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Abstract

One-to-multiple path analysis model describes the regulation mechanism of multiple inde-

pendent variables to one dependent variable by dividing the correlation coefficient and the

determination coefficient. How to analyse more complex regulation mechanisms of multiple

independent variables to multiple dependent variables? Similarly, according to multiple-to-

multiple linear regression analysis, multiple-to-multiple path analysis model was proposed in

this paper and it demonstrated more complex regulation mechanisms among multiple inde-

pendent variables and multiple dependent variables by dividing the generalized determina-

tion coefficient. Differently, three other types of paths were generated in multiple-to-multiple

path analysis model in that the correlation among multiple dependent variables was consid-

ered. Then, the decision coefficient of each independent variable was constructed for

dependent variables system, and its hypothesis testing statistics were given. Finally, the

research example of the wheat breeding rules in arid area demonstrated that the multiple-

to-multiple path analysis considering more correlation information can get better results.

1 Introduction

The regression analysis, as one of the most widely used statistical methodologies, focuses on

studying the relations between dependent variables and independent variables. However, the

regression analysis worries less about the correlation mechanisms that may exist among the

independent variables [1]. In 1918–1921, the issue was addressed by the biological geneticist

Sewall Wright through developing the path analysis method [2, 3]. Sewall Wright’s path analy-

sis mainly emphasizes decomposing the correlation and total determination in terms of model

parameters, and drawing the path diagram. The path diagram is a pictorial representation of a

system of simultaneous equations, which presents the picture of the relationships that are

assumed and is more clearly than the equations [4]. The concrete decomposition result is to

distinguish the three types of effects: direct, indirect and total effects, which can lead to a more

comprehensive understanding of the relation between variables. Usually, the indirect effects of

a variable are mediated by at least one intervening variable [4]. In fact, the decomposed indi-

rect effects quantify the regulation of variables with correlation. The quantitative expression of

regulatory mechanism can make the analysis more thorough and clear. Therefore, the path

analysis was later applied in multiple science research fields, such as behavioural science, social

science, economics, biology, agriculture, medical science and so on [5–18]. This method seems

to be more and more widely used at present.
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In terms of methodology research, the path analysis was generalized to the structural equation

models (SEMs) through combining the principle of factor analysis and was used to analyse the

relations between multivariate blocks of data [19, 20]. The decision coefficient was constructed in

the specified path analysis model with no latent variables, which included one dependent variable

(as result) and multiple independent variables (as causes), based on the decomposition of total

determination coefficient [21]. Here, the specific path analysis model was called one-to-multiple

path analysis model with the nature of standard multiple linear regression. The decision coefficient

of each independent variable equals to the sum of its direct determination and the correlation

indirect determination with the other independent variables. The decision coefficient can express

the magnitude and direction of each independent variable influencing the variation of dependent

variable. Still further, the importance of each independent variable for dependent variable can be

ranked according to the decision coefficient result, which shows that the decision coefficient has

the significance of making decisions. Subsequently, the statistical test of the decision coefficient

was proposed [22]. The decision coefficient improves the one-to-multiple path analysis model to a

certain extent. Later, the one-to-multiple path analysis model was applied in the lint yield of

upland cotton research and the KEGG gene pathway regulation mechanisms research [23–25].

However, the causal system including multiple independent variables (as “causes”) and

multiple dependent variables (as “results”) are often encountered in practice research. For

instance, the different pathways contain the same genes in the KEGG pathway, which demon-

strated that the same genes can lead to the different gene functions. Here, multiple identical

genes and multiple different gene functions constitute a multiple-to-multiple system. Analysis

of the regulatory relationship between genes and gene functions is helpful to the modification

and change of gene structure. Similar to this, in breeding field, multiple biological shapes to

multiple yield indicators also constitute a multiple-to -multiple system. Determining the

importance of multiple biological shapes to multiple yield indicators is helpful to improve the

yield and quality of crops. It is assumed that such a causal system does not contain latent vari-

ables. Then, the one-to-multiple path analysis model can be used to analyse the importance of

each independent variable to one dependent variable and the regulations among multiple

independent variables. But, it is frustrating that the results of multiple single one-to-multiple

path analysis are often contradictory, so that decision makers feel confused when making deci-

sions. Therefore, it is urgent to find a more suitable model to provide more clear decision-

making suggestions for decision-makers in such a more complex system.

In this paper, we attempt to propose the multiple-to-multiple path analysis model according

to the multiple-to-multiple linear regression analysis, including multiple independent variables

and multiple dependent variables and no latent variables. This model considers the correlation

among multiple dependent variables caused by multiple common independent variables on

the basis of one-to-multiple path analysis model. The other three types of paths generated

besides the two types of paths in one-to-multiple path analysis model. The decomposition of

the generalized determination coefficient showed the regulation mechanisms among the mul-

tiple independent variables and multiple dependent variables along these five types of paths.

And the decision coefficient of each independent variable was used to judge its importance for

all dependent variables system. Finally, the effectiveness of the model was verified by an exam-

ple of the wheat breeding rules in arid area.

2 Method

2.1 Equations and models

The multiple-to-multiple linear regression model is the basis of the multiple-to-multiple path

analysis, so it was introduced firstly. Define the following assumptions: the dependent variable

PLOS ONE Multiple-to-multiple path analysis model

PLOS ONE | https://doi.org/10.1371/journal.pone.0247722 March 4, 2021 2 / 17

https://doi.org/10.1371/journal.pone.0247722


of linear regression is Y = (Y1,Y2,� � �,Yp)T and the independent variable is X = (X1,X2,� � �,Xm)T.

