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Visual tool for real-time monitoring 
of membrane fouling via Raman 
spectroscopy and process model 
based on principal component 
analysis
Tiina Virtanen  , Satu-Pia Reinikainen, Jussi Lahti, Mika Mänttäri & Mari Kallioinen

Membrane fouling, i.e. accumulation of unwanted material on the surface of the membrane is a 
significant problem in filtration processes since it commonly degrades membrane performance 
and increases operating costs. Therefore, the advantages of early stage monitoring and control of 
fouling are widely recognized. In this work, the potential of using Raman spectroscopy coupled to 
chemometrics in order to quantify degree of membrane fouling in real-time was investigated. The 
Raman data set collected from adsorption experiments with varying pHs and concentrations of model 
compound vanillin was used to develop a predictive model based on principal component analysis (PCA) 
for the quantification of the vanillin adsorbed on the membrane. The correspondence between the 
predicted concentrations based on the PCA model and actual measured concentrations of adsorbed 
vanillin was moderately good. The model developed was successful in monitoring both adsorption and 
desorption processes. Furthermore, the model was able to detect abnormally proceeding experiment 
based on differentiating PCA score and loading values. The results indicated that the presented 
approach of using Raman spectroscopy combined with a PCA model has potential for use in monitoring 
and control of fouling and cleaning in membrane processes.

Membrane based technologies have been widely applied for purification, concentration and separation of fluids 
ranging from surface water and wastewater to a variety of industrial streams1–3. The performance of membrane 
processes is strongly hampered by membrane fouling, which typically leads to decline of production volume and 
can even change the rejection characteristics of the membrane3–5. Membrane fouling also leads to the need to 
clean or replace the membranes, which increases operational costs6,7. The fouling problem can be mitigated by 
adoption of fixed operational schemes consisting of membrane aeration, backwash and chemical cleaning cycles. 
However, such conservative anti-fouling strategies ignore the dynamic nature of fouling and are therefore never 
optimal8–10. Thus real-time early warning systems for monitoring of fouling and optimized dynamic fouling con-
trol schemes that are able to minimize the build up of a foulant layer are needed to improve the operation of mem-
brane processes11–14. Process analytical technologies (PAT) enable continuous analysis and thus can be applied 
for learning and quality control of processes on the basis of real-time monitoring15. In this work, a chemometric 
approach based on online Raman spectroscopy is taken.

Since short sampling intervals are needed to follow membrane processes in real time, the acquired data sets 
are usually large. However, the patterns in the spectral data can be easily modeled, visualized and reduced to more 
easily interpretable form using chemometric methods. They offer a valuable for toolbox for building an empirical 
model of the desired process behavior15–17. Principal component analysis (PCA) is the most simple multivariate 
chemometric method which is widely used for compression and information extraction from large data sets18. 
PCA can be utilized in the interpretation and classification of large data sets and in outlier detection19. PCA 
captures a set of underlying variables that are uncorrelated with each other. These new variables, i.e. principal 
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components (PCs) describe major trends in the original data set20. Simple and linear dimensionality reduction 
can be done also with another popular multivariate method called partial least squares regression (PLS)18.

Spectroscopic techniques coupled with multivariate chemometric models have proven to be promising tech-
niques for quantitative and qualitative evaluation of membrane filtration processes. Lyndgaard et al.21 demon-
strated that ultraviolet (UV) spectroscopy in combination with principal component analysis (PCA) and partial 
least squares (PLS) modeling can be used as a method for monitoring cleaning of whey filtration membrane units. 
UV data was also utilized by Corona et al.22 to develop various multivariate regression models to estimate the 
nitrate-nitrogen concentrations in a denitrifying post-filtration unit of a wastewater treatment plant. Skou et al.23  
combined near infrared spectroscopy (NIRS) with PLS regression modeling to monitor quality of a reverse osmo-
sis polisher filtration unit permeate that was sought to be reused as process water in dairy industry. In addition, 
Elshereef et al.24 developed multivariate regression models for monitoring the changes in concentrations of pro-
teins in both permeate and retentate of a whey protein isolate filtration by making use of data collected by fluo-
rescence spectroscopy.

