exposed to recombinant STC2 protein or vehicle control for
24 h. Cellular TG contents were extracted and determined using
commercial kits (BioVision, Milpitas, CA, United States).

Biochemical Measurements
Plasma or hepatic TGs and plasma total cholesterol (TC) were
extracted and quantified using commercial kits (BioVision),
according to the manufacturer’s instructions.

Histological Analysis
For Hematoxylin and Eosin (H&E) staining, liver tissues were
fixed overnight in 10% formalin, embedded in paraffin, and
sectioned at 5 µm. Sections were subjected to standard H&E
staining. For Oil Red O staining, liver tissues were fixed
overnight in 4% paraformaldehyde, embedded in optimum
cutting temperature compound, and cryosectioned. Frozen liver
sections were stained with 0.15% Oil Red O according to standard
procedures.

RNA Isolation and qRT-PCR
Total RNA was isolated from cell lysates or liver tissues using
TRIzol

R©

reagent according to the manufacturer’s instructions
(Invitrogen, Shanghai, China). 2 µg of total RNA was reverse
transcribed into cDNA using oligo-dT primers (Promega,
Sunnyvale, CA, United States). Quantitative real-time PCR (qRT-
PCR) was performed using SYBR

R©

Green Premix Ex Taq (Takara,
Shiga, Japan) on a Light Cycler 480 (Roche, Basel, Switzerland) to
quantify the gene transcripts of interest. The 36B4 gene was used
as an internal reference for normalization. The primer sequences
are listed in the Table 1.

Western Blots
Liver tissues and HepG2 cells were lysed in
radioimmunoprecipitation (RIPA) buffer containing protease
and phosphatase inhibitors (Millipore, Billerica, MA,
United States). 50 µg lysates were loaded onto 10% SDS-
PAGE and transferred to polyvinylidenedifluoride (PVDF)
membranes (Millipore, United States), which were blocked
with 10% Bovine Serum Albumin and immunoblotted with
antibodies at 4◦C overnight. The antibodies used in western
blots included, STAT3 (#12640; 1:1000, #9145; 1:1000, Cell
Signaling Technology, Danvers, MA, United States), AKT
(#13038; 1:1000, #4821; 1:1000, Cell Signaling Technology),
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TABLE 1 | Description of primers used in real-time PCR.

Gene name Species Primer sequences (Forward 5′–3′) Primer sequences (Reverse 5′–3′)

