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Abstract: Background: A fair amount of microcalcifications sent for biopsy are false positives. The
study investigates whether quantitative radiomic features extracted from digital breast tomosynthesis
(DBT) can be an additional and useful tool to discriminate between benign and malignant BI-RADS
category 4 microcalcification. Methods: This retrospective study included 252 female patients with
BI-RADS category 4 microcalcifications. The patients were divided into two groups according to
micro-histopathology: 126 patients with benign lesions and 126 patients with certain or possible
malignancies. A total of 91 radiomic features were extracted for each patient, and the 12 most
representative features were selected by using the agglomerative hierarchical clustering method.
The binary classification task of the two groups was carried out by using four different machine-
learning algorithms (i.e., linear support vector machine (SVM), radial basis function (RBF) SVM,
logistic regression (LR), and random forest (RF)). Accuracy, sensitivity, sensibility, and the area under
the curve (AUC) were calculated for each of them. Results: The best performance was achieved
using the RF classifier (AUC = 0.59, 95% confidence interval 0.57–0.60; sensitivity = 0.56, 95% CI
0.54–0.58; specificity = 0.61, 95% CI 0.59–0.63; accuracy = 0.58, 95% CI 0.57–0.59). Conclusions:
DBT-based radiomic analysis seems to have only limited potential in discriminating benign from
malignant microcalcifications.

Keywords: breast calcifications; digital breast tomosynthesis; radiomics; diagnosis

1. Introduction

Breast cancer is the most diagnosed female tumor. According to recent estimates from
the International Agency for Research on Cancer (IARC), about 2.3 million women were
diagnosed with breast cancer in 2020, exceeding the incidence of lung cancer for the first
time. Furthermore, breast cancer is the leading cause of death for female tumors and the
fifth cause of death for cancer in the general population [1–3]. These data suggest that early
diagnosis and immediate treatment are needed to reduce morbidity and mortality and
increase survival in these patients. Mammography is the gold standard screening technique
for the diagnosis of breast cancer, which, in fact, allows an early diagnosis of non-palpable
neoplasms, some of which are discovered in an early stage as carcinoma in situ [1–5]. About
55% of non-palpable tumors are detected thanks to the presence of microcalcifications;
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those, existing in about 30% of malignant breast tumors, represent the main form of pre-
sentation of the ductal carcinoma in situ (DCIS), allowing the diagnosis of DCIS in 85–95%
of the cases [6]. The microcalcifications are the product of altered cell metabolism, related
either to malignancy as breast cancer or to benign pathology as inflammation or an infection
of the mammary gland. The Breast Imaging Reporting and Data System (BI-RADS) of
the American College of Radiology has standardized the qualitative description and the
management of the imaging findings. Regarding the microcalcifications, the BI-RADS V
edition suggests the use of morphology and distribution descriptors to insert the findings
in an assessment category [7]. In particular, amorphous microcalcifications in a grouped,
linear, or segmental distribution, a single group of coarse heterogeneous microcalcifications,
and those with fine pleomorphic and fine linear or fine-linear branching morphology are
considered as BI-RADS assessment category 4. BIRADS 4 includes atypical findings that
are suspicious enough for malignancy to justify a recommendation to biopsy. A finding
included in this category has a 2–95% chance of being a neoplasia. Regarding the detection
of the microcalcifications, mammography is a test with high sensitivity (about 95%) but
low specificity (about 41%), with a positive predictive value (PPV) of less than 30% [8,9].
In fact, most of the microcalcifications biopsied (70–80%) are histologically benign [10,11].
Therefore, most of the biopsies executed for suspicious microcalcifications could be avoided.
Based on the above considerations, researching a diagnostic tool capable of reducing the
percentage of false positives is important. This hypothetical tool should overcome the large
use of biopsy, which is an invasive, not risk-free, and expensive technique. Radiomics
is a new research tool well suited to this scenario. Indeed, radiomics represents an ad-
vanced analytic methodology that extracts quantitative features from biomedical images to
generate imaging biomarkers. According to the literature, radiomics could be applied to
mammographic images in many ways. For example, Tagliafico et al. and Sakay et al. have
proposed new methods for the automatic classification of benign and malignant lesions on
digital breast tomosynthesis [12,13]; Son et al. and Ma et al. have tried to predict the breast
cancer molecular subtypes using quantitative radiomic features extracted from mammog-
raphy [14,15]; Zhou et al. have evaluated the state of HER-2 in patients with breast cancer
using radiomic features from mammography [16]; Lei et al. have proposed a radiomic
model based on mammographic images and clinical risk factors to predict the malignant or
benign nature of BI-RADS category 4 microcalcifications [17]; Chen et al. have assessed the
capability of a multimodal radiomic approach, based on the integration of mammographic
and contrast-enhanced magnetic resonance images, to identify non-palpable malignant
lesions presented as BI-RADS category 3–5 microcalcifications [18]. Furthermore, dedicated
breast CT has been evaluated as a non-invasive and supportive tool in the diagnosis of
breast cancer [19]. Our study aims to evaluate whether the radiomic analysis of digital
breast tomosynthesis can foretell the histopathological report and, consequently, the man-
agement of BI-RADS category 4 microcalcifications addressed to stereotactic biopsy: benign
microcalcification intended for follow up or certain/possible malignant microcalcifications
intended for surgical excision.