Raman spectroscopy is able to capture information about the quality and quantity of molecules based on their 
vibrational transitions and is therefore a suitable method for elucidating various chemical processes25. Raman 
based spectroscopic techniques combined with multivariate modeling has been recently applied e.g. for quanti-
fication of strong acid concentration in solutions26, to monitor lignocellulosic bioethanol production processes27 
and for predictive modeling of cell culture growth and metabolite production28. Our previous studies have shown 
that online measurement by Raman spectroscopy can be used for rapid, direct and non-invasive detection of 
adsorption processes on the surface of the membrane11,29. However, in our previously published approach the 
chemometric analysis run was done individually for each adsorption experiment data set and scaling of the results 
for getting quantitative accumulation curves required ex situ calibration measurements. Thus direct real-time 
quantitative estimation of membrane fouling based on only Raman spectral data and chemometric model has not 
been presented earlier.

In this study, we propose the application of Raman spectroscopy with PCA to build a chemometric calibration 
model that allows prediction of unknown concentrations and visualization of development of adsorptive fouling 
on the surface of the membrane in real-time30. Membrane fouling caused by phenolic and ligneous compounds 
is a significant problem in the membrane filtration field and understanding on the profound fouling mechanisms 
is needed. Thus vanillin was used as a adsorptive model compound due to its lignin-related structure, phenolic 
amphipathic nature and intense Raman response of the delocalized π-electrons. Previously acquired Raman spec-
tra and external calibration data11,29 were used to build a PCA model describing a smoothly running membrane 
process. Validation of the method was performed through a comparison of measured values to those predicted 
by the model. The correspondence between the predicted concentrations and actual measured concentrations 
of adsorbed vanillin was fairly good. Thus the proposed approach has potential for use in visual monitoring of 
adsorption and desorption during membrane processes and for differentiation of anomalous events based on 
score and loading values. In addition the model has a potential to be used as a part of a process control system 
to reach the desired concentration level of the monitored compound either in an adsorptive coating process or 
in monitoring the effect of a washing process. The suggested procedure for Raman spectroscopy and PCA based 
monitoring and control is presented in Fig. 1.

Results
Spectral changes revealed by PCA loadings. When the number of wavelenghts is reduced to the ones 
that carry most information, the model is typically safer and easier to interpret and the prediction ability might be 
increased31. In the spectral area used in this study the peaks in the spectrum of the polyethersulfone membrane at 
1580 cm−1 and 1600 cm−1 originate from stretchings of the aromatic ring32. The Raman spectrum of the vanillin 

Figure 1. Summary of the procedure for Raman and PCA based membrane process monitoring and control 
technique.
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powder has peaks at 1511 cm−1 and at 1592 cm−1 (coupled skeletal stretchings of the aromatic ring) and peak 
with a shoulder at 1665 cm−1 (C=O stretching of the aldehyde group)33. By analyzing information contained in 
Raman spectra, it is possible to capture spectral changes that are related to chemical changes on the surface of 
the membrane. PCA analysis compresses data into loading and score values of main principal components that 
describe most of the variation in the data.

By examining the loadings related to each PC, it is possible to identify which deviations in the spectral var-
iables are explained by a given PC34. Since spectra were not mean centered prior to PCA, the loadings of PC1 
represent the average spectrum and PC2 represents changes to the average spectrum25. The loading plot of PC1 
represents the spectrum of the membrane and contains a major peak at 1600 cm−1 and a minor peak in the form 
of a shoulder around 1580 cm−1 (Fig. 2). The presence of these loading peaks of PC2 at similar locations as the 
Raman peaks of vanillin indicate that PC1 is mostly correlated with the vanillin content.

