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Abstract: Functionally graded piezoelectric–piezomagnetic (FGPP) material simultaneously consists
of piezomagnetic and piezoelectric phases, which are able to convert energy among mechanical,
electric, and magnetic fields. The magneto-electric effect on waves in FGPP fan-shaped cylindrical
structures is studied by exploiting the double Legendre orthogonal polynomial method. By means of
the Heaviside function, the initial conditions are brought into wave motion equations. Dispersion
properties, electric and magnetic potential, and the Poynting vector are calculated. Subsequently,
the effect of the graded variation and geometric size on wave characteristics is analyzed. The FGPP
fan-shaped cylindrical structures are of complex geometrical shape and material inhomogeneity,
so their influences on the magneto-electric effect are the focus of discussion. Results reveal that
the cut-off frequencies have a negative relationship with the cross-section area of the structure.
The magneto-electric effect could be adjusted via altering the geometric size of the cross-section. These
results can be utilized to design and optimize piezoelectric–piezomagnetic fan-shaped transducers.

Keywords: functionally graded piezoelectric–piezomagnetic material; the Poynting vectors; magneto-
electric effect; fan-shaped cross-section; dispersion curves

1. Introduction

It is well known that the piezoelectric material has the piezoelectric effect and converse
piezoelectric effect, i.e., energy transformation between mechanical and electric fields. Therefore,
it has been widely used in various fields, such as semiconductors [1], transducers [2], actuators [3],
micromotors [4], and piezoelectric charge-coupled devices [5]. These devices’ performance could
be optimized by changing the composition of piezoelectric material [6]. With the development of
material science, a class of composite material, the functionally graded piezoelectric–piezomagnetic
(FGPP) material, simultaneously consisting of piezomagnetic and piezoelectric phases, was developed,
which exhibited a coupled mechanical, magnetic, and electric field. It is able to convert energy
among mechanical, electric, and magnetic fields, which is known as the magneto-electric effect [7].
Accordingly, FGPP has promising applications in different areas, such as transducers, sensors,
and storage devices [8,9].

To design and optimize the FGPP transducers, wave characteristics in FGPP structures were
investigated by utilizing different kinds of models and methods. The propagative behaviors of guided
waves in the FGPP plates were investigated by Cao et al. [10], utilizing the power series technique.
SH waves, propagating in multi-layered FGPP structures, were studied by Singh and Rokne [11].
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By means of the orthogonal polynomial approach, guided wave characteristics in FGPP cylindrical
curved plates were studied by Yu et al. [12]. The B–G waves, propagating in an FGPP half-space, were
studied by Li et al. [13]. Li and Wei [14] studied the surface wave in FGPP structures, the influences
of the initial stresses and the graded function variation on the dispersion curves were analyzed. The
longitudinal wave in an FGPP rod was investigated by Xue and Pan [15]. By means of a nonlocal
elasticity model, wave propagation in an FGPP nanorod was investigated by Arefi [16]. Narendar [17]
studied the wave dispersion in FGPP nonlocal rod. The dispersion properties of circumferential SH
wave in different FGPP cylinder shells was studied by Shen et al. [18]. SH wave propagation in
FGPP half-space was investigated by Shodja et al. [19]. Hamdi Ezzin et al. investigated waves in
piezoelectric/piezomagnetic half-space [20,21] and plates [22] by exploiting the stiffness matrix method.
The surface wave characteristics in piezo-composite structures were investigated by Singhal [23] et al.,
utilizing the WKB (Wentzel-Kramers-Brillouin) method.