Suppose the joint distribution of Xm�1 and Yp�1 is:
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Among them, ρx, ρxy and ρy are the correlation arrays of X,X and Y,Y respectively. ρ is the

correlation matrix of [XT,YT]T. Under the above assumption, the normalized multiple-to-mul-

tiple linear regression model is:
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In (3), Yi = [Yi1,Yi2,� � �,Yip]T, xi = [xi1,xi2,� � �,xim]T, β� is the regression parameter of the

model, i = 1,2,� � �,n. Let n be the number of observations. We assumed that ε~Np(0,∑e) is the

regression residual and has nothing to do with the value of X.

2.2 Regression hypothesis testing

Path analysis can only be carried out when the standardized regression equation is significant.

Therefore, we need to perform the following four types of hypothesis tests for regression analy-

sis before path analysis.

2.2.1 Hypothesis testing of generalized complex correlation coefficient rxy. In multiple-

to-multiple standardized linear regression equations, the joint distribution of X and Y is

showed as formula (2), then the generalized determination coefficient is defined as [26]:

R2 ¼ 1 � vxy ¼ 1 �
jRj

jRxxjjRyyj
¼ 1 � jIp � Bj � trðBÞ �

X

t 6¼l

l
2

t � l
2

l ð4Þ

In Eq (4), vxy is the likelihood ratio statistics for testing independence of X and Y. And

Rxx ¼ r̂x, Ryy ¼ r̂y, R in |R| is the correlation matrix of X and Y. B ¼
X� 1

y

X

yx

X� 1

x

X

xy ¼

R� 1
yy U is the sample linear correlation matrix of X and Y, U is the regression square sum matrix.

l
2

t and l
2

l are non-zero characteristic roots of B. rxy ¼ Rðx1x2 ���xmÞðy1y2 ���ypÞ
¼

ffiffiffiffiffi
R2
p

is the generalized

complex correlation coefficient of X and Y. The invalid assumption of rxy is H0:∑xy = 0.When

p>2 and m>2, we can use Bartlett’s approximate chi-square test:

V ¼ � n � 1 �
pþmþ 1

2

� �

lnvxy � w
2ðpmÞ ð5Þ
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2.2.2 Hypothesis testing of regression equation ŷa ¼ b�T
a
xða ¼ 1; 2 � � � ; pÞ. The invalid

hypothesis is H0 : b
�

a
¼ 0 and the corresponding F test statistic is:

F ¼
R2
ðaÞ
=m

ð1 � R2
ðaÞÞ=ðn � m � 1Þ

� Fðm; n � m � 1Þ ð6Þ

R2
ðaÞ

is the determination coefficient of X to Yα
2.2.3 Hypothesis testing of components b�jα in b�α. The invalid hypothesis isH0ja : b

�

ja ¼ 0

and the t test statistic is

tja ¼
b�ja
ffiffiffiffiffiffiffiffiffi
cjjŝ2

a

p � tðn � m � 1Þ ð7Þ

In (7),
P̂

e ¼
Qe

n� m� 1
, ŝ2

a
is the α-th element on the main diagonal of

P̂
e. cjj is the j-th element

on the main diagonal of R� 1
xx .

2.2.4 Hypothesis testing of b�xjy [27]. The invalid hypothesis is H0 : ðb
�

j1; b
�

j2; b
�

j3Þ
T
¼ 0.

The F test statistic is:

F ¼ ðn � m � 2Þ �

1 �
ffiffiffiffiffiffiffiffi
LH0j

q

ffiffiffiffiffiffiffiffi
LH0j

q � F½2; 2ðn � m � 2Þ� ð8Þ

In (8), LH0j
¼

jQe j
jQH0j e j

. After the above four hypothesis tests, if the standardized multiple linear

regression equation is significant, it is meaningful to perform path analysis.

2.3 Path analysis of Yα ¼ β�Tα x þ εαðα ¼ 1; 2; � � � ; pÞ
The first step of multiple-to-multiple path analysis is to conduct one-to-multiple path anal-

ysis for each dependent variable and all independent variables. According to the estab-

lished multiple-to-multiple linear regression equation, the path analysis model is

performed. The correlation coefficient rjya of each dependent variable Yα(α = 1,� � �,p) and

all independent variables X = (X1,X2,� � �,Xm)T and their determination coefficient R2
ðaÞ

were

divided following completely the previous one-to-multiple path analysis model on the basis

of standardized linear regression equation [25]. Still further, the decision coefficient was

constructed using the existing method [21]. According to the theoretical study of multiple

linear regression analysis, the system of regular equations Rxxb� = Rxy about the least

squares estimation of β� can be rewritten as:

Rxxðb
�

1
; b�

2
; � � � ; b�pÞ

T
¼ ðRxy1 ;Rxy2 ; � � � ;RxypÞ ¼ Rxy

So

Rxxb
�

a
¼ Rxya ; a ¼ 1; 2; � � � ; p ð9Þ

In Eq (9), Rxx ¼ r̂x, Rxya ¼ r̂xya . The specific path diagram of the one-to-multiple path anal-

ysis model is shown in Fig 1.
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2.3.1 The division and path of rjyα ..

rjya ¼ b�ja þ
X

k6¼j

rjkb
�

ka
xj$xk!ya

j ¼ 1; 2; � � � ;m; k ¼ 1; 2; � � � ;m; a ¼ 1; 2; � � � ; p;

b�ea
εa!ya

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � R2

ðaÞ

q
ð10Þ

Obviously, the correlation efficient rjya was divided intom terms. There are two types for

this m term: b�ja is formed by the path yα xj, so b�ja is called the direct effect of xj on yα; and

rjkb�kaðk 6¼ jÞ is formed by xj$xk!yα, which is the effect of xj on yα through the correlation

with xk and called the indirect effect. Its magnitude can be obtained by multiplying the path

coefficients b�ka by the correlation coefficient rjk, including m-1 items. Finally, rjya is the total

effect of xj on yα, which is the sum of the direct effect and all the indirect effects.