36B4 Mouse AGATTCGGGATATGCTGTTGGC TCGGGTCCTAGACCAGTGTTC

STC2 Mouse CTGGGCCAGTTTGTGACCC ACGTCATGCAAATCCCATGTAAA

SREBP-1c Mouse CTTTGGCCTCGCTTTTCGG TGGGTCCAATTAGAGCCATCTC

FASN Mouse GGCTCTATGGATTACCCAAGC CCAGTGTTCGTTCCTCGGA

ACC1 Mouse AATGAACGTGCAATCCGATTTG ACTCCACATTTGCGTAATTGTTG

SCD1 Mouse TTCTTGCGATACACTCTGGTGC CGGGATTGAATGTTCTTGTCGT

PPARα Mouse AACATCGAGTGTCGAATATGTGG CCGAATAGTTCGCCGAAAGAA

CPT1α Mouse TGGCATCATCACTGGTGTGTT GTCTAGGGTCCGATTGATCTTTG

ACOX1 Mouse TAACTTCCTCACTCGAAGCCA AGTTCCATGACCCATCTCTGTC

MCAD Mouse AACACAACACTCGAAAGCGG TTCTGCTGTTCCGTCAACTCA

IL-6 Mouse AGTTGCCTTCTTGGGACTGA TCCACGATTTCCCAGAGAAC

TNF-α Mouse AGCCCCCAGTCTGTATCCTT CTCCCTTTGCAGAACTCAGG

MCP1 Mouse AGGTCCCTGTCATGCTTCTG TCTGGACCCATTCCTTCTTG

Nrf2 Mouse TCTTGGAGTAAGTCGAGAAGTGT GTTGAAACTGAGCGAAAAAGGC

HO1 Mouse AAGCCGAGAATGCTGAGTTCA GCCGTGTAGATATGGTACAAGGA

α-SMA Mouse GTCCCAGACATCAGGGAGTAA TCGGATACTTCAGCGTCAGGA

Col4a1 Mouse CTGGCACAAAAGGGACGAG ACGTGGCCGAGAATTTCACC

Col5a1 Mouse CTTCGCCGCTACTCCTGTTC CCCTGAGGGCAAATTGTGAAAA

JNK (#4668; 1:1000, #9258;1:1000, Cell Signaling Technology),
Stanniocalcin 2 (#A302-369A; 1:500, Bethyl Laboratories,
Montgomery, TX, United States), and GAPDH (KC-5G5; 1:5000,
Aksomics, Shanghai, China). The proteins were visualized
with Immobilon Western Chemiluminescent HRP Substrate
(Millipore, United States) according to the manufacturer’s
protocol.

Insulin Tolerance Tests
ob/ob mice were injected i.p. with regular human insulin at a
dose of 0.75 IU/kg body weight after fasting for 6 h. Blood
glucose levels were monitored at the indicated time points
using a portable blood glucose meter (LifeScan, Milpitas, CA,
United States).

Statistical Analysis
All values are shown as the mean ± standard error of the
mean (SEM). Statistical differences were determined by two-
tailed Student’s t-tests. Statistical significances were shown as
∗P < 0.05, ∗∗P < 0.01, or ∗∗∗P < 0.001.

RESULTS

Hepatic STC2 Expression Was Reduced
in Obese Mice
To determine hepatic STC2 expression in obesity-associated
NAFLD, we evaluated its mRNA and protein levels in the livers
of ob/ob mice. Compared with lean mice, mRNA (Figure 1A) and
protein (Figure 1B) levels of STC2 were significantly reduced in
the livers of ob/ob mice. Similarly, the expression of hepatic STC2
was markedly decreased in mice fed a high fat diet (HFD) for
12 weeks as compared with mice fed a normal chow diet (NCD)
(Figures 1C,D). These results indicated that downregulation of

STC2 in the liver was a conserved feature of hepatosteatosis in
obese mice.

STC2 Alleviated Cellular TG
Accumulation Through Suppression of
de Novo Lipogenesis
To investigate the role of STC2 in hepatic TG metabolism,
HepG2 cells were treated with recombinant STC2 protein

FIGURE 1 | Hepatic STC2 expression was reduced in obese mice. (A,B)
Hepatic Stanniocalcin 2 (STC2) mRNA and protein levels, determined by
qRT-PCR and western blots, respectively, in ob/ob mice aged 8 weeks
(n = 4–8). (C,D) Hepatic STC2 mRNA and protein levels, determined by
qRT-PCR and western blots, respectively, in high fat diet (HFD) mice. The
8-week-old mice were fed normal chow diet (NCD) or a HFD for 12 weeks
(n = 4–6). Data are expressed as the mean ± SEM. ∗∗∗P < 0.001.
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FIGURE 2 | STC2 alleviated hepatic TG accumulation through suppression of de novo lipogenesis. (A) Cellular triglyceride (TG) contents in HepG2 cells. Cells were
treated with recombinant STC2 protein (20 ng/mL) or phosphate-buffered saline (PBS) as a vehicle control for 24 h, with or without preincubated with palmitic acid
(PA; 200 µM) for 24 h. (B) The mRNA levels of SREBP-1c, FASN, ACC1, and SCD1 in HepG2 cells were measured. Cells were exposed to PA (200 µM) for 24 h,
then were treated with recombinant STC2 protein (20 ng/mL) or vehicle control (PBS) for another 24 h. (C) The mRNA levels of PPARα, ACOX1, MCAD, and CPT1α

in HepG2 were measured as in (B). Data are expressed as the mean ± SEM. ∗∗P < 0.01, ∗∗∗P < 0.001.