2. Materials and Methods
2.1. Study Design and Population

This retrospective study was performed in the framework of the HORIZON 2020 projects
CHAIMELEON (Accelerating the lab to the market transition of AI tools for cancer man-
agement) and EuCanImage (Towards a European cancer imaging platform for enhanced
artificial intelligence in oncology) [20,21]. In both projects, multiple tasks are dedicated
to the extraction and analysis of radiomic features in breast cancer. Two-hundred-eighty
female patients (age range 24–85 years; mean 55.28) sent for vacuum-assisted breast biopsy
(VABB) for BI-RADS category 4 microcalcifications were evaluated in our institution from
November 2018 to August 2020.

The inclusion criteria were:

• Detection of microcalcification at the most recent mammography.
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• Microcalcifications classified by a radiologist as BI-RADS category 4.
• Execution of VABB in high-definition breast tomosynthesis.
• Histological examination of the specimens in our institution.

The exclusion criteria were:

• Presence of a mass or an architectural distortion associated with microcalcification.
• Allergic reaction to the local anesthetic.
• Hemorrhagic diathesis or the impossibility of discontinuing an antiplatelet/antico-

agulant therapy.
• Technical unfeasibility of the execution of VABB (not cooperative patients, thin breast,

microcalcifications too close to the chest wall or near the skin or in the breast tissue of
the axillary tails).

Therefore, 28 patients were excluded (7 patients had a mass associated with the
microcalcifications; 11 patients had hemorrhagic diathesis; 4 patients could not withdraw
the anticoagulant therapy; 6 patients had technical barriers for the execution of the VABB),
yielding a total of 252 patients enrolled in the study. Written informed consent to the VABB
for the diagnostic workup of breast microcalcifications had been obtained from all patients,
and institutional review board approval was waived due to the retrospective nature of the
study. The histopathological examination was classified into five categories according to
the European guidelines [22]:

• B1 (Uninterpretable/Normal tissue only): indicates a core of normal tissue or an
uninterpretable specimen, for example, due to an excessive crush artifact or composed
of blood clots only.

• B2 (Benign lesion): indicates the presence of a benign abnormality such as fibroadeno-
mas, fibrocystic changes, sclerosing adenosis, and duct ectasia.

• B3 (Lesion of uncertain malignant potential): indicates lesions that may provide benign
histology in needle core biopsy (NCB) but are either known to show heterogeneity
or to have an increased risk of associated malignancy (e.g., papillary lesions, radial
scar/complex sclerosing lesion, lobular intraepithelial neoplasia, atypical epithelial
proliferation of ductal type and phyllodes tumor).

• B4 (Suspicious for malignancy): indicates apparently neoplastic cells contained within
blood clots or adherent to the outer aspect of the sample or technical problems such as
crushed or poorly fixed cores which contain probable carcinoma.

• B5 (Malignant): indicates unequivocal malignancy on NCB. Further categorization
into in situ (B5a) and invasive malignancy (B5b) should be undertaken whenever
possible.

According to the histopathologic report of the digital breast tomosynthesis-guided
vacuum-assisted breast biopsy (DBT-VABB) samples, the patient cohort was divided into
two groups (Table 1):

• Benign group: 126 patients with category B2 addressed to imaging follow-up.
• Malignant group: 126 patients with category B3 (45 patients), B5a (63 patients), and

B5b (18 patients) addressed to surgical excision.

Table 1. The table shows how the patients were divided into two groups: one addressed to follow up
and the other addressed to surgical excision, based on the histopathological category of the biopsy
sample; DBT-VABB: digital breast tomosynthesis-guided vacuum-assisted breast biopsy.

DBT-VABB Histopathologic Reports

B2 B3 B5a B5b

126 45 63 18

Total 126 Total 126

Follow up Surgical Excision
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None of the patients had a micro-histological diagnosis of category B1 or B4. There
were no cases of clinical and/or radiological suspicion that required a repetition of the
biopsy of category B2, according to the European and Italian guidelines [22,23]. All the
45 patients categorized as B3 received a surgical excision after a discussion at a preopera-
tive multidisciplinary meeting, according to the international and national recommenda-
tions [22–25].