2.3.2 The division and path of R2
ðαÞ.
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ya x!ya
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a
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Among (11): R2
ðaÞ

is the total coefficient of determination of X for Yα. R�2jðaÞ ¼ b�2ja and its cor-

responding path is yα x!yα. It is called the direct determination coefficient of xj to yα.The

corresponding path of R�jkðaÞ ¼ 2b�jarjkb
�
ka is yα xj$xk!yα. It is called the correlation determi-

nation coefficient of xj through the correlation with xk(k6¼j) to yα.

2.3.3 The decision coefficient Rα(j) and hypothesis test [22]. The comprehensively deter-

mine ability of xj to yα can be represented by the decision coefficient based on the division of

R2
ðaÞ

. Its specific expression and hypothesis test are:

RaðjÞ ¼ 2b�jarjya � b
�2
ja ¼ R�2jðaÞ

ya x!ya

þ
X

k6¼j

R�jkðaÞ
ya xj$xk!ya

taðjÞ ¼
RaðjÞ
SRaðjÞ
¼

RaðjÞ

2jrjya � b
�
jaj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cjjð1 � R�2ðaÞÞ
n � m � 1

r � tðn � m � 1Þ

j ¼ 1; 2; � � � ;m; a ¼ 1; 2; � � � ; p

ð12Þ

The definition indicates that Rα(j) equals to the sum of the direct determination coeffi-

cient R�2jðaÞ ¼ b�2jðaÞ and the correlation determination coefficient R�jkðaÞ ¼ 2b�jarjkb
�
kaðk 6¼ jÞ. In

fact, the decision coefficient is the sum of all determination coefficients related to xj. The

decision coefficient was used to determine the main decision variables and restrictive vari-

ables affecting Yα.

2.4 Multiple-to-multiple path analysis central theorem

The second step is to conduct multiple-to-multiple path analysis. And the innovation is that

the correlation between Y caused by the common cause X is considered and three other types

of paths are generated. For convenience of observation, let p = 3, m = 3 as an example to make

a multiple-to-multiple path analysis diagram as Fig 2. But, the theoretical analysis is based on

m independent variables and p dependent variables.
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The multiple-to-multiple path analysis model considered the correlation among different

dependent variables compared to the one-to-multiple path analysis model. Accordingly, the

central theorem of multiple-to-multiple path analysis is proposed. Based on model (3), for two

different Yα and Yt, their models are:

Ya ¼ b
�T
a
X þ εa; εa ¼ Ya � EðYajX ¼ xÞ

Yt ¼ b
�T
t X þ εt; εt ¼ Yt � EðYtjX ¼ xÞ

ð13Þ

(

In (13), εα and εt are independent of each other and have nothing to do with the value of X.

Since Yα, Yt and X have been standardized, the correlation coefficients of Yα and Yt, and the

Fig 1. One-to-multiple path analysis diagram.

https://doi.org/10.1371/journal.pone.0247722.g001

Fig 2. Multiple-to-multiple path analysis diagram.

https://doi.org/10.1371/journal.pone.0247722.g002
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corresponding path theoretically is:

rYaYt

¼ Covðb�T
a
X þ εa; b

�T
t X þ εtÞ ¼ b

�T
a
CovðX;XÞb�t ¼ b

�T
a
rxb

�

t

¼
Xm

j¼1

b
�T
ja b

�T
jt

ya xj!yt

þ
X
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b
�

jarjkb
�

kt
ya xj$xk!yt

þ b
�

karkjb
�

jt
ya xk$xj!yt

� �

¼ ryaðXÞytðXÞ
yaðXÞ$ytðXÞ

ð14Þ

Considering the sample case, Eq (14) is:

ryayt
ya$yt

¼ Covðb�T
a
xþ εa; b�Tt xþ εtÞ ¼ b�T

a
Rxxb�t

¼
Xm

j¼1

b�jab
�

jt
ya xj!yt

þ
X

k6¼j

b�jarjkr
�

kt
ya xj$xk!yt

þ b�karkjb
�

jt
ya xk$xj!yt

� �
ð15Þ

Among them, j = 1,2,� � �,m; k = 1,2,� � �,m; and α = 1,2,� � �,p; t = 1,2,� � �,p. Eq (14) and Eq (15)

are called the central theorem of multiple-to-multiple path analysis.

The central theorem demonstrated that rYaYt , ryayt equal to the sum of m2 items composite

path coefficient. Wherein, the direct path yα xj!yt has m items. Due to the correlation

among independent variables xj$xk(k6¼j), the two types of indirect paths were formed as

yα xj$xk!yt, yα xk$xj!yt. And xj$xk(k6¼j) has C2
m ¼

1

2
mðm � 1Þ items. So the total

composite path number is mþ 2� 1

2
mðm � 1Þ ¼ m2 items. In addition, the central theorem

also showed that three other types of paths generated when the correlation between different

dependent variables yα and yt was considered, which was caused by the common X. Therefore,

there are five types of paths in multiple-to-multiple path analysis, plus the two types of paths in

one-to-multiple path analysis.