The original calibration data set yielded the loading plot shown in Fig. 2. Two spectra were discarded from the 
calibration model due to strong, anomalous shoulder peaks at 1615 cm−1 (Fig. 2). It can be seen how significantly 
deviating spectra can change acquired loadings by emphasizing the area where the deviation is present. This sub-
stantive change in model structure can be explained by the small size of the data set. When spectral data is stud-
ied, the outliers are typically easily detected because spectra are usually very accurate measurements. Generally 
when analyzing large data sets the PCA focuses more on main trends instead of on noise and singular changes. As 
shown also here, very often removal of a serious outlier results in significant changes in the model. If the outlier is 
not removed the model focuses on modeling errors instead of interesting variations31,35.

Construction of calibrated PCA model based on score values. After the Raman spectra have been 
subjected to spectral preprocessing and PCA analysis the obtained score values and external calibration data are 
used to build a PCA model that presents the adsorption process. Score values describe how the variation in the 
data changes between different measurements. In this study development of score values as a function of time 
describes how intensities of vanillin peaks are increasing as it accumulates on the membrane. Intensities of the 
peaks increase with increasing concentration of the vanillin. Hence spectra with high vanillin concentration are 
associated with high PC1 scores.

With the available external calibration data from extractions and UV analysis, it is possible to make a plain 
regression model between Raman spectra and concentration of adsorbed vanillin. It can be assumed that in the 
beginning of the adsorption measurement the concentration of vanillin on the surface of the membrane is 0. The 
concentration of the vanillin in the end of the experiment can be picked up from extraction data. The extension of 
the Beer-Lambert law gives a dependency between intensity of Raman scattering and concentration. The equation 
for linear regression is:

=c ks, (1)

where c is the measured concentration and s is a scaled scores value, which represents the intensity of the vanillin 
peak in the spectrum. Scaling was done subtracting the reference score values (t = 0 min) of each experiment both 
from the initial reference score value and from the final score value (t = i min). Regression coefficient k relates 
the score value and the measured concentration. The model can be tested simply by looking at a plot of calculated 
against measured data. Figure 2 shows the deviation between predicted and measured results for the test set. In 
an ideal case all data points should be on the diagonal, but some spread is common. The regression coefficient 
(k = 0.0079) can be used on the test data to predict the concentration levels during adsorption or desorption 
processes. Even though the match is not perfect, the main trends can be observed in the predicted data. If the 
deviation is not too wide, the predicted values might be good enough for detecting the level of concentration and 
to tune the process30. A comparison of predicted and measured concentrations is shown in Fig. 3. It can be seen 
that the model can either over- or underestimate the concentration depending on the case. The multiplier needed 
to get the measured value from the estimated value is in the best case 0.96 and in the worst case 3.97.

Predicted and measured vanillin concentrations are far apart e.g. at 0.25 g/L and pH 5.5. As the distribution of 
data points is somewhat uneven and in the other end of the diagonal centered around the lower concentrations 
PCA model seems to be more effective in that region than in the middle of the diagonal. At the other end extreme 
data points with higher variation might span the model to focus more on the higher concentrations and the accu-
racy of the middle region might be hampered also due to that. In the ideal case dataset should cover the studied 
range as representatively as possible and a better model would cover wider area of variations in the data and result 
score plot where the sample points are more evenly spread over the whole diagonal. Problems in the prediction 
might also stem from combined sampling and analytical uncertainty due to uneven concentration profile, mod-
eling errors and from noise in the data31.

Monitoring based on the calibrated PCA model. Visualization of data is an essential part of chemo-
metric data analysis. Principal components can be presented either by line or scatter plots30. Our example from 
membrane process monitoring shows how online measurement by normal Raman spectroscopy can be used for 
fast prediction of concentration of adsorbed vanillin on the surface of the commercial polyethersulfone mem-
brane. The previously built up PCA based model is used for this purpose.

Data from experiment 1/3 of 0.75 g/L at pH 2.0 was treated as an example. PCA was first run for the initial 
spectrum, one by one for each adsorption spectrum and for calibration data (all initial and final spectra). The run 
was done separately for each adsorption time point. The initial spectrum was included in all runs to enable scal-
ing. The acquired PC2 score values for the initial spectrum and adsorption spectrum were scaled by subtracting 
the score value of the initial spectrum from score values of both spectra. The scaled score values were 0 for initial 
spectra and between −0.61 and −1.48 for adsorption spectra. Then the score values were multiplied by −1 to get 
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positive scores and divided by the correlation coefficient k = 0.0078 (from Fig. 2) to gain the predicted concentra-
tions. The scatter plot for predicted concentrations is shown in Fig. 4.