2.2. Imaging Protocol

All the biopsies were performed after informing the patient about the procedure, after
verifying the absence of contraindications such as allergic reactions and drug therapies,
and after receiving the written informed consensus. The VABB was conducted using the
Hologic Selenia Dimensions System® with the Affirm™ breast biopsy guidance system
and an ATEC 9 gauge needle. The target lesion was localized under stereotactic guidance.
An open system was used, and 12 frustules of tissue were sampled, rotating the single
needle up to 360-degrees along the needle axis. Each procedure was followed by the
insertion of a nonmagnetic radiopaque marker to localize the biopsied region. A post VABB
radiogram was always performed to report the correct execution of the biopsy, verifying
the correct position of the marker and the possible presence of residual microcalcifications.
Radiograms with a magnification of the samples were performed to verify the presence
of the microcalcifications within the specimens; the frustules were fixed on 10% buffered
formalin and were divided into those with microcalcification and those without and, finally,
were sent to the pathologist.

2.3. Image Segmentation and Feature Extraction

Images and the patient’s data were anonymized before archival in the institutional
research repository. The mammographic images were examined by a radiologist with
20 years of experience in breast imaging. The radiologist traced the region of interest (ROI)
by manual segmentation, using the open-source software ITK-SNAP (version 3.6.0, www.
itksnap.org, last access 14 May 2021), on the centering tomosynthesis of the calcifications
performed in the VABB session. The ROI included the area related to the microcalcifications
(Figure 1). The radiologist was blinded to the histopathological report.
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Figure 1. An example of ROI segmentation on a centering tomosynthesis image acquired in the
biopsy session.

Radiomic features were calculated using PyRadiomics v3.0.1 [26], an open-source
python package for the extraction of radiomics features from medical imaging in compliance
with the Image Biomarker Standardization Initiative (IBSI) [27]. A total of 91 features
were extracted from each ROI: 18 first-order features (first-order class), 22 gray level
co-occurrence matrix features (GLCM class), 14 gray level dependence matrix features
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www.itksnap.org


Diagnostics 2022, 12, 771 5 of 12

(GLDM class), 16 gray level run length matrix features (GLRLM class), 16 gray level
size zone features (GLSZM class), and 5 neighboring gray-tone difference matrix features
(NGTDM class). Given that radiomic features were estimated from an area indicative
of the calcification region and not from each single microcalcification, shape features
were not included in this work. Texture features (i.e., radiomic features belonging to the
GLCM, GLDM, GLRLM, GLSZM, and NGTDM classes) were computed according to the
Chebyshev norm with a distance of 1 pixel. GLCM and GLRLM features were estimated
from each 2D directional matrix (i.e., at 0◦, 45◦, 90◦, and 135◦) and then averaged over 2D
directions and slices. Prior to radiomic features estimation, a quantization of the image
intensities inside the ROI was carried out using a fixed number of 80 bins [28–30]. This
intensity discretization method was used according to IBSI recommendation in order to
obtain a normalizing effect inside the ROI. No voxel interpolation was performed.

2.4. Feature Selection

Feature selection and classification were implemented in Python environment (version
3.8.5) with the scikit-learn library (version 24.2) [31]. To avoid overfitting, an unsupervised
feature selection was performed to identify a subset of nonredundant radiomic features.
The number of the selected radiomic features was chosen so that the ratio between the
number of data observations (i.e., subjects presenting malignant lesions) to features was
10:1 [32,33]. Accordingly, an agglomerative hierarchical clustering with average group
linkage and Pearson’s correlation as the dissimilarity measure was implemented to identify
12 clusters. In each cluster, the radiomic feature with the minimum average distance (in
terms of Pearson’s correlation), relative to the other features of the same cluster, was selected
as the representative feature, leading to 12 representative features out of the 91 extracted
radiomic features.

2.5. Classification

The binary classification task (i.e., benign or malignant breast lesion, based on histopathol-
ogy) was carried out by employing four supervised machine-learning (ML) algorithms:
linear support vector machine (SVM), radial basis function (RBF) SVM, logistic regression
(LR), and random forest (RF). It is worth noting that the RF model was trained with all the
91 radiomic features, while the other classification models (i.e., SVM, RBF-SVM, and LR)
were trained exploiting only the 12 representative radiomic features. Indeed, RF classifiers
automatically compute the relevance score of each feature in the training phase and select a
subset of features at each tree node. Training and validation were performed according
to the nested k-fold cross-validation (CV) method (with 5 folds in the outer CV loop and
3 folds in the inner CV loop). Hyperparameters were optimized using a grid search in the
inner 3-fold CV loop, while the outer CV loop was used to estimate the performances of the
model fitting procedure. Specifically, for each classification algorithm, the mean accuracy,
mean sensitivity, and mean sensibility were measured across the different folds of the outer
CV loop. These values were then averaged over 100 repetitions of the entire nested k-fold
CV, giving a single mean accuracy value and a single mean AUC value per algorithm.
The use of nested k-fold CV allows us to perform model training independently from the
hyperparameters optimization; therefore, it prevents overfitting or incorrect estimates of
generalization.