In fact, the correlation coefficient in the multiple-to-multiple path analysis central theorem

is theoretically the regression square sum matrix U in multiple-to-multiple standardized linear

regression. Under the least squares estimation, U can be expressed as follows [16]:

U
Y x!Y

¼ U
ŷ x!ŷ

¼ b�TRxy ¼ b�TRxxb
�

¼

b�T1 Rxxb�1 b�T1 Rxxb�2 � � � b�T1 Rxxb�p
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� � � ry1ypðxÞ
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ry2y1ðxÞ
ŷ2 x!ŷ1

R2

ð2Þ

ŷ2 x!ŷ2

� � � ry2ypðxÞ
ŷ2 x!ŷp

..
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. ..

.
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ŷp x!ŷ2
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7
7
7
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7
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7
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ð16Þ

In (16), b�T
a
Rxxb�t ¼ rŷa ŷ tðxÞ; a 6¼ t is the correlation coefficient between yα and yt caused by

the common cause X. Here, U is the determination coefficient matrix of X to Y. R2
ðaÞ
¼ r2

ŷa ŷaðxÞ

is the coefficient of determination of X to Yα.
ffiffiffiffiffiffiffi
R2
ðaÞ

q
¼ ryaðx1x2 ���xmÞ

¼ ryaðxÞ; a ¼ 1; 2; � � � ; p is the

complex correlation coefficient of X to Yα. And in statistics, rYaYt is the correlation coefficient
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of Yα and Yt, and has nothing to do with X in the calculation. rŷa ŷ tðaÞ is the determining part of

Yα and Yt to rYaYt due to the common cause X.

2.5 The division of R2�tr(B) and its corresponding path

The generalized determination coefficient has been defined using formula (4) before, which

was used to reflect the comprehensive determination of all independent variables to all depen-

dent variables [26]. Because the non-zero eigenvalue l
2

t ðt ¼ 1; 2; � � � ; kÞ of B is small and

0 < l
2

k � l
2

k� 1
� � � � � l

2

1
� 1, the result of St 6¼ll

2

t l
2

l is small enough to make R2�tr(B). In fact,

tr(B) is the overestimation of R2 here. According to R2�tr(B), the generalized determination

coefficient R2 was divided as follows:

R2 � trðBÞ ¼
Xp

a¼1

yaa R2

ðaÞ

ya x
m�1
!ya

þ 2
X

t>a

yat
ryaytðxÞ

ya x
m�1
!yt

¼
Xp

a¼1

yaa

Xm

j¼1

b�2ja
ya xj!ya

þ2
Xm� 1

j¼1

k>j

b�jarjkb
�

ka
ya xj$xk!ya

0

B
@

1

C
A

þ
X

t>a

yat

Xm

j¼1

2 b�jab
�

jt
ya xj!yt

þ
X

k6¼j

2 b�jarjkb
�

kt
ya xj$xk!yt

þ2 b�karkjb
�

jt
ya xk$xj!yt

� �
2

4

3

5

¼
Xm

j¼1

Xp

a¼1

yaa R2

jðaÞ
ya xj!ya

þ
X

k<j

Xp

a¼1

yaa RjkðaÞ
ya xj$xk!ya

þ
X

t>a

yat

Xm

j¼1

RjðatÞ
ya xj!yt

þ
X

k6¼j

RjkðatÞ
ya xj$xk!yt

þ RkjðatÞ
ya xk$xj!yt

� �
2

4

3

5 ð17Þ

Among (17), θαt is the element in matrix R� 1

yy
. R2

jðaÞ
¼ b�2ja is the direct determination coefficient

of xj on yα, and the effect path is yα xj!yα, j = 1,2,� � �,m; α = 1,2,� � �,p. RjkðaÞ ¼ 2b�jarjkb
�
ka is the indi-

rect determination coefficient of xj and xk on yα, the effect path is yα xj$xk!yα, jk has 1

2
mðm �

1Þ items. RjðatÞ ¼ 2b�jab
�
jt is the direct determination coefficient of xj on yα and yt, which is caused by

the correlation of yα and yt because of the common cause xj. The effect path is yα xj!yt,
j = 1,2,� � �,m, αt has 1

2
pðp � 1Þ items. RjkðatÞ ¼ 2b�jarjkb

�
kt is the indirect determination coefficient of

xj and xk on yα and yt. The effect path is yα xj$xk!yt. When α<t, yα and yt have 1

2
pðp � 1Þ

items; when j6¼k, jk has 1

2
mðm � 1Þ items. RkjðatÞ ¼ 2b�karkjb

�
jt is the indirect determination coeffi-

cient of xj and xk on yt and yα. The effect path is yα xk$xj!yt, when α<t, yα and yt have 1

2
pðp �

1Þ items; when j6¼k, kj has 1

2
mðm � 1Þ items. Therefore, the total number of items divided is:

p mþ
1

2
mðm � 1Þ

� �

þ
1

2
pðp � 1Þ mþ

1

2
mðm � 1Þ

� �

¼
pm
4
ðmþ 1Þðpþ 1Þ

Formula (17) demonstrates that the generalized determination coefficient R2 was divided

successfully along the five types of paths stated in multiple-to-multiple path analysis central
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theorem. The specific path vector structure is:

R2

y
p�1

$ x
m�1

� trðBÞ

¼ ðy11; y22; � � � ; yppÞ �
Xm

j¼1

R2
jð1Þ

R2
jð2Þ

..

.

R2
jðpÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

y
p�1

 xj!y
p�1

þ
X

k>j

Rjkð1Þ
Rjkð2Þ

..

.

RjkðpÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

y
p�1

 xj$xk!y
p�1

1

C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
@

þðy12; y13; � � � ; yðp� 1ÞpÞ �
Xm

j¼1

Rjð12Þ

Rjð13Þ

..

.

