
Review
Computational elucidation of spatial
gene expression variation from spatially
resolved transcriptomics data
Ke Li,1,2 Congcong Yan,1,2 Chenghao Li,1,2 Lu Chen,1 Jingting Zhao,1 Zicheng Zhang,1 Siqi Bao,1 Jie Sun, PhD,1

and Meng Zhou, PhD1

1School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
Recent advances in spatially resolved transcriptomics (SRT) have
revolutionized biological and medical research and enabled un-
precedented insight into the functional organization and cell
communication of tissues and organs in situ. Identifying and
elucidating gene spatial expression variation (SE analysis) is
fundamental to elucidate the SRT landscape. There is an urgent
need for public repositories and computational techniques of
SRT data in SE analysis alongside technological breakthroughs
and large-scale data generation. Increasing efforts to use in silico
techniques in SE analysis have been made. However, these at-
tempts are widely scattered among a large number of studies
that are not easily accessible or comprehensible by both medical
and life scientists. This study provides a survey and a summary
of public resources on SE analysis in SRT studies. An updated
systematic overview of state-of-the-art computational ap-
proaches and tools currently available in SE analysis are pre-
sented herein, emphasizing recent advances. Finally, the present
study explores the future perspectives and challenges of in silico
techniques in SE analysis. This study guides medical and life sci-
entists to look for dedicated resources andmore competent tools
for characterizing spatial patterns of gene expression.
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INTRODUCTION
Recent advances in sequencing technologies, such as single-cell RNA
sequencing (scRNA-seq), have allowed for the dissection of gene
expression in tens of thousands of individual cells at a single-cell res-
olution as well as have enabled the analysis of cellular composition
and heterogeneity of complex tissues using high-throughput
methods.1–4 However, scRNA-seq results in the loss of spatial context
during the separation process even if it provides an estimate of the
whole transcriptome, thus hindering the further understanding of
the tissue structure and cell state.5 Moreover, increasing evidence
has suggested that the heterogeneity of gene expression patterns is
closely associated with the characteristics of cell types and the micro-
environment in which cells are located.6–8 Although scRNA-seq al-
lows for detecting highly variable genes that contribute strongly to
cell-type differences, as a result of ignoring spatial separation, these
cell-type-specific genes may not have spatially coherent expression
patterns. The introduction of spatially resolved transcriptomics
(SRT) technologies provides significant opportunities to link the
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gene expression profiling and location information of cells within
the tissues.9 A critical task in SRT studies is to identify spatially var-
iable genes (SVGs) that have distinct spatial expression patterns
across spatial locations. Identifying SVGs provides an opportunity
to systematically analyze the state of cells in specific locations, infer
the communication between cells, and determine vital phenotypes
and functions in organisms. For example, Navarro et al. identified
spatially different genes showing specific spatial expression patterns
in the brains of Alzheimer model mice, and these could be used as
novel molecular targets for the treatment of Alzheimer disease
(AD).10 Wang et al. explored the tumor microenvironment of pros-
tate cancer with SRT data and revealed a series of newmetabolic genes
with spatial heterogeneity, which may drive vital functions of tumor
cells.11

A traditional method to identify genes with spatial expression hetero-
geneity is to perform a differential expression analysis on different
spatial regions directly.12,13 However, this method can only reveal
variations obtained by differences between discrete clusters or regions
and cannot detect those spatial genes that show a gradient-like
expression across the spatial region. Therefore, with the development
of bioinformatics in SRT, a series of emerging computational
methods have been developed and proposed tomake full use of spatial
gene expression data for elucidating spatial gene expression variation.

The present study aimed to provide an overview of public repositories
and state-of-the-art computational algorithms, approaches, and tools
that are currently available in SE analysis, with an emphasis on recent
advances. This summary does not only comprise a list of dedicated
resources and more competent tools for characterizing spatial
Author(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1. Overview of resources and databases for spatially resolved transcriptomics

Database Description URL

SpatialDB
a database for spatially resolved transcriptomic
datasets

https://www.spatialomics.org/SpatialDB/

Single Cell Portal
a comprehensive database for single-cell and SRT
studies

https://singlecell.broadinstitute.org/single_cell
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patterns of gene expression in the fields of medical and life sciences
but also may be helpful in the fields of bioinformatics and computa-
tional science for the development of more powerful and efficient in
silico techniques in SRT studies.