3. Results
3.1. Features Selection

Figure 2 shows the heatmap in which the correlation between pair of radiomic features
is highlighted. The order of the radiomic features inside the heatmap reflects the output
of the hierarchical clustering, with features belonging to the same cluster displayed close
to each other. Figure 3 shows in greater detail which of the 12 clusters each radiomic
feature belongs to. The 12 radiomic features identified as the most representative from
each cluster were: MeanAbsoluteDeviation, RootMeanSquared, and Minimum from the
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first order class; InverseDifferenceNormalised (Idn), Correlation, and ClusterShade from
the GLCM class; LowGrayLevelRunEmphasis and LongRunEmphasis from the GLRLM
class; HighGrayLevelZoneEmphasis and GrayLevelNonUniformity from the GLSZM class;
SmallDependenceEmphasis from the GLDM class; Strength from the NGTDM class.
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3.2. Classification

Performances obtained from the four classification methods according to a nested
5-fold cross-validation have been summarized in Table 2. This table shows the mean and
the 95% confidence interval (CI) of the accuracy, sensitivity, specificity, and AUC obtained
with each classifier.

Table 2. Performance measures of the four ML radiomic classifiers for benign calcification versus
malignant calcification.

Classification Methods Sensitivity Specificity Accuracy AUC

Linear support vector
classifier 0.53 [0.50–0.56] 0.45 [0.42–0.48] 0.48 [0.46–0.50] 0.49 [0.48–0.50]

Radial basis function
support vector classifier 0.57 [0.55–0.59] 0.55 [0.53–0.57] 0.56 [0.54–0.57] 0.56 [0.55–0.57]

Logistic regression 0.45 [0.41–0.49] 0.50 [0.46–0.55] 0.46 [0.45–0.48] 0.48 [0.46–0.49]
Random forest 0.56 [0.54–0.58] 0.61 [0.59–0.63] 0.58 [0.57–0.59] 0.59 [0.57–0.60]

In Figure 4 are shown, with different colors and lines, the receiver operating character-
istic (ROC) curves obtained for the studied ML classifiers. For three of the four classification
methods, the training was performed on the selected radiomic features; for the fourth, the
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RF ones, all the calculated radiomic features were used. The RF classifier obtained the
highest testing performance, with an AUC of 0.59.
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(SVM-RBF), logistic regression (LR), and random forest (RF).

4. Discussion

To date, the definitive diagnosis of suspicious breast lesions detected in imaging neces-
sarily requires a histopathologic examination and, therefore, a biopsy sample. Considering
that the majority of the suspicious microcalcifications addressed to biopsy (70–80%) turn
out to be benign at the histopathological examination, many of these biopsies could be
avoided. As a matter of fact, VABB is the gold standard for the sampling of microcalcifica-
tions, but it presents some disadvantages: it is invasive and unpleasant for the patients;
carries risks and complications such as pain, bleeding, and infections; is expensive; and
requires specialized equipment and a dedicated team [34]. Radiomics could be evaluated
as a non-invasive supportive tool for a better assessment of calcifications that deserve a
VABB for the purpose of reducing the rate of avoidable biopsies.