Rjððp� 1ÞpÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ya xj!yt
ða<tÞ

þ
X

k>j

Rjkð12Þ
þ Rkjð12Þ

Rjkð13Þ
þ Rkjð13Þ

..

.

Rjkððp� 1ÞpÞ þ Rkjððp� 1ÞpÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ya 
xj $ xk
xk $ xj

 !

!yt

1

C
C
C
C
C
C
C
C
C
C
C
C
A

ð18Þ

0

B
B
B
B
B
B
B
B
B
B
B
B
@

2.6 The generalized decision coefficient Ry(j)

2.6.1 The definition of Ry(j). In order to describe the comprehensive decision-making

ability of xj to Y, the generalized decision coefficient Ry(j) was defined as follows:

RyðjÞ ¼ ðy11; y22; � � � ; yppÞ �

R2
jð1Þ

R2
jð2Þ

..

.

R2
jðpÞ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

y
p�1
 xj!y

p�1

þ
X

k6¼j

Rjkð1Þ

Rjkð2Þ

..

.

RjkðpÞ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

y
p�1
 xj$xk!y

p�1

1

C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
@

þðy12; y13; � � � ; yðp� 1ÞpÞ �

Rjð12Þ

Rjð13Þ

..

.

Rjððp� 1ÞpÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ya xj!yt
ða<tÞ

þ
X

k>j

Rjkð12Þ
þ Rkjð12Þ

Rjkð13Þ
þ Rkjð13Þ

..

.

Rjkððp� 1ÞpÞ þ Rkjððp� 1ÞpÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ya 
xj $ xk
xk $ xj

 !

!yt

1

C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
@

¼ RyðjÞI þ RyðjÞP; j ¼ 1; 2; � � � ;m ð19Þ

Obviously, the generalized decision coefficient is the sum of the products of R2
jðaÞ, Rjk(α), Rj

(αt) and Rjk(αt)+Rkj(αt) related to xj in the division and the corresponding elements in R� 1
yy ¼
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ðyatÞp�p on the basis of R2�tr(B). In (19), Ry(j) is divided into two parts: Ry(j)I and Ry(j)II. Ry(j)I is

the determination part of xj and xj$xk to Yα. Ry(j)P is the determination part of xjand xj$xk to

Yα and Yt(α6¼t) due to the common X. In a word, the generalized decision coefficient includes

not only the direct determination of xj to Yα, Yα and Yt(α6¼t), but also the indirect determina-

tion of xj$xk(k6¼j) to Yα and Yα and Yt(α6¼t). Specially, the indirect determination considers

the correlation among the independent variables and the correlation among the dependent

variables at the same time. Therefore, the decision coefficient Ry(j) can be used to express the

comprehensive decision ability of xj to Y.

2.6.2 The hypothesis testing of Ry(j). The invalid hypothesis isH0:E(Ry(j)) = 0 and the cor-

responding t test statistic is:

tj ¼
RyðjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

a¼1
ðR0yðjÞaÞ

2
cjjð1 � trðBÞÞ
n � m � 1

r etðn � m � 1Þ ð20Þ

In (20), R0yðjÞa ¼
@RyðjÞ
@b�ja

.

3 Application

3.1 Datasets

In order to demonstrate the effectiveness of the multiple-to-multiple path analysis, the wheat

data in arid areas to explore breeding rules was selected to discuss. In detail, the wheat data

included thirty-five varieties. These data were obtained in a completely randomized block test,

and each sample was set with three repetitions [28]. In multiple-to-multiple path analysis,

three indexes closely related to wheat yield was selected as dependent variables: panicles per

plant (y1), grain number per panicle (y2) and 1000-grain weight (y3), and three other indexes

were selected as independent variables: bio-mass per plant (x1), single stem grass weight (x2)

and economic coefficient (x3). Here, economic coefficient refers to the ratio of economic yield

to biological yield of wheat.

3.2 Calculation and results

Firstly, the phenotypic correlation matrix of the sample was calculated and expressed as Eq

(21). The number of observations for each variable is n = 105.

R ¼ x1 x2 x3 y1 y2 y3

x1

x2

x3

y1

y2

y3

1 0:711 � 0:367 0:013 0:225 0:028

0:711 1 � 0:418 � 0:477 0:259 0:238

� 0:367 � 0:418 1 � 0:055 0:173 0:327

0:013 � 0:477 � 0:055 1 � 0:255 � 0:383

0:225 0:259 0:173 � 0:255 1 � 0:058

0:028 0:238 0:327 � 0:383 � 0:058 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð21Þ

Then, we establish a multiple-to-multiple standardized multiple linear regression equation
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and calculate the corresponding parameters, the results were written as follow:

ŷ1

ŷ2

ŷ3

2

6
4

3

7
5 ¼ b�Tx ¼

0:6767x1 � 1:0631x2 � 0:2510x3

0:1323x1 � 0:3121x2 � 0:3520x3

� 0:2150x1 � 0:3121x2 � 0:4986x3

2

6
4

3

7
5 ð22Þ

Right after, four types of hypothesis testing based on the established standardized multiple lin-

ear regression model were conducted as follow:

1. The hypothesis testing of generalized complex correlation coefficient rxy.
Likelihood ratio statistics of X and Y is vxy = 0.2987, so χ2 = 121.4357��>χ2(3×3), and R2 =

1−vxy = 0.7013, rxy ¼ rðx1x2x3Þðy1y2y3Þ
¼

ffiffiffiffiffi
R2
p

¼ 0:8374��. The results showed that the linear

regression of Y to X was extremely significant.

2. The hypothesis testing of regression equation ŷa ¼ b�T
a
xða ¼ 1; 2; 3Þ.

The values of F test statistics are F1 = 37.9188��, F2 = 25.394��, F3 = 14.408��, respectively.