The abovementioned waveguides are all of simple geometric cross-sections, i.e., infinite plate,
cylinder, and half-space. However, there are also an army of waveguides with complex cross-sections
in various applications, such as rectangular bars, rings, and fan-shaped cylindrical structures. The
variation of the cross-section is supposed to be one of the efficient ways to govern wave characteristics,
such as the wave displacement distribution and cut-off frequencies. Moreover, the performance of
the FGPP devices is closely tied with wave characteristics, so their performance can be improved
by changing geometry size. Accordingly, waves in waveguides with complex cross-sections have
become a hot topic in recent years. By using the double Legendre orthogonal polynomial method,
wave characteristics in FGPP rectangular bars were investigated by Zhang et al. [24]. Zhou et al. [25]
studied elastic waves propagating in multiferroic cylinders of fan-shaped cross-section. Guided waves
propagating in piezoceramic fan-shaped cylinders were studied by Puzyrev [26,27], and the effect
of the variation in angular measure on wave characteristics was analyzed. Storozhev [28] studied
elastic waves propagating in layered piezoelectric cylinders of a fan-shaped notch. For the fan-shaped
cylindrical structures in Ref. [25–28], the amplitudes of displacements are assumed to be a function
with respect to the variable r, i.e., when the angle θ is defined, and the amplitudes of displacements
are just unknown with respect to the variable r. Recently, Zhang et al. [29] proposed a new 2-D model,
in which the amplitudes of displacements are completely unknown with respect to the variables
r and θ, to investigate the complex guided waves in fan-shaped cylindrical structures. To our best
knowledge, rare references about the waves in 2-D FGPP fan-shaped cylindrical structures are available.
Besides, the numerical methods, such as the finite element method [30] and the semi-analytical
finite element method [31], are usually time-consuming for investigating waves propagating in
2-D structures. Therefore, an analytic method, i.e., the double orthogonal polynomial method, is
exploited to investigate waves in 2-D structures, which has two features: (1) each independent variable
can be expanded into an proper series of Legendre orthogonal polynomials, and the governing
differential equations would be transformed into a matrix eigenvalue problem, and the amplitudes of
displacements can be obtained according to the eigenvectors. (2) It directly incorporates the boundary
conditions into the dynamic motion equations via assuming position-dependent material constants,
which simplifies the solution procedure.

To design and optimize the FGPP cylindrical transducers, the magneto-electric effect on waves
in FGPP fan-shaped cylindrical structures is studied via exploiting the double Legendre orthogonal
polynomial method. The initial conditions, i.e., traction-free and open-circuit, are given.

2. Mathematics and Formulation

Consider a functionally graded piezoelectric-piezomagnetic (FGPP) fan-shaped cylindrical
structure in the cylindrical coordinate (θ, z, r), as illustrated in the Figure 1. The polarization and
gradient directions are both assumed to be along the radial direction. The radius–thickness ratio is
represented as η, η = b/(b − a), where a and b are inner and outer radius, respectively.
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Figure 1. Schematic drawing of a functionally graded piezoelectric–piezomagnetic (FGPP) fan-shaped 
cylindrical structure. 

For the FGPP cylindrical structures, the gradient direction is along the r direction. Accordingly, 
material parameters are compactly expressed as the following form, via the least square method. 
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Here, the function I(r, θ) [32] is introduced into Equation (1), to automatically satisfy the traction-
free and open-circuit boundary conditions, which can be denoted as follows: 
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where U(r, θ), V(r, θ), and W(r, θ) denote the amplitude in the r, θ, and z directions, respectively. X(r, 
θ) and Y(r, θ) are the amplitude of electric and magnetic potential, respectively. k represents the wave 
number ,and ω is the angular frequency. 
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Figure 1. Schematic drawing of a functionally graded piezoelectric–piezomagnetic (FGPP) fan-shaped
cylindrical structure.

For the FGPP cylindrical structures, the gradient direction is along the r direction. Accordingly,
material parameters are compactly expressed as the following form, via the least square method.
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Here, the function I(r, θ) [32] is introduced into Equation (1), to automatically satisfy the
traction-free and open-circuit boundary conditions, which can be denoted as follows:{

Trr = Trθ = Trz = Dr = Br = 0, r = a and r = b
Tθθ = Trθ = Tθz = Dθ = Bθ = 0, θ = 0 and θ = α

. (2)

The harmonic wave solutions are assumed as

ur(r, θ, z, t) = exp(ikz− iωt)U(r, θ),
uθ(r, θ, z, t) = exp(ikz− iωt)V(r, θ),
uz(r, θ, z, t) = exp(ikz− iωt)W(r, θ),
Φ(r, θ, z, t) = exp(ikz− iωt)X(r, θ),
Ψ(r, θ, z, t) = exp(ikz− iωt)Y(r, θ),

(3)

where U(r, θ), V(r, θ), and W(r, θ) denote the amplitude in the r, θ, and z directions, respectively. X(r, θ)
and Y(r, θ) are the amplitude of electric and magnetic potential, respectively. k represents the wave
number, and ω is the angular frequency.