or vehicle control. As a result, we found that cellular TG
contents were decreased upon STC2 treatment (Figure 2A).
In addition, STC2 dramatically inhibited the palmitate-induced
cellular TG deposition (Figure 2A). To explore the molecular
basis for the anti-steatotic effect of STC2, expression levels of
genes involved in hepatic TG homeostasis were determined by
quantitative real-time PCR. SREBP-1c, a master regulator of
de novo lipogenesis, was significantly downregulated by STC2
treatment (Figure 2B). In parallel, expression levels of its
downstream target genes, including fatty acid synthetase (FASN),
acetyl-CoA carboxylase (ACC1), and stearoyl-CoA desaturase-
1 (SCD1), were also reduced (Figure 2B). However, fatty
acid oxidation-related genes, including peroxisome proliferator-
activated receptor α (PPARα), carnitine palmitoyl transferase 1α

(CPT1α), medium-chain acyl-CoA dehydrogenase (MCAD), and
acyl-CoA oxidase (ACOX1), were not altered by STC2 treatment
(Figure 2C).

STC2 Activated the STAT3 Signaling
Pathway to Alleviate Hepatosteatosis
We analyzed the potential mechanism by which STC2 suppressed
lipogenesis and alleviated TG accumulation in hepatocytes. We
found that STC2 treatment resulted in marked activation of the
STAT3 signaling pathway, as shown by enhanced phosphorylated
STAT3, while the AKT and JNK pathways were unaffected
(Figures 3A,B). To determine whether STAT3 activation was
indispensable for the anti-steatotic effects of STC2, S31-201, a
STAT3 inhibitor, was used to block STAT3 function. Our data
showed that S31-201 abrogated the effects of STC2 on TG
contents and lipogenic gene expression (Figures 3C,D).

Systemic STC2 Treatment Ameliorated
Hepatosteatosis in Obese Mice
To elucidate the function of STC2 in vivo, ob/ob mice were
injected i.p. with recombinant STC2 protein (0.5 mg/kg) once
daily. A drastic decrease in hepatic TG contents (Figure 4A)
and liver weight (Figure 4B) were observed in STC2-treated
mice. Systemic STC2 administration also decreased the balloon
cells and neutral lipid deposition in the livers of ob/ob mice
as assessed by H&E and Oil Red O staining (Figure 4C).
Plasma TG and total cholesterol (TC) levels were markedly

FIGURE 3 | STC2 activated the STAT3 signaling pathway to alleviate
hepatosteatosis. (A,B) Phosphorylated and total STAT3, AKT, and JNK in
HepG2 cells (A) and MPHs (B) incubated with PBS or STC2 (20 ng/mL)
protein for 1 h. Total STAT3, AKT, and JNK were used as loading controls.
(C) Cellular TG contents in HepG2. Cells were treated with recombinant STC2
protein (20 ng/mL) or PBS vehicle control for 24 h, with or without
preincubation with S31-201 (50 µM), a STAT3 inhibitor, for 2 h. (D) The mRNA
levels of SREBP-1c and its target genes in HepG2 cells were measured as in
(C). Data are expressed as the mean ± SEM. ∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001.

reduced (Figures 4D,E). In parallel, STC2 partially ameliorated
the inflammation, oxidative stress and fibrosis characteristics
of ob/ob mice (Supplementary Figures S1A–C). Plasma ALT
and AST levels were also significantly decreased in STC2-treated
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FIGURE 4 | Systemic STC2 treatment ameliorated hepatosteatosis in obese mice. (A,B) Liver TG contents (A) and liver weight (B) in ob/ob mice intraperitoneally
injected with recombinant STC2 protein (0.5 mg/kg) or vehicle control for 9 days (n = 7–8). (C) Representative histology (H&E, left) or Oil Red O (right) staining
showing TG accumulation in livers from mice injected with STC2 protein versus vehicle control. Original magnification, 200×. (D,E) Plasm TG (D) and plasm TC (E)
levels in mice. (F,G) Fasting blood glucose (F) and insulin tolerance test results (G) in mice. (H) Phosphorylated and total STAT3 in the livers of mice. Total STAT3
were used as loading controls. (I) The mRNA levels of hepatic SREBP-1c and its target genes in mice. Data are expressed as the mean ± SEM. ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001. H&E, Hematoxylin & Eosin; TG, triglyceride; TC, total cholesterol.

mice (Supplementary Figures S1D,E). In addition, fasting blood
glucose levels and insulin sensitivity were dramatically improved
upon STC2 treatment (Figures 4F,G). Consistently, STC2 also
activated the STAT3 pathway and reduced the expression of
SREBP-1c and its target genes in the liver (Figures 4H,I).