Lindfors et al. demonstrated that dedicated breast CT could be a non-invasive and
comfortable instrument that supports the detection of breast tumor; however, it is less
available than radiomics and still has some limitations in evaluating microcalcifications
morphology compared to mammography [19]. Therefore, we focused on the radiomics
applied to mammography. Accordingly, this study investigated whether quantitative ra-
diomic features extracted from DBT could be an additional and useful tool to discriminate
between benign and malignant BI-RADS category 4 microcalcification and, consequently,
reduce the number of false-positive findings. Radiomic features were extracted from the
centering tomosynthesis performed in the VABB session. The results of our study show
that after applying ML classifiers to select the most representative features to differentiate
benign from malignant microcalcifications, the highest testing performance had an AUC of
only 0.59; therefore, it seems possible that radiomic features extracted from DBT do not
strongly discriminate between benign and malignant microcalcifications. These results
could be related to the fact that the region of interest included the whole area of microcalci-
fications and not every single calcification; this means the exclusion of the shape features.
In this regard, Chen S. et al. have evaluated whether a multimodal radiomic model could
identify malignant non-palpable breast lesions presenting as BI-RADS category 3–5 mi-
crocalcifications [18]. Unlike us, they segmented every single calcification and, therefore,
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considered shape and distribution as predictive features, obtaining a greater AUC (0.834).
In our study, we assumed that the entire area that includes all the calcifications is more
representative of the neoplasm, with respect to the area that includes a single calcification.
In this regard, Holland et al. reported that the size of a DCIS, especially the low-grade type,
evaluated by measuring the extent of microcalcifications using mammography, frequently
underestimates the histological tumor size [35]. Berger et al., considering the microcalcifica-
tions, have shown that the extension of DCIS in histology specimens, compared to DBT,
was 17.9% larger [36]. In fact, the Pathology Reporting of Breast Disease, if the excision has
been undertaken for calcification, suggests we include in the histopathological evaluation
the main area of calcification and the adjacent tissue to avoid the underestimation of the
size of a lesion [37]. Thus, we decided to segment not every single calcification but the
entire area in which they are included. Furthermore, Chen S. et al. demonstrated a better
predictive value of the radiomic model when the mammographic data were integrated
with those of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data;
in this regard, a multimodality approach is likely to improve the diagnostic efficiency of
the radiomics model; however, we chose to not consider data from DCE-MRI since it is a
modality that is difficult to apply in the clinical evaluation of all patients with suspicious
microcalcifications because of its high costs, limited availability, and risks related to the
contrast agent. Therefore, in our opinion and considering the aim of our study, it is not
worth applying radiomics on DCE-MRI to study microcalcifications. Lei C. et al. have
tried to construct and validate a radiomic model that uses mammography-based imaging
data combined with clinical data to discriminate benign from malignant BI-RADS category
4 microcalcifications [17]. While they too used an ROI that included a full-calcification
related area, they extracted data from 2 dimensional (2D) mammographic images, obtaining
an AUC of 0.80. In contrast, in our work, we extracted data from tomosynthesis, which
provides a series of images (thin slices) that have less overlap of the structures within
the breast compared to the 2D mammography. Hence, the ROI in DBT might be more
representative of the lesion compared to 2D mammography. Lei et al. also demonstrated
that the integration of images data with the menopausal state did not significantly improve
the prediction value of the classification model. Therefore, the fact that we did not integrate
imaging data with the menopausal state has probably not appreciably influenced our
results. Nevertheless, other clinical risk factors could be integrated with radiomic data to
better evaluate their influence on the classification models. First, a family history of breast
tumor, which has a major impact on the probability of having breast cancer. Second, the use
of menopausal hormone therapy, in particular combined estrogen and progestogen prepa-
rations, which could substantially increase the breast cancer risk compared with non-users.
Third, high mammographic density has been associated with an increased risk of breast
cancer due to the abundant epithelial tissue where cancer could arise and to the masking
bias that reduces the sensitivity of mammography. In addition, increasing age, personal
history of breast pathologies (such as atypical hyperplasia and lobular carcinoma in situ),
exposure to therapeutic chest radiation, reproductive factors (early menarche, low parity,
shorter breastfeeding periods, and late menopause), high body mass index, alcohol, and
inadequate physical activity are other clinical risk factors for breast tumor [38,39], which
could be correlated with radiomic data in future studies. In our study, the predictive model
that was obtained with the RF classifier (AUC = 0.59, 95% CI 0.57–0.60) and with SVM-RBF
(AUC = 0.56, 95% CI 0.55–0.57) showed only limited potential in discriminating between
benign and malignant microcalcifications. However, we are confident that the integration
with other parameters, such as clinical factor risks, may improve the performance of a
radiomic classification model in the recognition of microcalcifications that need a VABB.

Our study has some limitations. First, it is a retrospective single-center study; therefore,
a multicentric study would be important to assess if these results are valid on a larger
scale and could be generalized. Second, the data set should be increased, although we
did not have a small sample size compared with similar studies found in the literature.
Considering the relatively small sample, the training and validation were performed using
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the 12 representative features out of the 91 extracted radiomic features to avoid overfitting.
A larger data set would allow us to assess the performance of radiomic classification
models featuring a higher number of radiomic features without over-fitting issues. Third,
the process of manual segmentation involved a single radiologist expert in breast radiology.
This brings to attention the impossibility of evaluating the reliability of the intra- and
inter-observer processes. Multiple radiologists would provide a closer approximation
of the average segmentation, which would, in turn, reduce the variability in the model.
Fourth, the clinical risk factors were not included. Future studies are needed to assess if the
integration of data, such as genetic factors and the use of menopausal hormone therapies,
improves the radiomic model. Lastly, the radiomic results were not correlated with breast
density, which can influence the risk of developing breast cancer and, therefore, modify
the distinction between benign and malignant calcifications; however, studies have shown
that radiomics reflect the intrinsic properties of mammographic parenchymal complexity
beyond conventional breast density measures and may provide additional information for
risk assessment [39,40].

5. Conclusions

According to the present study results, radiomic features alone are not able to define
the clinical management of patients with BI-RADS category 4 microcalcifications. However,
our results did not exclude that a further improved classification model can reduce the
false-positive rate and adjust the radiologic cut-off for image-guided breast biopsy. We
believe that with further large-scale studies capable of overcoming the limits of our work, it
might be possible to obtain a radiomic classification model as a supplement to the BI-RADS
for a better selection of patients with suspicious microcalcifications that need a VABB.
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AUC area under the curve
BI-RADS Breast Imaging Reporting and Data System
CI confidence interval
CV cross-validation
DBT digital breast tomosynthesis
DCE-MRI dynamic contrast-enhanced magnetic resonance imaging