RESULTS
Data repositories and resources for SRT

With the rapid development of SRT technologies, SRT-related data
are gradually accumulating. However, currently available data re-
sources and databases are limited, and numerous data have not
been systematically organized. Here, we list existing data repositories
and resources for SRT, thereby offering convenience for researchers
in this field (Table 1).

SpatialDB (https://www.spatialomics.org/SpatialDB/)14 is currently
the most comprehensive manually curated database collecting SRT
datasets. It integrates 24 publicly available datasets of tissues from hu-
mans, mice, Caenorhabditis elegans, drosophila, and zebrafish that
have been generated by eight SRT techniques. In addition, SpatialDB
shows SVGs identified by SpatialDE and trendsceek, as well as data
visualization, comparison, and Gene Ontology and Kyoto Encyclo-
pedia of Genes and Genomes enrichment analyses.

Single Cell Portal (https://singlecell.broadinstitute.org/single_cell) is
a growing comprehensive single-cell database, which has collected
and integrated 17,640,076 cells from 400 studies, including from
SRT studies and datasets; most of them are from SRT technologies
developed at the Broad Institute, such as high-definition spatial tran-
scriptomics and slide-seqV2.15,16

Computational methods for identifying SVGs

Many computational efforts have beenmade during the past few years
to help elucidate spatial gene expression variation. However, these at-
tempts are scattered among a large number of studies. In this section,
these state-of-the-art computational methods and tools will be sys-
tematically introduced and summarized. Based on the intrinsic prin-
ciple, these existing methods could be classified into three categories,
based on the methods they use: (1) statistical-modeling-based
methods; (2) machine-learning-based methods; and (3) spatial-
grid-based methods (Table 2).

Statistical-modeling-based methods

Based on known cell spatial coordinates and their gene expression
levels, statistical-modeling-based methods provide statistical frame-
works to elucidate spatial gene expression heterogeneity. A schematic
workflow of statistical-modeling-based methods is illustrated in Fig-
ure 1. First, the gene expression profile and the location information
of cells are input. According to the input information, statistical frame-
works to clarify the dependence between the gene expression values
and the spatial location of cells were constructed. Subsequently, signif-
icant SVGs are determined by different statistical methods.

trendsceek uses marked point processes to model the association be-
tween gene expression and cell coordinates.17 trendsceek represents
each point as a cell and the mark of the point as the gene expression
value and calculates the distance between points. For a specific dis-
tance, evaluating whether the mark of the gene is dependent on the
location of the point; in other words, whether marker separation
occurred. Four types of dependency evaluation methods are used
to test marker separation (V-mark, E-mark, the mark-variogram,
and Stoyan’s mark correlation). The score should be variable in
different distances if the marks and the distribution of points are
dependent.

SpatialDE is a Gaussian-process-regression-based method.18 The
Gaussian Process (GP) is a random process also known as normal dis-
tribution.19 It allows for non-linear regression and quantification of
the association between themeasurement process and latent function,
and GPs are useful for SRT data to model spatial gradient changes in
gene expression. SpatialDE establishes a linear mixed model for gene
expression profiles with Gaussian kernels and decomposes the varia-
tion of each gene as spatial or non-spatial variations.18 The non-
spatial variation is modeled using observation noise, and the spatial
variation is denoted by the covariance matrix of gene expression
values and spatial cell coordinates. For each Gaussian kernel, Spa-
tialDE calculates an approximate p value using the likelihood test
compared with a null model and identifies genes with significant
spatial variability.

Compared to SpatialDE, SPARK makes some specific improve-
ments.20 SPARK recognizes SVGs based on a spatial generalized
linear mixed model with multiple spatial kernels, including
Gaussian kernels and periodic kernels, to directly model spatial
count data. In order to adapt to different spatial patterns, SPARK
uses ten spatial kernels by default, including the most common
spatial expression patterns. SPARK relies on the mixture c2 distri-
butions to accurately test the p value of each spatial kernel and
then integrates all p values using the Cauchy combination rule to
obtain a well-calibrated p value, which can effectively control the
occurrence of type I errors. In addition, a Gaussian version of
SPARK has been developed that can keep a stable model perfor-
mance when facing SRT data with high counts.
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Table 2. Overview of computational tools and methods for identification of spatially variable genes