The score value that represents the current state of the process can also be used as a criterion for ending the 
process or for another control actions such as flushing of the membrane. This is enabled by multivariate control 
charts, which can classify if samples are “in” and “out” of control based on the determined score values and 
subsequent concentration levels36. This approach is demonstrated by setting the arbitrary “control limit” to the 

Figure 2. Preprocessed Raman spectra show how the intensity of vanillin peaks on the membrane increase 
as the concentration of the vanillin increases (*0.25 g/L = pH 5.5, 0, 75 g/L = pH 5.10 and 1.25 g/L = pH 5.0). 
Spectra were sent to the PCA analysis with and without removing deviating spectra which possessed a fairly 
intense shoulder peak at 1615 cm−1 (dotted lines). It can be seen that anomalous spectra with intense signals in 
the studied region may skew the result of the PCA model significantly to overemphasize the spectral changes in 
that region. This results in incorrect scores values.
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chart in Fig. 4. The chart shows how the predicted data points can be easily classified as “in control” (concentra-
tions within the normal operating range) or “out-of-control” based on the acquired scores values and predicted 
concentrations.

Discussion
In this study, a process model based on Raman spectroscopy and PCA was shown to posses monitoring capa-
bility for adsorption processes on the surface of membranes. Comparison of estimated and ex situ measured 
results showed fairly good correspondence between the predicted concentrations based on the PCA model and 
actual measured concentrations of adsorbed vanillin. When compared to conventional offline analytical labora-
tory methods, it is usual that some accuracy has to be sacrificed to achieve real-time results37. Thus the presented 
procedure has potential to serve as a tool for development of membrane fouling control strategies and process 
optimization. A well built model could be routinely applied to online data in order to predict the development of 
the concentrations of the adsorbed phenolic foulants.

The accuracy of the predictions could be improved by using larger data set for building the model. In generally 
for the process analytical application, the model building and testing are the most important aspects37. The pre-
sented approach, which is based on the PC scores generated by PCA of Raman spectra, is believed to be suitable 
for real-time monitoring of membrane fouling and control/optimization of membrane systems. Raman spec-
troscopy is able to detect chemical changes caused by the foulants on the surface of the membrane rapidly and 
in non-invasive way. Then PCA can be utilized to distinguish, classify and visualize changes in the spectral data. 
In addition, score values produced by PCA can be used as a criterion for process control actions. The advantage 
of a PCA based monitoring approach is that the generated monitoring charts are simple and easily interpretable.

Due to dynamic nature of membrane processes the principle of the updating monitoring schemes should be in 
practice that when new spectra are available they are included in the PCA model data matrix according to certain 
weights. However, because in dynamic processes data are autocorrelated, i.e. each observation is dependent on 
the previous observation, care should be taken to ensure that deviating spectra do not skew the monitoring output 
results too significantly17. Finding outliers which are atypical objects or variables is crucial for all the chemometric 
methods and they must be either removed or pre-treated to gain robust models. It is essential to keep outliers only 
when they represent some important property in the data31. This study demonstrates how only one spectrum with 
anomalous and moderately intense peak in the analyzed region can overemphasize the spectral changes and yield 

Figure 3. Predicted concentrations of the adsorbed vanillin plotted against measured concentrations for the 
test set used in the calibration. The multiplier needed to get the measured value from the estimated value is 
shown over each stem. A = 0.25 g/L, B = 0.75 g/L and C = 1.25 g/L.

Figure 4. An example control chart based on the PCA model. The predicted concentrations for data from 
experiment 1/3 of 0.75 g/L at pH 2.0 are shown as an example.
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distorted PCA model. However, thanks to this tracking of the occurrence of observable perturbations is possible 
in some cases.

