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Abstract

Several Amaranthus spp. around the world have evolved resistance (and cross resis-

tance) to various herbicide mechanisms of action. Populations of redroot pigweed

(RRPW-R) and tall waterhemp (TW-R) in Mississippi, USA have been suspected to be

resistant to one or more acetolactate synthase (ALS) inhibiting herbicides. Whole plant

dose-response experiments with multiple ALS inhibitors, ALS enzyme assays with pyr-

ithiobac, and molecular sequence analysis of ALS gene constructs were conducted to con-

firm and characterize the resistance profile and nature of the mechanism in the RRPW-R

and TW-R populations. Two susceptible populations, RRPW-S and TW-S were included

for comparison with RRPW-R and TW-R, correspondingly. The resistance index (R/S; the

herbicide dose required to reduce plant growth by 50% of resistant population compared

to the respective susceptible population) values of the RRPW-R population were 1476,

3500, and 900 for pyrithiobac, imazaquin, and trifloxysulfuron, respectively. The R/S val-

ues of the TW-R population for pyrithiobac, imazaquin, and trifloxysulfuron were 51, 950,

and 2600, respectively. I50 values of RRPW-S and RRPW-R populations for pyrithiobac

were 0.062 and 208.33 μM, indicating that the ALS enzyme of the RRPW-R population is

3360-fold more resistant to pyrithiobac than the RRPW-S population under our experimen-

tal conditions. The ALS enzyme of the TW-R population was 1214-fold resistant to pyrithio-

bac compared to the TW-S population, with the I50 values for pyrithiobac of ALS from TW-

R and TW-S populations being 87.4 and 0.072 μM, correspondingly. Sequencing of the

ALS gene identified a point mutation at position 574 of the ALS gene leading to substitution

of tryptophan (W) residue with a leucine (L) residue in both RRPW-R and TW-R popula-

tions. Thus, the RRPW-R and TW-R populations are resistant to several ALS-inhibiting

herbicides belonging to different chemical classes due to an altered target site, i.e., ALS.

Resistance in Amaranthus spp. to commonly used ALS-inhibiting herbicides warrants an
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integrated weed management scheme incorporating chemical, mechanical, and cultural

strategies by growers.

Introduction

Acetolactate synthase (ALS, EC 4.1.3.18) is the first common enzyme for synthesis of the

branched-chain amino acids valine, leucine and isoleucine. ALS inhibiting herbicides belong

to five chemical classes: sulfonylureas (SU), imidazolinines (IMI), triazolopyrimidines (TP),

sulfonylaminocarbonyltriazolinines (SCT), and pyrimidinylthiobenzoic acids (PTB) [1]. Since

their discovery in the early 1980s, ALS inhibitors have been extensively used in many agricul-

tural landscapes (row and horticultural crops, pastures, rangeland, rights-of-way, and forestry)

due to their favorable properties such as a highly specific mode of action, absent or negligible

mammalian toxicity, low dosage use, as well as broad usability and efficacy.

A major downside to the widespread use of ALS inhibitors has been the rapid and extensive

evolution of resistance in several grass and broadleaf weed populations across the world. For

example, within 5 years of introduction of chlorsulfuron, the first ALS inhibitor to be commer-

cialized, prickly lettuce (Lactuca serriola L.) and kochia [(Kochia scoparia (l.) Shrad] popula-

tions became resistant [2–4]. As of August 2019, 162 weed species have been documented to

be resistant to one or more ALS inhibitors [5]. Among these resistant weed species are several

Amaranthus spp. including redroot pigweed (A. retroflexus L.) and tall waterhemp [A. tubercu-
latus (Moq.) Sauer].

In the majority of cases of resistance to ALS-inhibiting herbicides the mechanism is by an

altered ALS enzyme [4]. A few weed species, including some Amaranthus spp., have exhibited

nontarget site-based resistance (NTSR) to ALS inhibiting herbicides. For example, ALS inhibi-

tor-resistant tall waterhemp and Palmer amaranth [A. palmeri (S.) Wats.] populations from

Illinois and Kansas, respectively, possessed NTSR or metabolic resistance conferring character-

istics [6,7].

Adverse effects of competition and interference from various weed species on the growth

and yield of several crops have been well documented in the literature. Competition from red-

root pigweed at a density of one plant per meter of crop row, beginning from crop planting,

reduced marketable potato [Solanum tuberosum L.] tuber yield by 19 to 33% [8]. Corn [Zea
mays L.] yield was reduced 5% due to interference from redroot pigweed at 0.5 and 4 plants

per m of crop row when corn was at 4-leaf stage or earlier and at 4- to 7-leaf stage, respectively

[9]. Further, redroot pigweed emergence before sorghum [Sorghum bicolor L. Moench]

reached a 5.5-leaf growth stage reduced crop yield significantly [10]. In a three-year study, sea-

son-long competition from common waterhemp (now synonymous with tall waterhemp [5])

reduced corn yield by 74 and 11% in the second and third years, respectively [11]. Seed yield of

soybean [Glycine max L. Merr] was reduced from interference of common waterhemp at the

VE, V2-V3, and V4-V5 emergence timings of the crop [12].