Method Description Platform URL Reference

Statistical-modeling-based methods

trendsceek based on marked point processes R https://github.com/edsgard/trendsceek Edsgard et al.17

SpatialDE based on Gaussian process regression Python https://github.com/Teichlab/SpatialDE Svensson et al.18

SPARK
based on spatial generalized linear mixed model
with multiple spatial kernels

R https://xzhoulab.github.io/SPARK/ Sun et al.20

SPARK-X based on the non-parametric model R https://xzhoulab.github.io/SPARK/ Zhu et al.21

GPcounts
based on GP regression using negative binomial
likelihood functions

Python
https://github.com/ManchesterBioinference/
Gpcounts

BinTayyash et al.24

BayesSpace based on the Bayesian statistical model R https://github.com/edward130603/BayesSpace Zhao et al.25

Machine-learning-based methods

RayleighSelection
based on the extension of the graph Laplacian
method

R https://github.com/CamaraLab/RayleighSelection Govek et al.29

SOMDE based on a self-organizing map neural network Python https://github.com/XuegongLab/somde Hao et al.35

SPADE based on convolutional neural network Python/R https://github.com/mexchy1000/spade Bae et al.36

Spatial-grid-based methods

singleCellHaystack
based on the grid and grid points and binary gene
expression values

R
https://github.com/alexisvdb/
singleCellHaystackhttps://cran.r-project.org/
package=singleCellHaystack

Vandenbon et al.37

HMRF
based on spatial genes and neighborhood network
to detect spatial domains

Python
https://bitbucket.org/qzhudfci/smfishhmrf-py/
src/master/

Zhu et al.40

Meringue
based on Delaunay triangulation and spatial auto-
correlation statistic

R https://jef.works/MERINGUE/ Miller et al.38

BinSpect
based on Delaunay triangulation and statistical
enrichment test

R http://spatialgiotto.rc.fas.harvard.edu/ Dries et al.39
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SPARK-X is an effective supplement to SPARK when dealing with
large and sparse SRT data. Based on the non-parametric modeling,
SPARK-X effectively reduces memory requirements and computa-
tional times while keeping a reliable model effectiveness.21

Negative binomial distribution refers to a discrete probability distribu-
tion, which is suitable for the characteristics of overdispersion and zero-
inflated counts in single-cell data.22,23 GPcounts takes advantage of the
Gaussian process regression method, which implements negative bino-
mial likelihood models (sometimes zero-inflated negative binomial
[ZINB]) formodeling SRT data, achieving a better fit than the Gaussian
likelihood function when dealing with count data.24 The average of the
negative binomial likelihood variation is modeled based on the loga-
rithmic link function. GPcounts provides one- and two-sample tests
to infer differentially expressed genes across space in spatial count
data. In the one-sample test, the null hypothesis is a Gaussian model
with no spatial variability in gene expression and no covariance be-
tween cells. There are two null hypotheses in a two-sample test: (1)
the gene expression under two conditions shows no difference and
(2) after constructing three GPs, each sample uses a GP, and the re-
maining GP is shared between the two samples. GPcounts imple-
mented c2 distribution to assess the p value of each gene. Furthermore,
GPcounts can use the ZINB model instead of the negative binomial
model to cope with the data containing too many zeros.
406 Molecular Therapy: Nucleic Acids Vol. 27 March 2022
A fully Bayesian statistical method called BayesSpace has recently been
introduced to improve the resolution of SRT data based on the informa-
tion from spatial neighborhoods and to perform spatially clustering
analysis to infer clusters with similar gene expression patterns. Bayes-
Space overcomes the limitation in efficiently utilizing spatial informa-
tion for gene expression data clustering and the limited resolution of
the original data.25

Machine-learning-based methods

Spectral-based methods

Machine learning methods have been widely used in single-cell and
SRT studies.26,27 As a type of machine-learning-based method, spec-
tral-based methods have emerged as a way to perform an unsuper-
vised feature selection based on the degree of consistency
between features and the underlying structure. A schematic workflow
of spectral-based methods is illustrated in Figure 2. For each input
feature (gene), the nearest neighbor graph is constructed firstly to
connect each node (cell) associated with the same topic in space using
the k-nearest neighbor (KNN) algorithm. The weight of the edge is
measured using distance measurement methods, such as Euclidean
distance. According to this nearest neighbor graph, an adjacency ma-
trix (A) is constructed to represent the weight value between edges,
where a node without an edge connection is 0. The larger the weight,
the smaller the distance or difference between nodes.

