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Glucagon orchestrates stress-induced hyperglycaemia
J. B. Harp, G. D. Yancopoulos & J. Gromada
Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA

Hyperglycaemia is commonly observed on admission and during hospitalization for medical illness, traumatic injury, burn and surgical intervention. This
transient hyperglycaemia is referred to as stress-induced hyperglycaemia (SIH) and frequently occurs in individuals without a history of diabetes. SIH has
many of the same underlying hormonal disturbances as diabetes mellitus, specifically absolute or relative insulin deficiency and glucagon excess. SIH has
the added features of elevated blood levels of catecholamines and cortisol, which are not typically present in people with diabetes who are not acutely
ill. The seriousness of SIH is highlighted by its greater morbidity and mortality rates compared with those of hospitalized patients with normal glucose
levels, and this increased risk is particularly high in those without pre-existing diabetes. Insulin is the treatment standard for SIH, but new therapies that
reduce glucose variability and hypoglycaemia are desired. In the present review, we focus on the key role of glucagon in SIH and discuss the potential
use of glucagon receptor blockers and glucagon-like peptide-1 receptor agonists in SIH to achieve target glucose control.
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Introduction
Under normal physiological conditions, glucagon produced in
the 𝛼 cells of the pancreas acts primarily on the liver to increase
hepatic glucose output to maintain an adequate supply of fuel
to the brain and other vital organs [1,2]. In uncontrolled type
1 diabetes mellitus (T1D) and type 2 diabetes mellitus (T2D),
hyperglucagonaemia is universally present, suggesting aberrant
glucagon secretion [3–5]. Several lines of evidence indicate that
the hyperglucagonaemia of diabetes is the direct result of loss
of insulin-induced suppression of pancreatic 𝛼-cell glucagon
secretion [6–8]. Glucagon-induced hepatic glucose output
has been implicated as a major cause of uncontrolled dia-
betes. In subjects with T1D, suppression of glucagon secretion
by somatostatin without changing insulin levels ameliorates
hyperglycaemia [9,10]. In patients with T2D, glucagon receptor
blockers decrease fasting and postprandial glucose [11–13].
Preclinical studies in glucagon receptor knockout mice have
demonstrated protection from diabetes after complete 𝛽-cell
destruction, providing support for the hypothesis that excess
glucagon secretion is directly responsible for many of the
metabolic perturbations of diabetes [14–16].

Relative insulin deficiency, insulin resistance and con-
comitant increases in the counter-regulatory hormones (i.e.
glucagon, epinephrine and cortisol) are present in medically
ill patients with hyperglycaemia and, under experimen-
tal conditions, administration of this hormonal cocktail to
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normal healthy subjects produces metabolic changes resem-
bling stress-induced hyperglycaemia (SIH) [17–21]. Although
the individual effects of insulin, glucagon, cortisol and
epinephrine on normal glucose metabolism are well described,
the contribution of each to metabolic changes in the setting
of medical illness is more difficult to define. In this review,
we will focus on what is known about hyperglucagonaemia
in the context of the complex hormonal milieu of SIH. We
will also discuss the potential for glucagon receptor blockers
and glucagon-like peptide-1 (GLP-1) receptor agonists to
treat SIH, with the goal of causing less glucose variability and
hypoglycaemia than with insulin, the standard of care.

Stress-induced Hyperglycaemia
Stress-induced hyperglycaemia, also referred to as stress
hyperglycaemia, hospital hyperglycaemia or hyperglycaemia
of critical illness is a serious and common condition where
blood glucose levels >140 mg/dl occur during hospitalization
for traumatic injury, burn, surgery and critical or acute medical
illness [22–29]. SIH typically resolves on recovery from the
acute medical insult and before discharge from the hospital.
Some restrict the use of the term SIH to those patients without
a history of diabetes, while others include all patients irre-
spective of their baseline diabetes status. In the present review,
patients previously diagnosed with diabetes and those with
no medical history of diabetes will be discussed together. SIH
typically occurs in 35–40% of all hospitalized patients when
140 mg/dl is used as the threshold [23]. In a more recent study
assessing almost 50 million point-of-care glucose values from
over 3.4 million patients, the prevalence of hyperglycaemia
(>180 mg/dl) was 32.2% in patients in intensive care units
(ICUs) and 32.0% in non-ICU patients [30]. Approximately
70–80% of patients with SIH admitted to the ICU have no
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Figure 1. Diagram of hormonal mechanisms of stress-induced
hyperglycaemia.

history of diabetes [23,31]. With over 38 million US hospital
discharges per year in 2011 and the high prevalence of SIH,
this condition is estimated to affect millions annually and has
a substantial impact on healthcare costs [32–34].