They were all greater than F0.01(3,101) = 4.007, which showed that each standardized

regression equation was extremely significant.

3. The hypothesis testing of components b�ja in b�
a

The results of hypothesis testing of components b�ja in b�
a

were listed in Table 1.

Among them, except x1 was not significant to y2 and y3, the others were extremely

significant.

4. The hypothesis testing of b�xjy

The results are F1 = 8.670��, F2 = 25.394��, F3 = 10.384��, and the test results were all

extremely significant.

Except x1 is not significant to y2 and y3, the above test results showed that the established

multiple-to-multiple standardized linear regression equations were extremely significant. The

path analysis and decision analysis can be performed subsequently.

Secondly, one-to-multiple path analysis of Ya ¼ b
�T
a
xþ εaða ¼ 1; 2; � � � ; pÞ was con-

ducted according to the theory before (Method, Part 2.3). The detailed division results of

the correlation coefficient and the determination coefficient were listed in Table 2 and

Table 3. The decision analysis was also conducted and the results were also listed in

Table 3.

The t test statistics values of decision coefficient hypothesis testing were listed in Table 4.

In one-to-multiple path analysis, the results of correlation coefficient division showed that

the total effect of biomass per plant (x1), single stem grass weight (x2) and economic coefficient

(x3) are all positive and the largest to panicles per plant (y1), grain number per pancicle (y2),

1000-grain weight (y3), respectively. Differently, the direct effect of x1 to y1 is the positive and

Table 1. t test statistics value of b�jα.

y1 y2 y3

x1 6.8994�� 1.0212 -1.8092

x2 -105852�� 2.3527�� 4.9257��

x3 -3.3060�� 3.5101�� 5.4202��

https://doi.org/10.1371/journal.pone.0247722.t001
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Table 2. The division results of the correlation coefficient about Yα ¼ β�Tα xþ εαðα ¼ 1; 2; 3Þ.

xj to yα Direct effect xj$yα rjkb
�

kα Indirect effect
X

j6¼k

rkjb
�

jα
Total effect

x1 to y1 0.6767�� x1$x2!y1 -0.7559 -0.66638(3) 0.2328(1) 0.013(1)

x1$x3!y1 0.0921

1 x2 to y1 -1.0631�� x2$x1!y1 0.4811 0.5860(1) -0.3115(3) -0.477(3)

x2$x3!y1 0.1049

x3 to y1 0.251�� x3$x1!y1 -0.2483 0.1960(2) 0.1970(2) -0.055(2)

x3$x2!y1 0.4444

x1 to y2 0.1323(3) x1$x2!y2 0.2219 0.0927(1) 0.0455(2) 0.225(2)

x1$x3!y2 -0.1292

2 x2 to y2 0.3121(2) x2$x1!y2 0.0941 -0.0530(2) 0.0914(1) 0.259(1)

x2$x3!y2 -0.1471

x3 to y2 0.3520(1) x3$x1!y2 -0.0486 -0.1791(3) -0.2763(3) 0.173(3)

x3$x2!y2 0.1305

x1 to y3 -0.2150�(3) x1$x2!y3 0.4262 0.2432(1) -0.074(2) 0.028(3)

x1$x3!y3 -0.1830

3 x2 to y3 0.5994��(1) x2$x1!y3 -0.1529 -0.3613(3) 0.1757(1) 0.238(2)

x2$x3!y3 -0.2084

x3 to y3 0.4986��(2) x3$x1!y3 0.0789 -0.1716(2) -0.3914(3) 0.327(1)

x3$x2!y3 -0.2505

https://doi.org/10.1371/journal.pone.0247722.t002

Table 3. The division results of determination coefficient Yα ¼ β�Tα xþ εαðα ¼ 1; 2; 3Þ.

yα xj!yα Direct determination yα xj$xk!yα rjkb
�

kα indirect determination Decision coefficient

y1 x1!y1 0.4579 y1 x1$x2!y1 -1.0230 -0.8983 -0.4404��(3)

y1 x1$x3!y1 0.1247

1 y1 x2!y1 1.1302 y1 x2$x1!y1 -1.0230 -1.2461 -0.1159(2)

y1 x2$x3!y1 -0.2231

y1 x3!y1 0.0630 y1 x3$x1!y1 0.1247 -0.0984 -0.0354(1)

y1 x3$x2!y1 -0.2231

y2 x1!y2 0.0175 y2 x1$x2!y2 0.0587 0.0245 0.0420�(2)

y2 x1$x3!y2 -0.0342

2 y2 x2!y2 0.0974 y2 x2$x1!y2 0.0587 -0.0331 0.0643��(1)

y2 x2$x3!y2 -0.0918

y2 x3$x1!y2 -0.0342y2 x3!y2 0.1239 -0.1260 -0.0021(3)

y2 x3$x2!y2 -0.0918

(Continued)
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the largest, while the indirect effect is negative and the smallest. The direct effect of x2 to y2, x3

to y3 are not the largest, but the total effect becomes the largest through the correlation regula-

tion by the indirect effect. The results of the determination coefficients division and the deci-

sion coefficients showed that for y1, x1 is a very significant restrictive factor; for y2, x2 is a very

significant positive factor and x1 is a significant positive factor; for y3, x3 is a significant positive

factor. These results meant that single stem grass weight (x2) and economics coefficient (x3)

need to be increased in order to increase grain number per pancicle (y2) and 1000-grainweight

(y3), but panicles per plant (y1) will decrease according due to the negative correlation x2, x3

and y1. Meanwhile, biomass per plant (x1) should be decreased in order to increase the panicles

per plant (y1), but grain number per pancicle (y2) will decrease here. The contradictory deci-

sion-making results of different independent variables (xi) to different dependent variables (yi)
often lead to the confusion of breeders.