Diagnostics 2022, 12, 771 11 of 12

DCIS ductal carcinoma in situ
GLCM gray level co-occurrence matrix
GLDM gray level dependence matrix
GLRLM gray level run length matrix
GLSZM gray level size zone features
IBSI Image Biomarker Standardization Initiative
LR logistic regression
ML machine-learning
NCB needle core biopsy
NGTDM neighboring gray tone difference matrix
RBF radial basis function
RF random forest
ROI region of interest
SVM support vector machine
VABB vacuum-assisted breast biopsy

References
1. Association of Women’s Health, Obstetric and Neonatal Nurses (AWHONN). Breast Cancer Screening. J. Obstet. Gynecol. Neonatal

Nurs. 2017, 46, 797–798. [CrossRef]
2. Løberg, M.; Lousdal, M.L.; Bretthauer, M.; Kalager, M. Benefits and harms of mammography screening. Breast Cancer Res. 2015,

17, 63. [CrossRef]
3. Jørgensen, K.J.; Bewley, S.; Jatoi, I.; Lauby-Secretan, B.; Loomis, D.; Straif, K.; Fitzgerald, S.P. Breast-Cancer Screening—Viewpoint

of the IARC Working Group. N. Engl. J. Med. 2015, 373, 1478–1479. [CrossRef]
4. De González, A.B.; Reeves, G. Mammographic screening before age 50 years in the UK: Comparison of the radiation risks with

the mortality benefits. Br. J. Cancer 2005, 93, 590–596. [CrossRef]
5. Distante, V.; Frigerio, A.; Naldoni, C.; Paci, E.; Ponti, A. On the opportunity of extending service screening by mammography to

women of 40–49 and 70–74 years of age. Epidemiol. Prev. 2007, 31, 15–22.
6. Gajdos, C.; Tartter, P.I.; Bleiweiss, I.J.; Hermann, G.; De Csepel, J.; Estabrook, A.; Rademaker, A.W. Mammographic Appearance of

Nonpalpable Breast Cancer Reflects Pathologic Characteristics. Ann. Surg. 2002, 235, 246–251. [CrossRef]
7. Sickles, E.A.; D’Orsi, C.J.; Bassett, L.W.; Appleton, M.C.; Berg, W.A.; Burnside, E.S.; Feig, S.A.; Gavenonis, S.C.; Newell, M.S.;

Trinh, M.M. ACR BI-RADS® Mammography. In ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System; American College
of Radiology: Reston, VA, USA, 2013.

8. Bluekens, A.M.J.; Holland, R.; Karssemeijer, N.; Broeders, M.J.M.; Heeten, G.J.D. Comparison of Digital Screening Mammography
and Screen-Film Mammography in the Early Detection of Clinically Relevant Cancers: A Multicenter Study. Radiology 2012, 265,
707–714. [CrossRef]

9. Burnside, E.S.; Ochsner, J.E.; Fowler, K.J.; Fine, J.P.; Salkowski, L.R.; Rubin, D.L.; Sisney, G.A. Use of Microcalcification Descriptors
in BI-RADS 4th Edition to Stratify Risk of Malignancy. Radiology 2007, 242, 388–395. [CrossRef]

10. van Luijt, P.A.; Fracheboud, J.; Heijnsdijk, E.A.; Heeten, G.J.D.; de Koning, H.J. Nation-wide data on screening performance
during the transition to digital mammography: Observations in 6 million screens. Eur. J. Cancer 2013, 49, 3517–3525. [CrossRef]

11. Rosenberg, R.D.; Yankaskas, B.C.; Abraham, L.A.; Sickles, E.A.; Lehman, C.D.; Geller, B.M.; Carney, P.A.; Kerlikowske, K.; Buist,
D.S.M.; Weaver, D.L.; et al. Performance Benchmarks for Screening Mammography. Radiology 2006, 241, 55–66. [CrossRef]

12. Tagliafico, A.S.; Valdora, F.; Mariscotti, G.; Durando, M.; Nori, J.; La Forgia, D.; Rosenberg, I.; Caumo, F.; Gandolfo, N.; Houssami,
N.; et al. An exploratory radiomics analysis on digital breast tomosynthesis in women with mammographically negative dense
breasts. Breast 2018, 40, 92–96. [CrossRef] [PubMed]

13. Sakai, A.; Onishi, Y.; Matsui, M.; Adachi, H.; Teramoto, A.; Saito, K.; Fujita, H. A method for the automated classification of
benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features. Radiol. Phys.
Technol. 2020, 13, 27–36. [CrossRef] [PubMed]

14. Son, J.; Lee, S.E.; Kim, E.-K.; Kim, S. Prediction of breast cancer molecular subtypes using radiomics signatures of synthetic
mammography from digital breast tomosynthesis. Sci. Rep. 2020, 10, 21566. [CrossRef] [PubMed]