https://github.com/edsgard/trendsceek
https://github.com/Teichlab/SpatialDE
https://xzhoulab.github.io/SPARK/
https://xzhoulab.github.io/SPARK/
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https://github.com/CamaraLab/RayleighSelection
https://github.com/XuegongLab/somde
https://github.com/mexchy1000/spade
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Figure 1. Schematic workflow of statistical-modeling-based strategies

Cell coordinates and gene expression profiles are input to represent the spatial

distribution of gene expression. Then, spatial coordinates and gene expression

values are modeled. Finally, significantly spatially variable genes are obtained by

calculating statistical indicators.
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A = e�
kXi�Xjjk22

t Xi is not X
0
js nearest neighbor;

and t is a suitable constant (Equation 1)

A = 0 Xi is X
0
j s nearest neighbor (Equation 2)

Next, a degree matrix (D) is constructed to represent the number of
edges at each node. And the Laplacian matrix (L) can be expressed
as follows:

L = D� A (Equation 3)

Finally, the Laplacian score is calculated to measure the correlation
between the cell coordinates in the space and the gene expression
value for each gene. In general, a minor Laplacian gene score indicates
a higher value in nodes connected in a local structure and a strong
correlation between the gene expression and the spatial coordinates.28

RayleighSelection expanded the graph-based Laplacian method, used a
simplicial complex that significantly simplified the association among
data, and performed a feature selection on features with a complex
combinatorial structure.29 The principle of RayleighSelection is the
construction of a simplicial complex using the Vietoris-Rips complex
(the simplicial complex is similar to the nearest neighbor graph in
graph-based Laplacian methods). RayleighSelection introduced the
combinatorial Laplacian score that extended ordinary Laplacian scores
to high-dimensional relationships (such as triangles and tetrahedrons)
in data. The spatial expression patterns of genes in SRT data are ranked
according to their scores, and genes with low scores have highly vari-
able spatial patterns. The statistical significance of the combinatorial
Laplacian score is measured by random estimation.

Neural-network-based methods

Due to the feature-enriched and well-structured input data, neural
networks, another important branch of machine learning, have
been widely used to analyze scRNA-seq and SRT data.30–34 As shown
in Figure 2, neural networks are composed of three parts: an input
layer for accepting input information, an output layer, and hidden
layers composed of multiple neurons and links. Neurons are
commonly divided into multiple hidden layers. Data with high
complexity enter from the input layer and activate each hidden layer.
Finally, the simplified data are output, effectively reducing the dimen-
sionality of SRT data for the subsequent analysis.

SOMDE uses a self-organizing map (SOM), a competitive learning al-
gorithm for dimensionality reduction according to the topological rela-
tionship between hidden layers.35 A condensedmap is constructedwith
fewer nodes based on the density and topology of the input data while
maintaining the original spatial information, and then SVGs are de-
tected by GP.29 The process of SOMDE can be divided into two main
steps. During the first step, SOMDE integrates cells that were close to
each other into different nodes using the SOMand generates the weight
vectors using the coordinates of nodes in space. Each node in the SOM
contained a set of adjacent cells mapped to the node. In the second step,
SOMDE models the spatial correlation in each node using specific sta-
tistical models, such as the GP. SOMDE scored the spatial variability of
each gene with the maximum likelihood value and ranked SVGs.

SPADE uses imaging data and spatial transcriptomic data as inputs,
extracting the morphological features around each spot by the convo-
lutional neural network and combining them with gene expression
data to identify critical genes associated with spatial and morpholog-
ical heterogeneity.36 In addition, a functional analysis can be per-
formed based on these critical genes to further elucidate the biological
processes responsible for distinct morphological features.

Spatial-grid-based methods

The schematic workflow of spatial-grid-based methods is illustrated
in Figure 3. This class of methods aim to divide the space intomultiple
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Figure 2. Schematic workflow of machine-learning-

based strategies

Spectral-based methods first construct a nearest

neighbor graph according to the input data and then

calculate the Laplacian matrix and score. Graph and

combinatorial Laplacian scores are used to identify the

spatially variable genes. Neural-network-based methods

process the input data through a graph convolutional

neural network or SOM to identify spatially variable genes.