Subsequently, substituting the Equations (1)–(3), the constitutive equations, and the relation of
extend strain-displacement into the dynamic equation [12,33], the following governing differential
equations are obtained.
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where the subscript comma denotes partial derivative.
Subsequently, U(r, θ), V(r, θ), W(r, θ), X(r, θ), and Y(r, θ) are expanded into the double Legendre

orthogonal polynomial series.
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m,j(i = 1, 2, 3, 4, 5) denote expansion coefficients and
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where Pm and Pj represent the Legendre polynomials with the order m and j, respectively. m and j are
evaluated from 0 to ∞ in theory. However, as a matter of fact, the Equation (5) are convergent at some
finite values m = M and j = J.

Multiply Equations (4a)–(4e) by Qn(r)×Qp(θ), with n running from 0 to M and p running from 0
to J, respectively. Subsequently, integrating over r from a to b, and over θ from 0 to β. Then, we can
obtain the following system by utilizing the orthonormality:

l An,p,m,j
11 p1

m,j +
l An,p,m,j

12 p2
m,j +

l An,p,m,j
13 p3

m,j +
l An,p,m,j

14 p4
m,j +

l An,p,m,j
11 p5

m,j = −ω2l Mn,p,m,j p1
m,j, (7a)

l An,p,m,j
21 p1

m,j +
l An,p,m,j

22 p2
m,j +

l An,p,m,j
23 p3

m,j +
l An,p,m,j

24 p4
m,j +

l An,p,m,j
25 p5

m,j = −ω2l Mn,p,m,j p2
m,j, (7b)

l An,p,m,j
31 p1

m,j +
l An,p,m,j

32 p2
m,j +

l An,p,m,j
33 p3

m,j +
l An,p,m,j

34 p4
m,j +

l An,p,m,j
35 p5

m,j = −ω2l Mn,p,m,j p3
m,j, (7c)

l An,p,m,j
41 p1

m,j +
l An,p,m,j

42 p2
m,j +

l An,p,m,j
43 p3

m,j +
l An,p,m,j

44 p4
m,j +

l An,p,m,j
45 p5

m,j = 0, (7d)

l An,p,m,j
51 p1

m,j +
l An,p,m,j

52 p2
m,j +

l An,p,m,j
53 p3

m,j +
l An,p,m,j

54 p4
m,j +

l An,p,m,j
55 p5

m,j = 0, (7e)

where l Mn,p,m,j and l An,p,m,j
αγ (α, γ = 1, 2, 3, 4, 5), which can be calculated based on Equation (6), are the

elements of the non-symmetric matrices.
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Equation (7) can be transformed as the following matrix system, and the detailed transformation
process is given in the Appendix A.

l An,p,m,j
11

l An,p,m,j
12

l An,p,m,j
13

l An,p,m,j
21

l An,p,m,j
22

l An,p,m,j
22

l An,p,m,j
31

l An,p,m,j
32

l An,p,m,j
33




p1
m,j

p2
m,j

p3
m,j

 = −ω2

 l Mn,p,m,j 0 0
0 l Mn,p,m,j 0
0 0 l Mn,p,m,j




p1
m,j

p2
m,j

p3
m,j

 (8)

where the dimensions of matrices l An,p,m,j
αγ (α, γ = 1, 2, 3) and l Mn,p,m,j are all (M + 1) × (J + 1).

Consequently, Equation (8) is an eigenvalue problem about angular frequency ω. The profiles of
displacement components are calculated according to the eigenvectors. At last, the phase velocity is
obtained via the equation Vph = ω/k.

3. Numerical Results

In this section, the equivalent parameters of the FGPP cylindrical structures are calculated utilizing
the Voigt-type model [29].

According to the abovementioned equations, the computer programs in the light of the double
orthogonal polynomial method are written using the software “Mathematica” to calculate the
dispersion curves and the Poynting vectors.

In the present paper, such a kind of FGPP fan-shaped cylindrical structure is considered: the inner
layer material is CoFe2O4, and the outer layer material is BaTiO3. Their material constants are listed in
the Table 1 in the reference [34].