Previously, Amaranthus species such as Palmer amaranth and spiny amaranth (A. spinosus
L.) biotypes from Mississippi, USA have been reported to be resistant to ALS inhibitors

[13,14]. In a Mississippi statewide survey for herbicide resistance to ALS inhibitors, a popula-

tion each of redroot pigweed and tall waterhemp survived pyrithiobac (a PTB herbicide) at a

1X labeled rate. The objectives of this research were to a) characterize the magnitude of resis-

tance to pyrithiobac; b) determine cross resistance to selected ALS inhibitors; and c) elucidate

the physiological and molecular mechanism(s) of resistance in the redroot pigweed and tall

waterhemp populations. Whole plant dose response experiments with multiple ALS inhibitors,
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ALS enzyme assays with pyrithiobac, and molecular sequence analysis of ALS gene constructs

were conducted.

Materials and methods

Seed collection, storage, germination, planting, growth, and herbicide

treatment conditions

In late summer of 2009 and 2010 (July and August), seed from more than 200 populations

comprising various pigweed species (Palmer amaranth, redroot pigweed, spiny amaranth, and

tall waterhemp) was collected across the state of Mississippi from agronomic fields and non-

crop areas, air dried, cleaned, and stored at 0 to 10 ˚C until further use. For each population,

seed from 5 to 10 plants within a 10 m circle was combined, maintaining a distance of at least

1.6 km between populations.

Seeds of wild type/susceptible redroot pigweed (RRPW-S) (Azlin Seed Services, Leland,

MS, USA), wild type/susceptible tall waterhemp from a wooded area (TW-S, Stoneville,

Washington County, MS, 33.44457 N, -90.90238 W), ALS inhibitor-resistant redroot pigweed

(RRPW-R, railroad tracks, Jasper County, MS, 31.88658 N, -88.98182 W), and ALS inhibitor-

resistant tall waterhemp (TW-R, soybean [Glycine max (L.) Merr.], Monroe County, MS,

33.72475 N, -88.44074 W) populations were planted at 1-cm depth in 50-cm by 20-cm by

6-cm plastic trays with drainage holes containing a commercial potting mix (Metro-Mix1

360, Sun Gro Horticulture, Bellevue, WA, USA). Two weeks after emergence, seedlings were

transplanted into 6-cm by 6-cm by 6-cm pots containing the above potting mix. Trays and

pots were maintained in a greenhouse set to 25/20 ˚C day/night, 12-h photoperiod under natu-

ral sunlight conditions supplemented with high pressure sodium lights providing 400 μmol

m−2 s−1 of light intensity. Plants were fertilized once with a nutrient solution (Miracle-Gro,

The Scotts Company LLC, Marysville, OH, USA) containing 200 mg L-1 each of N, P2O5, and

K2O 1 wk after transplanting and sub-irrigated as needed, thereafter.

All herbicide treatments were applied with a moving nozzle track sprayer (Devries

Manufacturing, Inc., Hollandale, MN, USA) equipped with 8002E nozzles (Spraying Systems

Co., Wheaton, IL, USA) delivering 190 L ha-1 at 280 kPa to plants that were 10-cm tall and at

the four- to six-leaf stage. Above ground shoot tissue was collected 3 weeks after treatment,

dried in an oven at 60 ˚C for 72 to 96 h, and weighed. Dry shoot weights are expressed in

terms of percent of nontreated control (no herbicide check). All studies were conducted from

2017 to 2018 at the Jamie Whitten Delta States Research Center of USDA-ARS in Stoneville,

MS, except partial DNA sequencing performed at University of Illinois, Urbana, IL.

Pyrithiobac dose response and cross resistance

Plants of RRPW-R and TW-R were treated with pyrithiobac (0, 0.055, 0.11, 0.21, 0.43, 0.85.