Therefore, after the one-to-multiple path analysis, the multiple-to-multiple path analysis

was practiced by taking into account the correlation between the dependent variables. Accord-

ing to formula (17–19), the generalized determination coefficient R2 was divided and the

results were listed in Table 5.

The specific calculation of path vector structure is as follows:

R2 � trðBÞ ¼ ð1:2883; 1:1030; 1:2086Þ

0:5297

0:1717

0:2997

2

6
6
6
4

3

7
7
7
5

þð0:3583; 0:5142; 0:2012Þ

� 0:3331

� 0:6323

0:3861

2

6
6
6
4

3

7
7
7
5
¼ 0:8670

ð23Þ

From the previous calculation, we can get tr(B) = 0.8671. The above division of the general-

ized coefficient of determination is reasonable according to R2�tr(B). The decision analysis of

the model was carried out continually. The decision coefficient of each independent variable

Table 3. (Continued)

yα xj!yα Direct determination yα xj$xk!yα rjkb
�

kα indirect determination Decision coefficient

y3 x1!y3 0.0462 y3 x1$x2!y3 -0.1833 -0.1046 -0.0584(2)

y3 x1$x3!y3 0.0787

y3 x2$x1!y3 -0.18333 y3 x2!y3 0.3593 -0.4331 -0.0738(3)

y3 x2$x3!y3 -0.2498

y3 x3$x1!y3 0.0787y3 x3!y3 0.2486 -0.1711 0.0775�(1)

y3 x3$x2!y3 -0.2498

https://doi.org/10.1371/journal.pone.0247722.t003

Table 4. t test statistics value of R�αðjÞ.

y1 y2 y3

x1 -3.39774�� 2.3205� -1.2288

x2 -0.74458 4.5633�� -0.7716

x3 -0.9793 -0.0636 2.4488�

https://doi.org/10.1371/journal.pone.0247722.t004
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to Y = (y1,y2,y3)T was calculated as follows:

Ryð1Þ ¼ ðy11; y22; y33Þ �

R2
1ð1Þ

R2
1ð2Þ

R2
1ð3Þ

2

6
6
6
4

3

7
7
7
5

y
3�1
 x1!y

3�1

þ

R12ð1Þ

R12ð2Þ

R12ð3Þ

2

6
6
6
4

3

7
7
7
5

y
3�1
 x1$x2!y

3�1

þ

R13ð1Þ

R13ð2Þ

R13ð3Þ

2

6
6
6
4

3

7
7
7
5

y
3�1
 x1$x3!y

3�1

1

C
C
C
C
C
C
A

0

B
B
B
B
B
B
@

þðy12; y13; y23Þ

R1ð12Þ

R1ð13Þ

R1ð23Þ

2

6
6
4

3

7
7
5

ya x1!yt
ða<tÞ

þ

R12ð12Þ þ R21ð12Þ

R12ð13Þ þ R21ð13Þ

R12ð23Þ þ R21ð23Þ

2

6
6
4

3

7
7
5

ya 
x1 $ x2

x2 $ x1

 !

!yt

þ

R13ð12Þ þ R31ð12Þ

R13ð13Þ þ R31ð13Þ

R13ð23Þ þ R31ð23Þ

2

6
6
4

3

7
7
5

ya 
x1 $ x3

x3 $ x1

 !

!yt

1

C
C
C
C
C
C
A

0

B
B
B
B
B
B
@

¼ � 0:5916þ 0:2060 ¼ � 0:3856�� ð24Þ

Similar available: Ry(2) = −0.1157, Ry(3) = 0.0906�. According to the decision coefficient,

the t test about Ry(j) is further conducted, and the result is t1 = −4.3943��, t2 = 0.9293, t3 =

2.0785��. In addition, it should be noted that the determination coefficients of xj and xj$xk to

Table 5. The division results about three other types paths of the generalized determination coefficients.

a yα xj!yt direct determination yα xj$xk!yα rjkb
�

kα

y1 x1!y2 0.1791 y1 x1$x2!y2 0.3003

y1 x1$x3!y2 -0.1748

1 y1 x2!y2 -0.6636 y1 x2$x1!y2 -0.2000

y1 x2$x3!y2 0.3128

y1 x3!y2 -0.1767 y1 x3$x1!y2 0.0244

y1 x3$x2!y2 0.0655

y1 x1!y3 -0.2910 y1 x1$x2!y3 0.5768

y1 x1$x3!y3 -0.2477

2 y1 x2!y3 -1.2744 y1 x2$x1!y3 0.3253

y1 x2$x3!y3 0.4431

y1 x3!y3 -0.2503 y1 x3$x1!y3 -0.0396

y1 x3$x2!y3 0.1258

y2 x1!y3 -0.0569 y2 x1$x2!y3 0.1128

y2 x1$x3!y3 -0.0484

3 y2 x2!y3 0.3741 y2 x2$x1!y3 -0.0955

y2 x2$x3!y3 -0.1301

y2 x3!y3 0.3510 y2 x3$x1!y3 0.0556

y2 x3$x2!y3 -0.1764

https://doi.org/10.1371/journal.pone.0247722.t005
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yα have been calculated by one-to-multiple path analysis model (Table 3). The comparison of

the results of Table 3 and those of Table 5 demonstrated that great changes have taken place in

the regulation of xj to Y when the correlation among dependent variables was considered.