15. Ma, W.; Zhao, Y.; Ji, Y.; Guo, X.; Jian, X.; Liu, P.; Wu, S. Breast Cancer Molecular Subtype Prediction by Mammographic Radiomic
Features. Acad. Radiol. 2019, 26, 196–201. [CrossRef]

16. Zhou, J.; Tan, H.; Bai, Y.; Li, J.; Lu, Q.; Chen, R.; Zhang, M.; Feng, Q.; Wang, M. Evaluating the HER-2 status of breast cancer using
mammography radiomics features. Eur. J. Radiol. 2019, 121, 108718. [CrossRef]

17. Lei, C.; Wei, W.; Liu, Z.; Xiong, Q.; Yang, C.; Yang, M.; Zhang, L.; Zhu, T.; Zhuang, X.; Liu, C.; et al. Mammography-based
radiomic analysis for predicting benign BI-RADS category 4 calcifications. Eur. J. Radiol. 2019, 121, 108711. [CrossRef]

18. Chen, S.; Guan, X.; Shu, Z.; Li, Y.; Cao, W.; Dong, F.; Zhang, M.; Shao, G.; Shao, F. A New Application of Multimodality Radiomics
Improves Diagnostic Accuracy of Nonpalpable Breast Lesions in Patients with Microcalcifications-Only in Mammography. Med.
Sci. Monit. 2019, 25, 9786–9793. [CrossRef]

http://doi.org/10.1016/j.jogn.2017.07.001
http://doi.org/10.1186/s13058-015-0525-z
http://doi.org/10.1056/nejmc1508733
http://doi.org/10.1038/sj.bjc.6602683
http://doi.org/10.1097/00000658-200202000-00013
http://doi.org/10.1148/radiol.12111461
http://doi.org/10.1148/radiol.2422052130
http://doi.org/10.1016/j.ejca.2013.06.020
http://doi.org/10.1148/radiol.2411051504
http://doi.org/10.1016/j.breast.2018.04.016
http://www.ncbi.nlm.nih.gov/pubmed/29723697
http://doi.org/10.1007/s12194-019-00543-5
http://www.ncbi.nlm.nih.gov/pubmed/31686300
http://doi.org/10.1038/s41598-020-78681-9
http://www.ncbi.nlm.nih.gov/pubmed/33299040
http://doi.org/10.1016/j.acra.2018.01.023
http://doi.org/10.1016/j.ejrad.2019.108718
http://doi.org/10.1016/j.ejrad.2019.108711
http://doi.org/10.12659/MSM.918721


Diagnostics 2022, 12, 771 12 of 12

19. Lindfors, K.K.; Boone, J.M.; Nelson, T.R.; Yang, K.; Kwan, A.L.C.; Miller, D.F. Dedicated Breast CT: Initial Clinical Experience.
Radiology 2008, 246, 725–733. [CrossRef]

20. Chaimeleon. Available online: https://chaimeleon.eu/ (accessed on 18 April 2021).
21. EuCanImage. Available online: https://eucanimage.eu/ (accessed on 18 April 2021).
22. Perry, N.; Broeders, M.; de Wolf, C.; Törnberg, S.; Holland, R.; von Karsa, L. European guidelines for quality assurance in breast

cancer screening and diagnosis. Fourth edition—summary document. Ann. Oncol. 2008, 19, 614–622. [CrossRef]
23. Gisma. Available online: https://www.gisma.it/documenti/documenti_gisma/percorso-diagnostico-preoperatorio-GISMA-

B3.pdf (accessed on 18 April 2021).
24. Rageth, C.J.; O’Flynn, E.A.M.; Pinker-Domenig, K.; Kubik-Huch, R.A.; Mundinger, A.; Decker, T.; Tausch, C.; Dammann, F.;

Baltzer, P.A.; Fallenberg, E.M.; et al. Second International Consensus Conference on lesions of uncertain malignant potential in
the breast (B3 lesions). Breast Cancer Res. Treat. 2019, 174, 279–296. [CrossRef]

25. Senonetwork. Available online: https://www.senonetwork.it/it/raccomandazioni/1-3798-1- (accessed on 18 April 2021).
26. Pyradiomics. Available online: https://pyradiomics.readthedocs.io/en/latest/features.html (accessed on 18 April 2021).
27. Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.;

Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput
Image-based Phenotyping. Radiology 2020, 295, 328–338. [CrossRef] [PubMed]

28. Tixier, F.; Le Rest, C.C.; Hatt, M.; Albarghach, N.; Pradier, O.; Metges, J.-P.; Corcos, L.; Visvikis, D. Intratumor Heterogeneity
Characterized by Textural Features on Baseline 18F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in
Esophageal Cancer. J. Nucl. Med. 2011, 52, 369–378. [CrossRef] [PubMed]

29. Yip, S.S.F.; Aerts, H.J.W.L. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [CrossRef]
30. Leijenaar, R.T.; Nalbantov, G.; Carvalho, S.; Van Elmpt, W.J.; Troost, E.G.; Boellaard, R.; Aerts, H.J.; Gillies, R.J.; Lambin, P. The

effect of SUV discretization in quantitative FDG-PET Radiomics: The need for standardized methodology in tumor texture
analysis. Sci. Rep. 2015, 5, 11075. [CrossRef] [PubMed]

31. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. JMLR 2011, 12, 2825–1830.