3.1. Comparison with Rectangular Bar

As far as we know, rare references for the two-dimensional FGPP fan-shaped cylindrical structures
are available. Consequently, we simplify the model as a purely elastic structure, and assume its
geometric size is a = (10−4 − 1) mm, b = 104 mm, and β = 10−4 rad, respectively, to compare with a
square steel bar using the two dimensional Rayleigh–Ritz method [35]. Its cross-section area is 1 mm2.
Their phase velocity curves are shown in the Figure 2, where the lines are the authors’ results, and the
dotted lines are results from reference [35]. cp represents the phase velocity, and cs represents the shear
velocity. These results of two methods are overlapped completely. Accordingly, the correctness of the
present method is confirmed.
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Subsequently, a comparison with an FGPP square bar from reference [24] is made, and the 
influence of the radius-thickness ratio is analyzed. To ensure the area of cross-section has very little 
difference, their geometric parameters are η = 10 and β = 1/9.5 rad, η = 100 and β = 1/99.5 rad, and η = 
1000 and β = 1/999.5 rad, respectively. Their thicknesses are both 1 mm. Their phase velocity curves 

Figure 2. Phase velocity curves for the square bars: dotted lines—results from the reference [35],
lines—the results of the present method.

Subsequently, a comparison with an FGPP square bar from reference [24] is made, and the
influence of the radius-thickness ratio is analyzed. To ensure the area of cross-section has very
little difference, their geometric parameters are η = 10 and β = 1/9.5 rad, η = 100 and β = 1/99.5
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rad, and η = 1000 and β = 1/999.5 rad, respectively. Their thicknesses are both 1 mm. Their phase
velocity curves for the fourth mode are illustrated in the Figure 3. The cases of the other modes are
similar. Vp is a dimensionless parameter (Vp = (cp*d)/cs1, where cp is the phase velocity value, and cs1

is the shear velocity value of CoFe2O4). Here, Figure 3b is the partial enlarged drawing of Figure 3a.
We can note from these figures that the phase velocity for the fan-shaped cylindrical structures is
getting closer to that of rectangular bar as the radius-thickness ratio increases. Moreover, the dotted
line and the line are overlapped completely as the radius-thickness ratio η = 1000.
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Figure 3. Comparison of dispersion curves for the fan-shaped cylindrical structure cross-section with
different η and square bar; (b) is the enlarged drawing of (a).

3.2. Convergence Confirmation

To confirm the convergence of the present method, the phase velocities of a linear FGPP fan-shaped
cylindrical structure (β = π/6 and η = 2) with various M and J are calculated. Their phase velocity
values are listed in Table 1 at kd = 1.01.

Here, as M or J varies, the relative error is

∆ = (c(M+1)∗JorM∗(J+1) − cM∗J)/cM∗J ≤
1

1000
. (9)

It is convergent in the present paper. c represents the phase velocity. We can note that the first
two modes are convergent as M = J = 5, and the first three modes are convergent as M = 6 and J = 5.

Table 1. Phase velocities of the first three modes at kd = 1.01.

M,J Mode1 Mode2 Mode3

4,4 1054.86 1221.42 2564.77
4,5 1054.80 1221.34 2563.99
4,6 1054.79 1221.34 2563.12
5,4 1054.24 1220.87 2562.70
5,5 1054.19 1220.79 2561.84
5,6 1054.19 1220.79 2561.10
6,4 1054.27 1220.83 2560.59
6,5 1054.23 1220.75 2559.78
6,6 1054.22 1220.75 2559.17

unit: m/s.

3.3. The Magneto-Electric Effect

The phase velocity curves of FGPP fan-shaped cylindrical structure, corresponding graded
piezoelectric structure, and graded piezomagnetic structure, are shown in the Figure 4. Figure 4b is the
partially enlarged figure of Figure 4a. They have the same geometry: η = 2 and β = π/6. The phase
velocity values of the FGPP structure and piezoelectric structure are almost the same. We can only
note that the phase velocity for FGPP structure is little higher than that of the piezoelectric structure in
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Figure 4b. Moreover, the phase velocity for FGPP structures is higher than that of the piezomagnetic
structure. Therefore, the influence of piezoelectric effect is much more significant than that of the
piezomagnetic effect, which is similar to other FGPP structures [33]. Figure 5 shows the phase velocity
curves of the graded elastic and piezomagnetic structure. We can note that their differences are also
very little. The piezomagnetic effect makes the phase velocity decrease only a little.
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Subsequently, the electric and magnetic potential distributions are calculated and illustrated in
Figures 6 and 7, at kd = 2.01 and kd = 120.01, respectively. Here, we just calculated the absolute values of
the electric and magnetic potential. Amplitudes of electric potential are much bigger (about 103 times)
than that of the magnetic potential, which has a relationship with the electric and magnetic parameters.
The phenomenon that the piezoelectric effect is stronger than the piezomagnetic effect is confirmed
again. Furthermore, regardless of the amplitude, there are obvious differences between the distribution
shapes at small wavenumbers, but they are similar at bigger wavenumbers.Materials 2018, 11, x FOR PEER REVIEW  8 of 16 
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Figure 7. The electric and magnetic potential of the first mode for the linearly cylindrical structure
(η = 2 and β = π/6) at kd = 120.01.