Firstly, the direct and indirect regulations of xj, xj$xk to Y also were greatly affected by the

correlation among Y because of common X. As shown in Table 3, the direct determination of

x2 to y1, y2 were both positive, respectively (R2
1ð2Þ
¼ 1:1302y1  x2 ! y1;R2

2ð2Þ
¼ 0:0974

y2 x2!y2). But in Table 5, the direct determination of x2 to y1 and y2 became negative (R12(2)

= -0.6636 y1 x2!y2). This change was due to the consideration of the negative and large cor-

relation of y1 and y2 ðry1y2
¼ � 0:255Þ. Similarly, the direct determination of x2 to y2 and y3 was

still changed (R23(2) = 0.3741 y2 x2!y3), compared to the previous determination coefficient

ðR2
2ð2Þ
¼ 0:0974 y2  x2 ! y2; R2

3ð2Þ
¼ 0:3593 y3  x2 ! y3Þ. Different from the above, this

change was small and both were positive. This phenomenon showed that the small correlation

of y2 and y3 ðry2y3
¼ � 0:058Þ had little influence on the direct determination of x2 to y2 and y3.

The direct determination of x3 to y2 and y3 was exactly like the direct determination of x2 to y2

and y3. The indirect determination due to the correlation of xj$xk also changed a lot because

of consideration of the correlation among Y. For example, the indirect determination of

x1$x2 to y1and y3 was 0.5768(y1 x1$x2!y3) and 0.3253(y1 x2$x1!y3). It’s strange that

the original indirect determination of x1$x2to y1, x1$x2 to y3 were -1.023 (y1 x1$x2!y1)

and 0.1833(y3 x1$x2!y3), respectively. It is obvious that the strong negative correlation of

y1 and y3 ðry1y3
¼ � 0:383Þ led to the change of indirect regulation. These big changes were

enough to show the importance of considering the correlation among Y. There were similar

changes in the direct determination of x1$x2 to y1and y2(y1 x1$x2!y2, y1 x2$x1!y2)

and x2$x3 to y1 and y3(y1 x2$x3!y3 y1 x3$x2!y3). Secondly, the decision coefficients

results showed that x1 is the very significant restrictive decision factor of Y = (y1,y2,y3)T

(Ry(1) = −0.3856��). But x1 is the significant positive decision factor to y2(Ry2(1) = 0.0420�)

and is not significant to y3(Ry3(1) = -0.0584). This phenomena seemed to be caused by the

very significant negative decision making effect of x1 to y1, and strong negative correlation

between y1 and y2 ðry1y2
¼ � 0:255Þ, y1 and y3 ðry1y3

¼ � 0:383Þ. For x2, there is no point in

making a decision. (Ry(2) = −0.1157). And x3 became a significant positive decision factor to

Y ¼ ðy1; y2; y3Þ
T
ðRyð3Þ ¼ 0:0906�Þ. However, x3 is significant only to y3 ðRy3ð3Þ

¼ 0:0775�Þ, and

is not significant to y1, y2 in one-to-multiple path analysis. Obviously, the correlation among Y
due to common Xmakes a big difference in the decision making. The results showed that the

economic coefficient (x3) should be increased, the biomass per plant (x1) should be appropri-

ately reduced and the single stem grass weight (x2) should remain unchanged in the process of

wheat breeding. These results were in accordance with the existing documents results [28]. In

short, the consideration of the correlation among Y caused a big change of the direct determi-

nation, the indirect determination and the decision analysis results of xj to Y. And the greater

the correlation among Y is, the greater the impact on regulation.

4 Discussion

In this article, the multiple-to-multiple path analysis model was proposed based on multivari-

ate linear regression analysis, which can be regarded as a generalization of one-to-multiple

path analysis model based on univariate linear regression analysis. The innovation of this

model is the multiple-to-multiple path analysis central theorem. The correlation among Y
caused by common X was considered in the system analysis including multiple independent

variables and multiple dependent variables. As Fig 2 shown, the other three types of paths

(yα xj!yt, yα xj$xk!yt, yα xk$xj!yt) generated in multiple-to-multiple path analysis
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model besides the two types of paths (yα xj!yα, yα xj$xk!yα) in one-to-multiple path

analysis. Along these five types of paths, the generalized determination coefficient R2 was

divided into the direct determination and the indirect determination according to R2�tr(B).

This division can clearly show the complex regulatory mechanisms among variables. Still fur-

ther, the generalized decision coefficient Ry(j) was constructed by synthesizing all the items

related to xj, which was used to express the comprehensive decision-making ability of xj to Y =

(Y1,Y2,� � �,Yp)T. In fact, the direct and indirect determinations all were products of correspond-

ing path coefficients. The quantitative expression of the regulation among variables is helpful

for decision makers to make more reasonable and optimized decision suggestions for target

variables. The analysis results of the wheat data in arid areas strongly confirm this. It is worth

mentioning that the path analysis of any closed system can be made according to the multiple-

to-multiple path analysis central theorem. However, the application of multiple-to-multiple

path analysis model still has some limitations. Firstly, the model is only applicable to the causal

relationship analysis among multiple dependent variables and independent variables with cor-

relation. Secondly, the difference between the generalized determination R2 and tr(B) is rela-

tively large when the correlation among variables is very strong in multiple-to-multiple linear

regression analysis, that is, the value of the correlation coefficient in correlation matrix is

almost 1. Here, the division of the generalized determination coefficient R2 based on R2�tr(B)

is very different from the actual result. Therefore, other division methods need to be further

considered.

5 Conclusion

In the multiple-to-multiple path analysis model, the correlation among dependent variables

caused by common independent variable is considered, besides the correlation among inde-

pendent variables. Taking into account more correlation information analysis makes the

results more practical and instructive.
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