Hepatic STC2 Overexpression
Attenuated Fatty Livers in ob/ob Mice
Next, STC2 gene was overexpressed in the livers of ob/ob
mice by delivering an adenovirus via tail vein injection.

Increased mRNA and protein levels of STC2 in the liver
were confirmed by qRT-PCR and western blots, respectively,
while its expression in white adipose tissues were not affected
(Figure 5A and Supplementary Figures S2A,B). Hepatic
overexpression of STC2 significantly decreased liver TG
content (Figure 5B) and liver weight (Figure 5C). Plasma
TG levels were markedly reduced (Figure 5D), and a
declining tendency in plasma TC levels was also observed
(Figure 5E). Consistently, hepatic overexpression of STC2
partially ameliorated the inflammation, oxidative stress
and fibrosis characteristics of ob/ob mice (Supplementary
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FIGURE 5 | Hepatic STC2 overexpression attenuated fatty liver in ob/ob mice. (A) The mRNA and protein levels of STC2 in ob/ob mice injected with adenovirus
containing GFP or the STC2 gene (n = 7–8). (B,C) Liver TG contents (B) and liver weights (C) in mice. (D,E) Plasm TG (D) and plasm TC (E) levels in mice. (F,G)
Fasting blood glucose (F) and insulin tolerance test results (G) in mice. (H) Phosphorylated and total STAT3 in the livers of mice. Total STAT3 were used as loading
controls. (I) The mRNA expressions of hepatic SREBP-1c and its target genes in mice. Data are expressed as the mean ± SEM. ∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001. TG, triglyceride; TC, total cholesterol.

Figures S2C–E). Plasma ALT levels were significantly
reduced, while AST levels were not affected in STC2-
overexpressed ob/ob mice (Supplementary Figures S2F,G).
In addition, fasting hyperglycemia and insulin resistance
were improved by STC2 overexpression in ob/ob mice
(Figures 5F,G). At the molecular level, overexpression
of STC2 also induced hepatic STAT3 activation and
reduced the expression of de novo lipogenesis related genes
(Figures 5H,I).

DISCUSSION

Previous studies have shown that STC2 regulates many biological
processes, including tissue remodeling, cell survival, stress
responses, and tumorigenesis. However, little is known about its
function in metabolic homeostasis. Interestingly, STC2 knockout

mice were reported to present with deregulated glycemia when
they were fed with a hypercaloric diet (López et al., 2017).
Enhanced glucagon immunostaining in the islet cells and elevated
circulating glucagon levels were observed in STC2-null mice
(López et al., 2017).

In the present study, we identified a novel role of
STC2 in the regulation of hepatic TG homeostasis. Systemic
STC2 administration or liver-specific overexpression of STC2
significantly ameliorated TG accumulation in obese mice. At
the molecular level, it has been shown that STC2 can modulate
multiple signaling pathways, such as PI3K/AKT, ERK1/2, in
tumor cells and osteoblast (Zhou et al., 2016; Yang et al., 2017).
However, our data showed that the AKT and JNK pathways
were unaffected in STC2-treated hepatocytes. Therefore, the role
and downstream signaling pathways of STC2 might be tissue
or cell-specific, which needs further investigations in future
studies.

Frontiers in Physiology | www.frontiersin.org 6 July 2018 | Volume 9 | Article 873

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00873 July 5, 2018 Time: 19:57 # 7