The abovementioned phenomenon can be detailed according to Equation (4) and Table 1 in the
reference [34]. We can note from Equation (4) that the piezoelectric parameters and piezomagnetic
parameters have the same influence. The piezoelectric and piezomagnetic parameters have a positive
relationship with the magneto-electric effect, and the dielectric and magnetic permeability coefficients
are negatively related to the magneto-electric effect. Besides, the average absolute values of piezoelectric
parameters are about 50 times the piezomagnetic parameters, and the average values of magnetic
permeability coefficients are about 5 × 106 times the dielectric coefficients. Hence, the influence of
piezomagnetic is very weak, and the amplitude of electric potential is about 103 times of magnetic
potential, due to the much higher magnetic permeability coefficients.

3.4. The Influence of the Graded Functions

For the FGPP material, the graded function, a significant index in the material design, has
significant influence on the material performance. Consequently, it also has remarkable influence on
the wave characteristics. To investigate the influence of the graded function, two FGPP cylindrical
structures with power series gradient functions are considered, i.e., V1(r) = (r − a)/d and V1(r) = [(r
− a)/d]3. They have the same geometry: η = 2, β = π/6. Figure 8 shows variation curves of material
properties with different graded functions. Figure 9 illustrates their dispersion curves of the fourth to
sixth modes. For a given mode, phase velocities with cubic function are higher than those with a linear
function, since it is composed of more CoFe2O4, and the wave velocity of BaTiO3 is lower than that of
CoFe2O4.Materials 2018, 11, x FOR PEER REVIEW  9 of 16 
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3.5. The Influence of the Geometric Size 

Control wave characteristics via altering the geometric size is supposed as an efficient approach, 
such as the cut-off frequency. Accordingly, for the fan-shaped cross-section, the influence of variation 
in the angular measures and the radius-thickness ratios are investigated. Firstly, two linearly graded 
cylindrical structures with different angular measures (β = π/4, π/6) and η = 2 are considered. The 
dispersion curves are shown in the Figure 11. The first four modes start from 0 frequency. Moreover, 
for higher modes, the cut-off frequencies increase as angular measures decrease. For a given η (for 
example η = 2), as the angular measures decrease, the cross-section area decreases, and the cut-off 
frequencies increase. Therefore, we hold the view that cut-off frequencies have a negative 
relationship with the cross-sectional area of the structure. 

Figure 8. The variation curves of material properties with different graded functions. (a) Material
volume content for BaTiO3; (b) e15.

Subsequently, the influence of graded function on magneto-electric effect is discussed. Figure 10
shows the corresponding phase velocity curves. Comparing with the Figure 4, we can note that the
piezoelectric effect obviously weakens. This is because the volume content for BaTiO3 decreases as n
increases, and the piezoelectric effect mainly results from BaTiO3.
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3.5. The Influence of the Geometric Size