Glucose levels that are well above normal are believed to
be maladaptive in SIH and exert an array of negative effects,
primarily through immune dysfunction and oxidative stress
[35–38]. These adverse effects contribute to the morbidity
and mortality associated with SIH, where substantial increases
in infections, need for kidney dialysis, blood transfusions,
polyneuropathy and up to an 18-fold increased risk of death
have been described [23,25,26,39,40].

The underlying cause of SIH is thought to be a combina-
tion of insufficient insulin secretion to overcome the hyper-
glycaemic effects of counter-regulatory hormones and insulin
resistance in the later stage of illnesses that have significant
amounts of tissue injury (Figure 1) [21,41–43]. One study,
designed to determine the effect of trauma on insulin secre-
tion, used graded glucose infusions to induce hyperglycaemia
and found that insulin secretion was impaired in patients with
major and minor trauma compared with normal individuals
[44]. In subjects with major trauma, the impairment in insulin
secretion persisted for at least 5 days, while insulin secretion
returned to normal sooner in patients with minor trauma.
Other studies have shown decreased insulin secretion during
the shock phase of burns [19] or in the early hours after myocar-
dial infarction [17]. Taken together, these data indicate that
diminished insulin secretion during the early phase of multiple
types of illnesses and injuries is a key contributor to the onset
and persistence of SIH. In contrast, insulin resistance appears
more prominently during the established or recovery phase of
SIH, particularly in situations of severe tissue injury [19].

Studies in lean and obese healthy human volunteers have
advanced the concept that simultaneous intravenous infusion
of glucagon, epinephrine and cortisol, without the addition
of exogenous insulin or experimental alteration in insulin
secretion is sufficient to replicate the metabolic effects of SIH

[21,45,46]. Insulin secretion is typically reduced relative to
the level of hyperglycaemia and is not able to compensate
for the combined effects of the counter-regulatory hormones
[17,19,44]. Additional neuro-hormonal factors and cytokines
may play a modulatory or secondary role in SIH [47–50].

Treatment of patients with SIH is limited primarily to insulin
administration, irrespective of diabetes status and baseline pan-
creatic 𝛽-cell reserves. In critically ill ICU patients, intravenous
insulin infusion is typically used, while basal and supplemental
subcutaneous insulin is preferred in those who are not critically
ill. Most current treatment guidelines recommend maintain-
ing glucose in the 140–180 mg/dl range for patients in the ICU
[22,51,52]. A pivotal single-site study demonstrated in critically
ill patients that intensive insulin therapy to reduce glucose to a
target range of 80–110 mg/dl improved outcome and decreased
length of ICU and hospital stay [39]. Tight glycaemic control
was then reported to translate into significant healthcare costs
savings [29,53,54]. However, a subsequent large multicentre
trial determined that a glucose target of <180 mg/dl resulted
in lower mortality than glucose targets of 81–108 mg/dl. This
landmark study moved the standard of care away from tight
glycaemic control with intensive insulin therapy in critically ill
patients [55].

The prevalence of insulin-induced hypoglycaemia in SIH
clinical trials can exceed 6%, even when more conservative
glucose levels are targeted [56,57]. Of greater concern is that
in clinical practice, hypoglycaemia rates have been reported of
up to 20% in ICU patients with SIH [58]. When hypoglycaemia
is severe it can cause death from cardiovascular or neural events
[56].

In addition to targeting mean glucose levels and avoiding
hypoglycaemia, glucose variability has emerged as a key vari-
able in predicting outcome in critically ill patients. One retro-
spective observational study of >7000 patients in four ICUs in
Australia determined that glucose variability measured by the
blood gas analyser and targeting glucose values of 6 and 10 mM,
with no specific insulin protocol, was a significant and inde-
pendent predictor of ICU and hospital mortality [59]. Glucose
variability was a stronger predictor of ICU mortality than mean
glucose concentration. In that study, ICU mortality was 12%
and hospital mortality 22%. Studies in other ICU populations
have corroborated these results [60,61]. More recent studies
have determined that glucose variability is a stronger predic-
tor of mortality in ICU patients without a history of diabetes
compared with those with a history of diabetes [62].