Zhao et al. Stanniocalcin 2 Ameliorates Hepatosteatosis

In addition, studies using genetically engineered mice have
shown the significance of the STAT3 signaling pathway in
the pathophysiology of fatty liver. The anti-steatotic effects
of STAT3 were mediated, at least in part, via transcriptional
suppression of SREBP-1c and subsequent repression of hepatic
de novo lipogenesis (Ueki et al., 2004). As a result, disruption
of STAT3 or its upstream molecule gp130 in hepatocytes
exacerbated fatty liver induced by a high fat diet (Inoue
et al., 2004), alcohol-containing diet (Horiguchi et al., 2008),
or a choline deficient ethionine-supplemented diet (Kroy
et al., 2010). Overexpression of constitutively activated STAT3
attenuated high fat diet-induced fatty livers (Inoue et al.,
2004). Consistently, genetic variants in STAT3 were associated
with non-alcoholic fatty liver disease in humans (Sookoian
et al., 2008). Furthermore, several cytokines are known to
activate the STAT3 pathway to regulate hepatic TG homeostasis.
For instance, treatment with IL-6 ameliorated fatty liver by
inducing STAT3 phosphorylation in ob/ob and HFD- induced
obese mice (Hong et al., 2004), while deletion of IL-6 or
hepatic STAT3 resulted in steatosis and hepatocellular damage
in IL-10 knockout mice (Miller et al., 2011). In addition,
IL-22 ameliorated non-alcoholic and alcoholic fatty livers
through activation of the STAT3 pathway in hepatocytes
(Ki et al., 2010; Yang et al., 2010). Here, in our studies we
found that plasma IL-22 contents were reduced by STC2
treatment or overexpression (Supplementary Figures S3A,B).
Previous studies have shown that inflammatory signaling,
including NF-κB and AP-1/JunD, are involved in IL-22
production (Ouyang et al., 2011; Ahlfors et al., 2014; Fumagalli
et al., 2016). Since STC2 treatment can reduce hepatic
inflammation in obese mice, we speculate that reduction of
IL-22 in STC-2 treated mice might be attributed to decreased
inflammation.

CONCLUSION

Our findings demonstrated that STC2 was an important
metabolic regulator in the liver. STC2 ameliorated
hepatosteatosis and hypertriglyceridemia in obese mice, mainly
through activation of the STAT3 signaling pathway. Thus,
STC2 may be a promising therapeutic target for fatty liver and
dyslipidemia.

AUTHOR CONTRIBUTIONS

YL, JY, HZ, and XL conceived the project. YL, JZ, and YJ designed
the experiments. JZ, YJ, and YS performed the experiments and
statistical analysis. JZ, YJ, and YL drafted the manuscript. YJ,
YL, JL, and XL handled funding and supervision. All authors
reviewed the manuscript.

FUNDING

This study was supported by grants from National Natural
Science Foundation of China (Nos. 81570769 and 81570785),
Science and Technology Commission of Shanghai Municipality
(18dz2304400 and 15411970700), Chenguang Program
supported by Shanghai Education Development Foundation,
Shanghai Municipal Education Commission (15CG11), and the
Doctoral Innovation Fund Projects from Shanghai Jiao Tong
University School of Medicine (BXJ201708).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2018.00873/full#supplementary-material

FIGURE S1 | Systemic STC2 treatment ameliorated hepatosteatosis in obese
mice. (A) Relative mRNA levels of IL-6, TNF-α, MCP1 in the livers of two groups.
(B) Relative mRNA levels of Nrf2, HO1 in the livers of two groups. (C) Relative
mRNA levels of hepatic α-SMA, Col4a1, Col5a1in two groups. (D,E) Plasma ALT
and AST levels in two groups. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. MCP1,
Chemokine (C-C motif) ligand 2 (CCL2); Nrf2, nuclear factor, erythroid derived 2,
like 2; HO1, heme oxygenase 1; Col4a1, collagen, type IV, alpha 1; Col5a1,
collagen, type V, alpha 1.

FIGURE S2 | Hepatic STC2 overexpression attenuated fatty liver in ob/ob mice.
(A,B) Relative mRNA and protein expression of STC2 in white adipose tissues. (C)
Relative mRNA levels of IL-6, TNF-α, MCP1 in the livers of two groups. (D)
Relative mRNA levels of Nrf2, HO1 in the livers of two groups. (E) Relative mRNA
levels of hepatic α-SMA, Col4a1, Col5a1 in two groups. (F,G) Plasma ALT and
AST levels in two groups. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

FIGURE S3 | Plasma IL-22 contents in systemic STC2-treated and hepatic STC2
overexpressed ob/ob mice. (A,B) Plasma IL-22 contents in STC2-treated ob/ob
mice (A) or hepatic STC2 overexpressed ob/ob mice (B) by ELISA kit. ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001.
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