Control wave characteristics via altering the geometric size is supposed as an efficient approach,
such as the cut-off frequency. Accordingly, for the fan-shaped cross-section, the influence of variation
in the angular measures and the radius-thickness ratios are investigated. Firstly, two linearly graded
cylindrical structures with different angular measures (β = π/4, π/6) and η = 2 are considered.
The dispersion curves are shown in the Figure 11. The first four modes start from 0 frequency.
Moreover, for higher modes, the cut-off frequencies increase as angular measures decrease. For a
given η (for example η = 2), as the angular measures decrease, the cross-section area decreases, and the
cut-off frequencies increase. Therefore, we hold the view that cut-off frequencies have a negative
relationship with the cross-sectional area of the structure.Materials 2018, 11, x FOR PEER REVIEW  10 of 16 
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Subsequently, to confirm the above view, three linearly graded cylindrical structures, with the
radius-thickness ratios (η = 2, 3, 4) and β = π/6, are also studied. Figure 12 shows their dispersion
curves. We can note that the cut-off frequencies decrease as the radius-thickness ratios increase. For the
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given angular measure (for example β = π/6), as the radius-thickness ratios increase, the cross-section
area increases, and the cut-off frequency decreases.
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Then, comparing with 1-D cylindrical structures, there may be some different phenomena because
of its complex geometrical shape. Therefore, the influence of the geometric size of the cross-section on
the magneto-electric effect is also studied. Figure 13 illustrates phase velocity curves for fan-shaped
cylindrical structures with η = 3 and β = π/6. Comparing with the Figure 4, a phenomenon is found
that the piezoelectric effect becomes weak at the transition section (about 1.3–1.6 MHz-m), where the
dispersion becomes strong from weakness. Figures 14 and 15 show the corresponding phase velocity
curves for the fan-shaped cylindrical structures with β = π/4 and β = π/8, respectively. It can be seen
from these two figures that, for the fan-shaped cylindrical structures with β = π/4, the influence of
piezoelectric effect also becomes very weak at the transition section (about 1.6–2.1 MHz-m), where the
dispersion becomes strong from weakness. In summary, the magneto-electric effect could be adjusted
via altering the geometric size.
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For the 1-D cylindrical structures [25], the phase velocity values of higher modes always increase 
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cylindrical structures is quite different. A homogeneous (V1(r) = 1) fan-shaped cylindrical structure 
with η = 2 and α = π/6 is taken into account. The phase velocity curves for the fifth and sixth mode 
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3.6. Waves at High Frequencies

For the 1-D cylindrical structures [25], the phase velocity values of higher modes always increase
as the frequency decreases, and are close to the shear velocity cs. However, the case for 2-D fan-shaped
cylindrical structures is quite different. A homogeneous (V1(r) = 1) fan-shaped cylindrical structure
with η = 2 and α = π/6 is taken into account. The phase velocity curves for the fifth and sixth mode
are shown in Figure 16. The velocity values at high frequencies approximatively approach a value
which is below cs. This is because wave motions at high frequencies mainly concentrate near corners
of the fan-shaped cylindrical structures, while the other places remain almost motionless (see in the
Section 3.8). The velocity for waves propagating near the edges at high frequencies is lower than that
for waves propagating at a surface.
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Subsequently, two linear FGPP fan-shaped cylindrical structures with different angular measures
are considered. Figure 17 shows the corresponding phase velocity curves at high frequencies. Phase
velocity values of the fan-shaped cylindrical structures, with β = π/6, are higher than that of structure
with β = π/9 and β = π/12, i.e., phase velocity values at high frequencies decrease as with the decrease
of β. This feature is similar to that of wedge waves.

3.7. The Stress, Electric, and Magnetic Displacement Distribution

The stress, electric displacement, and magnetic displacement of the first mode for a linear FGPP
fan-shaped cylindrical structure (η = 2 and β = π/6) at kd = 2.01 are calculated and illustrated in
Figure 18. Here, to save the space, only three representative figures are illustrated. It can be easily seen
that the initial conditions are satisfied extremely well, i.e., Trr = Trθ = Trz = Dr = Br = 0 at r = a and r
= b; and Tθθ = Trθ = Tθz = Dθ = Bθ = 0 at θ = 0 and θ = β.
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Figure 18. The stress, electric, and magnetic displacement of the first mode for a linearly FGPP 
cylindrical structure (η = 2 and β = π/6) at kd = 2.01. 

3.8. The Poynting Vector 

It is well known that the Poynting vector denotes the power flow density, which can be 
calculated by 

* * * * *Re[0.5 ( + )]r rr r r rz z r rP i T u T u T u D Bθ θω φ= × + × + × × + × Ψ ,  (10a) 

* * * * *Re[0.5 ( + )]r r z zP i T u T u T u D Bθ θ θθ θ θ θ θω φ= × + × + × × + × Ψ ,  (11b) 

Figure 17. Phase velocity curves for the fifth and six mode at η = 2.
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3.8. The Poynting Vector

It is well known that the Poynting vector denotes the power flow density, which can be
calculated by

Pr = Re[0.5iω(Trr × u∗r + Trθ × u∗θ + Trz × u∗z + Dr × φ∗ + Br ×Ψ∗)], (10a)