SOM, self-organizing map.
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grids and to encode spatial relationships among different cells or infer
the distribution of cells then apply subsequent steps, such as binariz-
ing the cells’ spatial adjacent relationships or gene expression levels
for the identification of SVGs.

SingleCellHaystack divides the space into grids and determines mul-
tiple grid points on this grid according to the density of cells.37 For
each gene, SingleCellHaystack clusters all cells into two categories
by a hard threshold: cells with the gene detected, and cells with the
gene not detected. Then, SingleCellHaystack calculates the distribu-
tion of these two categories of cells and compares themwith a random
distribution of cells in space. Kullback-Leibler divergence is used to
calculate the DKL score for each gene as the degree of variation and
identify genes not uniformly expressed in a multidimensional space.
Based on this score, the spatial variability of genes can be evaluated.
408 Molecular Therapy: Nucleic Acids Vol. 27 March 2022
MERINGUE considers each cell in SRT data as
a neighborhood through Delaunay triangula-
tion then determines whether each cell pair is
adjacent according to these neighborhoods
and applies a binary adjacency weight matrix
to represent this relationship. Depending on
the constructed adjacency matrix and gene
expression matrix, MERINGUE computes the
spatial auto-correlation statistic, Moran’s I, to
obtain significant spatial genes.38 In addition,
MERINGUE classifies the identified spatial
genes into multiple spatial expression patterns
through a spatial cross-correlation index.

Giotto has been developed as a toolbox for
analyzing and visualizing SRT data and incorpo-
rates four approaches to identify spatial genes,
including trendsceek, SpatialDE, SPARK, and
BinSpect. BinSpect first creates a spatial
grid using Delaunay triangulation to represent
the association between cells.39 For each gene be-
ing inputted, BinSpect will binarize the gene
expression value through K-means clustering or
rank threshold and calculate a contingency table
between neighboring cells according to these bi-
narized expression values. Using a statistical
enrichment test, if a gene is significantly highly
expressed in neighboring cells, this gene will be regarded as a SVG.

As a graph-based model, the hidden Markov random fields (HMRFs)
approach utilizes spatial genes and the spatial neighborhood network
to summarize primary spatial domains.40 First, the state of each cell
will be inferred, which is determined by two factors (the gene expres-
sion pattern and the state of its neighbor surrounding cells), then each
cell is assigned to a specific spatial domain according to their cell state.

DISCUSSION
In recent years, SRT technologies have continued to develop and
become a novel paradigm of disease research. Accumulating evidence
suggests that the association between spatial locations and gene
expression levels of cells in tissue plays a critical role in diseases,
particularly in the tumor mechanism and microenvironment.41,42
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Figure 3. Schematic workflow of spatial-grid-based methods

Spatial-grid-based methods acquire cell coordinates and gene expression profiles

as the input and divide the space into grids and encode spatial relationships or infer

the distribution of cells, then they apply subsequent steps such as binarizing the

cells’ spatial adjacent relationships or gene expression levels to identify spatially

variable genes.
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Identifying genes with spatially variable expression patterns is the
critical task of SRT data analysis, reflecting communication between
adjacent cells, position-specific states, or cells that migrate to a specific
tissue.18 It has provided a broad range of applicability in identifying
tumor markers associated with specific tissue areas, as well as
informed targeted treatment, explored the spatial expression patterns
related to the specific functions, and provided insights into the origins
of tumor heterogeneity.

Currently available databases and computational resources relevant
to SRT studies were systematically collected and reviewed in the pre-
sent study. Next, a detailed overview of current computational and
analytical strategies and tools for elucidating spatial gene expression
variation from SRT data at single-cell or subcellular resolution was
presented. Based on the intrinsic principle, these existing methods
could be classified into three categories: (1) statistical-modeling-based
methods, (2) machine-learning-based methods, and (3) spatial-grid-
based methods.