All in all the combination of spectroscopy and and chemometrics is a potential solution for fast and nonde-
structive analysis of the studied adsorption process. Economic benefits of chemometric process analysis include 
comparatively small capital requirements in sensor and computer time, safer process operation and better under-
standing of a process due to the flow of real-time information. A dynamic control system may also improve qual-
ity of product due to maintenance of tighter control limits, save energy, increase membrane life-time, minimize 
waste and improve production capacity through process optimization.

Methods
Real-time fouling monitoring using normal Raman spectroscopy. The Raman data collection pro-
cess used has been described in detail in previous studies11,29. Raman spectra were recorded during cross-flow 
experiments using a Kaiser RXN1 spectrometer with 785 nm laser excitation and maximum power of 400 mW. 
Spectra were collected between 100–3425 cm−1 using immersion optics (0 mm focal length) with an MR probe 
head, which was placed above the surface of the hydrophilic polyethersulfone membrane (UH004P supplied by 
Microdyn-Nadir GmbH).

Raman spectra were obtained from two different experimental sets. In the first experimental set11 adsorption 
data was collected using varying concentrations of vanillin (0.25, 0.75 and 1.25 g/L). pH values of the vanillin 
solutions were 5.5, 5.1 and 5.0 respectively. Different adsorption times (15, 30 and 195 min) were also tested. 
In the second experimental set29 the concentration of vanillin (0.75 g/L) and adsorption time (120 min) were 
constant but the pH was varied (pH 2, 7.4 and 10). Tests were repeated three times for each conditions. The short 
15 min and 30 min adsorption experiments were done only once in each concentration.

The raw Raman spectra used are shown in Fig. S1 (Supplementary Information). The spectra are highly over-
lapping and the baseline and intensity levels drift between different experiments. Hence visual inspection permits 
only main features of the spectra to be distinguished. It can be observed that adsorption of vanillin results in the 
appearance of new peaks.

Preprocessing of spectral data. In the ideal case, to capture all the variability and changes caused by 
membrane fouling, the full spectra should be analyzed as opposed to individual peaks20,34,38. However, because 
the accuracy of the model is usually weak for full spectra, from the practical point of view it is better to take only 
a small and relevant spectral area into analysis19. Since the raw spectra are affected by noise, overlapping and 
spectral drift, preprocessing methods need to be applied before running PCA.

Before performing PCA analysis, spectra were baseline corrected39 and normalized by setting the intensity of 
the peak between 1070–1075 cm−1 to the value 1. All data processing was performed using MATLAB (R2016a).

External calibration data from extractions and UV analysis. The extraction method and UV analyt-
ical techniques for acquiring external calibration data used here have been published in detail in previous stud-
ies11,29. Briefly, the vanillin adsorbed on the membranes was extracted using methanol and UV absorptions of the 
extracts were measured using a Jasco V-670 spectrophotometer at the wavelength of 308 nm.

Principal component analysis. Principal component analysis (PCA) is able to analyze variation in large 
spectral data sets over their whole wavelength range. In previous studies11,29, PCA was successfully applied to 
analyze, how vanillin accumulates on the surface of the commercial polyethersulfone membrane UH004 P 
(Microdyn-Nadir GmbH) as a function of time.

In this study, PCA was performed on a limited area of the spectrum at 1500–1700 cm−1. The initial data matrix 
of spectral data contained 48 rows (different experiments) and 202 columns (intensities of the corresponding 
Raman spectra). PCA decomposes the data matrix X as the sum of the outer product of vectors si (scores) and pi 
(loadings) plus a residual matrix E as presented in the following equation:

∑= ⋅ +
=

s pX E,
(2)i i

i

n

1

where n is the number of samples in the X data set. Scores represent new variables with compressed informa-
tion extracted by PCA. Loadings contain information on how the variables are correlated. The performed PCA 
resulted in two PCs, which captured 99.76% of the total variance present in the data. The remaining variance 
(0.24%) was due to noise in the data.

Data availability. The data sets analyzed during the current study are available from the corresponding 
author on reasonable request.
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