Lastly, insulin administration requires a significant amount
of the healthcare provider’s time to adjust the insulin dose
to achieve target glucose control. Although insulin itself is
relatively inexpensive, monitoring requirements contribute to
the increase in healthcare costs [34,53]. Thus, novel therapies
are needed that are easy to administer and are able to achieve
optimum glucose control while avoiding hypoglycaemia and
glucose variability [63].

Regulation of Glucagon Secretion in Stress-induced
Hyperglycaemia

Elevated blood glucagon levels in relatively young healthy
patients with traumatic injuries were described >40 years ago
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[64,65]. Soon thereafter, it was discovered that people admit-
ted for a variety of medical illnesses, including acute myocar-
dial infarction [42,66], burns [67,68] and sepsis [41], also had
elevated glucagon levels of up to five times the normal level.
A common finding across the studies was that the degree of
glucagon elevation was positively correlated with the severity
of the medical illness. Glucagon levels typically did not return
to baseline until the patient had recovered from the illness or
injury. These data, along with others, have led to the notion that
glucagon is a stress response hormone, potentially with effects
beyond glucose homeostasis [69]

Under normal physiological conditions, glucagon secretion
from pancreatic 𝛼 cells is regulated by fluctuations in plasma
glucose, either directly or indirectly through the autonomic
nervous system, circulating hormones, GLP-1, and secretory
products from other islet cells [70]. Factors known to sup-
press glucagon secretion, including insulin, may be absent
or low in medical illness when a patient is often not eat-
ing normal amounts of food and when stress levels of cate-
cholamines, which suppress insulin secretion, are very high
[6,42,71]. There is evidence that most of the inhibitory effect of
insulin on glucagon secretion is mediated by paracrine effects
within the pancreatic islets [8,72,73]. Studies in 𝛼-cell-specific
insulin receptor knockout mice have confirmed that insulin
decreases glucagon secretion through direct effects on 𝛼 cells
[7]. In hyperinsulinaemic–euglycaemic clamp studies in sub-
jects with T1D, insulin administration to attain blood levels of
∼500 μU/ml, lowered plasma glucagon levels by 20–30%, con-
firming the suppressive effect of insulin on glucagon secretion
[6]; however, using supraphysiological insulin levels to sup-
press glucagon secretion to this degree in hyperglucagonaemic
patients with SIH will probably not be sufficient to suppress
glucagon to normal levels.

Epinephrine has been shown to directly stimulate glucagon
secretion [2,74]. In non-diabetic individuals; epinephrine
stimulates glucagon secretion primarily through 𝛽-adrenergic
receptors with 𝛼-adrenergic receptor stimulation, accounting
for no more than 20% of the effect [75]. In healthy subjects,
epinephrine infusion causes only a modest 19% increase from
baseline in glucagon levels [76]. This effect of epinephrine
on glucagon levels is relatively small compared with the
three-to-fivefold increase in glucagon levels seen in patients
with medical illness. Under extreme stress conditions, how-
ever, e.g. after cardiac arrest, epinephrine levels can increase
1000-fold from normal levels of <0.05 ng/ml and may thus
have a greater effect on glucagon secretion in the critically ill
patient [77].

Endogenous cortisol was not found to alter glucagon secre-
tion in healthy volunteers given adrenocorticotropic hormone
to stimulate cortisol production [78]. However, earlier stud-
ies found that exogenous glucocorticoids given for 3 days
increased blood glucagon levels by 55% in non-diabetic lean
and 110% in non-diabetic obese individuals [79]. Furthermore,
a recent cross-sectional prospective study found that 0.6% (6
out of 813) patients with T2D in diabetes clinics who had
no overt hypercortisolism had Cushing’s syndrome [80]. The
diabetes was cured in four of the six patients after treatment of
their Cushing’s syndrome and normalization of cortisol.

Other factors may influence glucagon secretion in SIH, but
no studies have conclusively identified the dominant inducer
of hyperglucagonaemia. The preponderance of evidence sug-
gests that intra-islet insulin deficiency or insulin resistance,
epinephrine excess or a combination of these factors, drive most
of the excessive glucagon secretion in SIH.