Typically, the statistical-modeling-based methods involved a statisti-
cal analysis performed on each gene and detected significant SVGs
through different statistical methods. However, trendsceek calculates
test statistics using the permutation test, but this significantly in-
creases the time-cost, and the downstream biological explanation of
genes is lacking. The advantage of SpatialDE over trendsceek is that
it uses the automatic expression histology method, which can detect
related biological features. In addition, due to the exertion of efficient
linear mixed models, SpatialDE guarantees a higher computational
efficiency than trendsceek. However, SpatialDE approximates the
data distribution to a typical model, which may lead to type I errors,
and the p value generated by SpatialDE is relatively conservative.
SPARK models the spatial counts data directly and shows an efficient
performance in low counts data. Compared with SPARK, SPARK-X
exhibits a higher calculation efficiency when used for larger-scale
SRT data. GPcounts implements negative binomial (NB) or ZINB
on GP; although ZINB is suitable for zero-inflated single-cell data,
the NB distribution is usually used to model gene count data due to
its simplicity.43 Unlike trendsceek’s and SpatialDE’s modelings of
normalized data, SPARK, SPARK-X, and GPcounts directly input
the raw counts to start processing, which could more effectively ac-
count for the mean-variance relationship reflecting the discrete char-
acteristics of data. However, for most methods, the defect of poor
computational efficiency and high time-cost is still the most signifi-
cant challenge preventing their application to large-scale SRT data.

On the contrary, machine-learning-basedmethods significantly reduce
the calculation time due to their high computational efficiency and
their feature selection for complex data. High-complexity data where
the number of features is much greater than the number of observa-
tions usually leads to dimensional redundancy and processing diffi-
culties;44 in order to simplify the understanding of data and reduce
redundancy while retaining most of the data information, performing
a feature selection and a dimensionality reduction on complex data can
significantly reduce the time-cost and improve the efficiency of anal-
ysis, which can be achieved using spectral techniques and
neural networks.45 SOMDE is a powerful method for applying large-
scale datasets. The running time of SOMDE is associatedwith the num-
ber of genes but not the sample size. The SVGs recognized by the neural
network have a more robust biological interpretation. Due to the image
data input, SPADE can obtain the SVGs with morphological heteroge-
neity. However, the results of SPADEmay be affected by the size of im-
age patches and the density of spots.

Besides, SingleCellHaystack is clustering-independent and will not
cause inaccurate recognition because of clustering deviation. Single-
CellHaystack has universal applicability, not only for SRT data but
also for scRNA-seq or bulk RNA sequencing (RNA-seq) data, to iden-
tify differentially expressed genes. A series of methods incorporate the
distance information between cells into the calculation process, but
the gene-expression-related spatial variation may be covered up due
Molecular Therapy: Nucleic Acids Vol. 27 March 2022 409
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to cell-distance differences. As a solution, Meringue put forward a cell
neighborhood representation method, which is more stable than the
traditional distance-neighbor relationship method, such as KNN,
making it suitable for tissues with non-uniform cell density. For a
part of spatial-grid-based methods (SingleCellHaystack and BinS-
pect), one common defect is that the gene expression values are binar-
ized rather than being provided in continuous observations. There
were only two indicators for gene expression values in cells (present
or not). Even if their expression levels differ significantly, two genes
may be detected as “present” or “high expression” in the same cell.
Furthermore, choosing an appropriate threshold to distinguish the
presence or absence of gene expression was still time-consuming
and required multiple attempts.

Although these state-of-the-art computational algorithms, approaches,
and tools have highlighted the power and necessity of in silico tech-
niques in SRT data analysis, the efficient and accurate computer-aided
identification and elucidation of spatial gene expression variations is in
its infancy, with significant challenges remaining. For example, most of
these existing methods face high memory requirements and the prev-
alence of zero values in data. In addition, there is a lack of ground truth
to better systematically compare these methods. Usually, the running
time, memory, and detected gene numbers are commonly used for
improved systematic comparisons. Some studies also use statistical in-
dicators, such as the Moran’s I statistic, to assess the credibility of the
SVGs identified by these methods. With the development of SRT tech-
nologies, tens of thousands of spatial sequencing sites can be measured
in one sample, significantly increasing the scale of SRT data. Therefore,
the need to adapt to the increasingly larger data size also increases the
methods’ scalability and computational complexity. Various
sequencing technologies have been established tomeasure gene expres-
sion levels with spatial context. However, few approaches can measure
the spatial information of a single cell at the scale of the whole tran-
scriptome, resulting in the exclusion of some actual SVGs in data. As
the sequencing depth of the genes measured by SRT increases, the
methods of identifying SVGs will be further developed. Finally, these
advanced computational tools were implemented in R or Python pack-
age. They required command-line operations, limiting their use by
medical and life scientists who did not have a computational
background.
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