32. Moons, K.G.M.; Kengne, A.P.; Woodward, M.; Royston, P.; Vergouwe, Y.; Altman, D.G.; Grobbee, D.E. Risk prediction models: I.
Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart 2012, 98, 683–690. [CrossRef]
[PubMed]

33. Harrell, F.E., Jr. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival
Analysis, 2nd ed.; Springer International Publishing: Cham, Switzeland, 2015.

34. The Royal College of Pathologist. Available online: https://www.rcpath.org/uploads/assets/4b16f19c-f7bd-456c-b212f557f804
0f66/G150-Non-op-reporting-breast-cancer-screening.pdf (accessed on 10 October 2021).

35. Holland, R.; Stekhoven, J.S.; Hendriks, J.; Verbeek, A.; Mravunac, M. Extent, distribution, and mammographic/ histological
correlations of breast ductal carcinoma in situ. Lancet 1990, 335, 519–522. [CrossRef]

36. Berger, N.; Schwizer, S.D.; Varga, Z.; Rageth, C.J.; Frauenfelder, T.; Boss, A. Assessment of the extent of microcalcifications to
predict the size of a ductal carcinoma in situ: Comparison between tomosynthesis and conventional mammography. Clin. Imaging
2016, 40, 1269–1273. [CrossRef]

37. Pathology Reporting of Breast Disease. Published by the NHS Cancer Screening Programmes Jointly with The Royal College of
Pathologists. Available online: www.rcpath.org (accessed on 16 July 2021).

38. Britt, K.L.; Cuzick, J.; Phillips, K.-A. Key steps for effective breast cancer prevention. Nat. Cancer 2020, 20, 417–436. [CrossRef]
39. Pinker, K. Beyond Breast Density: Radiomic Phenotypes Enhance Assessment of Breast Cancer Risk. Radiology 2019, 290, 50–51.

[CrossRef]
40. Kontos, D.; Winham, S.J.; Oustimov, A.; Pantalone, L.; Hsieh, M.-K.; Gastounioti, A.; Whaley, D.H.; Hruska, C.B.; Kerlikowske, K.;

Brandt, K.; et al. Radiomic Phenotypes of Mammographic Parenchymal Complexity: Toward Augmenting Breast Density in
Breast Cancer Risk Assessment. Radiology 2019, 290, 41–49. [CrossRef] [PubMed]

http://doi.org/10.1148/radiol.2463070410
https://chaimeleon.eu/
https://eucanimage.eu/
http://doi.org/10.1093/annonc/mdm481
https://www.gisma.it/documenti/documenti_gisma/percorso-diagnostico-preoperatorio-GISMA-B3.pdf
https://www.gisma.it/documenti/documenti_gisma/percorso-diagnostico-preoperatorio-GISMA-B3.pdf
http://doi.org/10.1007/s10549-018-05071-1
https://www.senonetwork.it/it/raccomandazioni/1-3798-1-
https://pyradiomics.readthedocs.io/en/latest/features.html
http://doi.org/10.1148/radiol.2020191145
http://www.ncbi.nlm.nih.gov/pubmed/32154773
http://doi.org/10.2967/jnumed.110.082404
http://www.ncbi.nlm.nih.gov/pubmed/21321270
http://doi.org/10.1088/0031-9155/61/13/R150
http://doi.org/10.1038/srep11075
http://www.ncbi.nlm.nih.gov/pubmed/26242464
http://doi.org/10.1136/heartjnl-2011-301246
http://www.ncbi.nlm.nih.gov/pubmed/22397945
https://www.rcpath.org/uploads/assets/4b16f19c-f7bd-456c-b212f557f8040f66/G150-Non-op-reporting-breast-cancer-screening.pdf
https://www.rcpath.org/uploads/assets/4b16f19c-f7bd-456c-b212f557f8040f66/G150-Non-op-reporting-breast-cancer-screening.pdf
http://doi.org/10.1016/0140-6736(90)90747-S
http://doi.org/10.1016/j.clinimag.2016.09.003
www.rcpath.org
http://doi.org/10.1038/s41568-020-0266-x
http://doi.org/10.1148/radiol.2018182296
http://doi.org/10.1148/radiol.2018180179
http://www.ncbi.nlm.nih.gov/pubmed/30375931

	Introduction 
	Materials and Methods 
	Study Design and Population 
	Imaging Protocol 
	Image Segmentation and Feature Extraction 
	Feature Selection 
	Classification 

	Results 
	Features Selection 
	Classification 

	Discussion 
	Conclusions 
	References