Novel Treatment Approaches to Stress-induced
Hyperglycaemia

Glucagon-like Peptide-1 Receptor Agonists. Dysregulated GLP-1
secretion or GLP-1 deficiency is not a well-defined feature of
SIH, but∼50% of the glucose-lowering effect of GLP-1 receptor
agonists, approved for the treatment of T2D, has been attributed
to suppression of glucagon secretion, making this class of agents
a plausible treatment option in patients with SIH [81]. There
have been several clinical trials of GLP-1 receptor agonists in
hospitalized patients admitted to the coronary care unit [82],
on total parenteral nutrition [83], and in other situations of crit-
ical illness [84]. In general, GLP-1 receptor agonists have been
shown to be effective in glucose-lowering, to reduce glycaemic
variability [85], and to result in equal or less hypoglycaemia
compared with insulin, but with increased nausea and vom-
iting in the hospital setting. One study in nine patients with
hyperglycaemia, receiving total parenteral nutrition infused
with GLP-1, showed an ∼50-mg/dl glucose-lowering effect, as
well as an increase in plasma insulin and C-peptide, and a trend
towards a reduction in glucagon and free fatty acids [83]. The
glucagon-lowering effects of GLP-1 infusion were also seen in
a study of critically ill surgical patients [85]. Patients who have
undergone coronary artery bypass grafting, with preserved left
ventricular function, who were treated with continuous infu-
sion of a GLP-1 receptor agonist peri-operatively had better
glycaemic control with less insulin administration and fewer
arrhythmias requiring antiarrhythmic agents compared with a
control group [86]. Thus, GLP-1 receptor agonists are potential
alternatives to insulin for the treatment of SIH, but nausea and
vomiting are potential undesirable effects.

Glucagon Receptor Antagonism. As discussed previously in this
review, hyperglucagonemia is common in SIH and has the
potential to initiate or worsen hyperglycaemia. Thus, glucagon
receptor blockers may be a reasonable alternative or adjunct
to insulin therapy to treat SIH during the hospital admis-
sion. An early study in patients with burns showed that infu-
sion of somatostatin, an inhibitor of glucagon and insulin
secretion, for 30 min, significantly reduced the rate of glu-
cose production [87,88]. Somatostatin administration as a
therapeutic tool in SIH, however, would require concomi-
tant administration of insulin to counter the suppressive effect
on insulin secretion. In addition, somatostatin analogues that
are approved to treat other conditions, such as acromegaly,
have been shown to cause biliary tract abnormalities includ-
ing; gallstones, sludge without stones, and biliary duct dilata-
tion in a high percentage of patients [89]. For these reasons,
somatostatin analogues are not likely to be treatment options
to decrease hyperglucagonemia and control glucose in patients
with SIH.
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Studies investigating glucagon receptor antagonist for the

treatment of SIH have not been reported. Based on clinical tri-
als of small-molecule glucagon receptor antagonists in patients
with T2D, these agents may provide an effective alternative to
insulin therapy, but with a lower incidence of hypoglycaemia
and potentially reduced glucose variability [11,13,90]; how-
ever, reversible adverse effects of increased LDL cholesterol
and liver enzymes have been reported in early-phase T2D tri-
als with small-molecule glucagon receptor blockers [11,13,90].
Preclinical studies suggest the pharmacokinetic and pharmaco-
dynamic properties of anti-glucagon receptor antibodies may
also be an effective approach to treat SIH. One study in dia-
betic monkeys of a human monoclonal blocking antibody to
the glucagon receptor showed that a single dose had a rapid
onset of action within hours, with sustained glucose-lowering
over a 7-day period [91]. Studies with another antibody in obese
hyperglucagonaemic mice showed a decrease in hepatic glu-
cose output, the main culprit of SIH [92]. Future studies will
determine whether glucagon receptor antagonists that have a
rapid onset of action offer a safe and effective treatment option
for SIH.

Conclusions
Stress-induced hyperglycaemia is a major medical problem
requiring prompt treatment of the hyperglycaemia to decrease
morbidity and mortality. The complex interplay between
relative insulin deficiency in early stages of severe illness,
combined with evidence that the elevated levels of glucagon,
epinephrine and cortisol sustain hyperglycaemia, suggest that
insulin moderates only some of the hormonal dysregulation
observed in SIH. Thus, insulin alone may not be an optimum
treatment strategy for SIH and may in fact contribute to
increased morbidity and mortality by causing hypoglycaemia
and increased glucose variability. GLP-1 and GLP-1 receptor
agonists approved for the treatment of T2D have shown some
promise in hospitalized patients with hyperglycaemia when
infused continuously. Given that glucagon receptor blockers
are in development for T2D, consideration of these agents for
SIH deserves exploration in future clinical trials as they may
address the hyperglycaemia, while resulting in less glucose
variability and insignificant hypoglycaemia, and requiring less
intensive glucose monitoring. It remains to be seen whether the
transient increase in liver enzymes and other adverse effects
will stall further development of this class of agents.
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