Pθ = Re[0.5iω(Trθ × u∗r + Tθθ × u∗θ + Tθz × u∗z + Dθ × φ∗ + Bθ ×Ψ∗)], (11b)

Pz = Re[0.5iω(Trz × u∗r + Tθz × u∗θ + Tzz × u∗z + Dz × φ∗ + Bz ×Ψ∗)], (10c)

where superscript * denotes the complex conjugation.
For the guided waves propagating in the axial direction, the Poynting vectors in the radial and

circumference directions are 0. Figures 19–21 illustrate the Poynting vector distributions of the first
two modes for the linear FGPP cylindrical structure (η = 2 and β = π/6), at kd = 2.01 and kd = 120.01,
respectively. The detailed distributions at kd = 120.01 in the Figure 20 cannot be clearly seen. Hence,
the partial enlarged drawings are made, as shown in the Figure 21. They seem to be discontinuous,
owing to the existence of platforms. However, they are continuous, in fact, and truncation of the
larger values leads to platforms. Furthermore, for the big wavenumber case, the Poynting vector
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distributions are mainly concentrated near the outer side with more BaTiO3. This is because elasticity
modulus of BaTiO3 is smaller than that of CoFe2O4. Accordingly, the stiffness of BaTiO3 is smaller,
the displacement is bigger, and the energy mainly transmits in this region. Moreover, the Poynting
vector distributions are concentrated near the boundaries, especially near the corner.
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4. Conclusions

According to the 3D linearly magneto-electric-elastic theory, waves in FGPP fan-shaped cylindrical
structures are studied via exploiting the double Legendre orthogonal polynomial method. The
magneto-electric effect is detailed. Based on the above numerical results, the following conclusions can
be obtained:

(1) If the radius-thickness ratio is bigger than 1000, fan-shaped cylindrical structures could be treated
as a rectangular bar.
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(2) The variation in geometric size of the cross-section has remarkable influence on wave
characteristics. The cut-off frequencies have a negative relationship with the cross-section area of
the fan-shaped cylindrical structures.

(3) For the FGPP fan-shaped cylindrical structures, the magneto-electric effect could be adjusted via
altering the geometric size.

(4) The phase velocities for higher modes at high frequencies approximatively approach a value
which is below the shear velocity, and they also increase with the increase of β.

(5) For the big wavenumber case, the Poynting vector distributions are concentrated in the region
with more material of smaller elasticity modulus, and the Poynting vector distributions are also
concentrated near the boundaries, especially near the corner.
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Appendix A

Equation (7e) can be transformed as

p5
m,j = −

(
l An,p,m,j

55

)−1(l An,p,m,j
51 p1

m,j +
l An,p,m,j

52 p2
m,j +

l An,p,m,j
53 p3

m,j +
l An,p,m,j

54 p4
m,j

)
. (A1)

Subsequently, substituting Equation (A1) into Equation (7d), we can obtain the following equation.

p4
m,j =

l IAn,p,m,j
{[

l An,p,m,j
41 − l AAn,p,m,j·l An,p,m,j

51

]
p1

m,j

+
[

l An,p,m,j
42 − l AAn,p,m,j·l An,p,m,j

52

]
p2

m,j +
[

l An,p,m,j
43 − l AAn,p,m,j·l An,p,m,j

53

]
p3

m,j

} (A2)

where l AAn,p,m,j = l An,p,m,j
45

(
l An,p,m,j

55

)−1
and l IAn,p,m,j =

[
l An,p,m,j

45

(
l An,p,m,j

55

)−1
·l An,p,m,j

54 − l An,p,m,j
44

]−1
.

Then, substituting Equation (A2) into Equation (A1)

p5
m,j = −

(
l An,p,m,j

55

)−1{
l An,p,m,j

51 p1
m,j +

l An,p,m,j
52 p2

m,j +
l An,p,m,j

53 p3
m,j

+l An,p,m,j
54 ·l IAj,m

[(
l An,p,m,j

41 − l AAn,p,m,j·l An,p,m,j
51

)
p1

m,j

+
(

l An,p,m,j
42 − l AAn,p,m,j·l An,p,m,j

52

)
p2

m,j +
(

l An,p,m,j
43 − l AAn,p,m,j·l An,p,m,j

53

)
p3

m,j

] } . (A3)

Finally, substituting Equations (A2) and (A3) into Equations (7a), (7b), and (7c), Equation (8) can
be obtained.
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