1.7, 3.4, and 6.8 kg ai ha−1) (Staple1LX, FMC Corp., Wilmington, DE, USA), imazaquin (0,

0.14, 0.28, 0.56, 1.12, 2.24, 4.5, 8.9, and 17.9 kg ai ha−1) (Scepter1, AMVAC Chemical Corp.,

Los Angeles, CA, USA), and trifloxysulfuron (0, 0.015, 0.031, 0.062, 0.12, 0.25, 0.5, 1.0, and 2.0

kg ai ha−1) (Envoke1, Syngenta Crop Protection, Greensboro, NC, USA). RRPW-S and TW-S

plants were also treated with the same herbicides, but at the following rates: pyrithiobac (0,

0.002, 0.007, 0.03, 0.11, and 0.43 kg ha−1), imazaquin (0, 0.002, 0.009, 0.04, 0.14, and 0.56 kg

ha−1), and trifloxysulfuron (0, 0.0001, 0.0005, 0.002, 0.008, and 0.031 kg ha −1). The respective

rates of the various herbicides used represent 0, 1/2X (pyrithiobac), 1X, 2X, 4X, 8X, and 16X

(imazaquin and trifloxysulfuron) field rates for the resistant and 0, 1/64X, 1/16X, 1/4X, 1X,

and 4X for the susceptible populations. A nonionic surfactant (Induce, Helena Chemical Co.,

PLOS ONE ALS resistant redroot pigweed and tall waterhemp

PLOS ONE | https://doi.org/10.1371/journal.pone.0235394 June 29, 2020 3 / 13

https://doi.org/10.1371/journal.pone.0235394


Collierville, TN, USA) was included with all herbicide treatments at 1% v/v. There were five

to eight replications per treatment, each replication representing a single plant, and all experi-

ments were repeated once. Pyrithiobac, imazaquin, and trifloxysulfuron belong to PTB, IMI,

and SU herbicide families, respectively [1] and are labeled for postemergence weed control in

cotton (Gossypium hirsutum L.) (pyrithiobac and trifloxysulfuron), and soybean (imazaquin)

[15].

ALS assay

Plants of RRPW-R, RRPW-S, TW-R, and TW-S populations were grown as previously

described. ALS enzyme activity from 4- to 6-leaf plants was assayed in vitro using proce-

dures similar to previous descriptions [16,17]. Briefly, enzyme/protein was extracted from 4

g of fresh tissue of newly emerged leaves, bulked from 10 to 15 plants, by grinding under liq-

uid nitrogen. Each replication represented an independent extraction from a shoot sample.

Herbicide concentrations used to inhibit ALS enzyme activity were 0, 0.1, 1, 10, 100, and

1,000 mM of technical grade pyrithiobac. This assay measured acetoin that was formed

from acid decarboxylation of acetolactate. Background acetoin sources were included as

controls. The experimental lay out was a completely randomized, factorial design with three

replications per treatment (herbicide concentrations). The experiment was conducted two

times.

ALS sequence analysis

Tissue was collected from confirmed resistant and susceptible RRPW-R, RRPW-S, TW-R,

and TW-S plants. Genomic DNA was extracted from each sample following a modified

CTAB protocol [18] and quality checked on a Nanodrop 1000. The ALS gene was amplified

using primers specific to the 5’ and 3’ untranslated regions of both species (ALS-5UTR-F: 5’-
CTTCAAGCTTCAACAATG and ALS-3UTR-R: 5’-CCTACAAAAAGCTTCTCCTCTATAAG).

PCR reactions included approximately 100 ng DNA, 5 μL Taq polymerase (New England Bio-

labs, Ipswich, MA, USA), 1.0 mM MgCl2, 0.2 mM each deoxyribonucleotide triphosphate

(dNTP), and 0.1 μM of the forward and reverse primers. The thermocycler protocol was as

follows: denaturation for 5 min at 95 C; 34 cycles of 95 C denaturation for 30 s, 50 C primer

annealing for 30 s, and 72 C extension for 2 min; final extension step of 5 min at 72 C. Each

PCR product was run out on 1% agarose gel and the 2,065 bp band was excised and purified

from the gel using a QIAquick Gel Extraction Kit (QIAGEN Inc., Germantown, MD, USA).

The purified product was sequenced using an ABI BigDye Terminator v3.1 Cycle Sequencing

Kit (Applied Biosystems, Inc., Beverly, MD, USA) using the forward and reverse primers

(ALS-5UTR-F; ALS-3UTR-R) as well as a third primer to capture the middle of the ALS gene

(ALS-F2: 5’- GTATCTTTCTAGGTTGCCTAAACC). The sequenced products were then puri-

fied and electrophoresed on an ABI 3730xl Capillary DNA Analyzer by the W.M. Keck Center

at the University of Illinois. After trimming low-quality bases using Sequencher 5.4 software

(Gene Codes Corp., Ann Arbor, MI, USA), the sequences were aligned and analyzed using

CLC Sequence Viewer (QIAGEN Inc., Redwood City, CA, USA).

Statistical analysis

All experiments were conducted using a completely randomized design. Data were analyzed

by ANOVA via the PROC GLM statement using SAS software (version 9.2, SAS Institute, Inc.,

Cary, NC, USA). No significant experimental effect was observed in repeated experiments;

therefore, data from experiments were pooled. Nonlinear regression analysis was applied to fit
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a sigmoidal 3 parametric logistic curve of the form:

y ¼ a=ð1þ ðx=x0Þ
b
Þ ð1Þ

where, a is the upper response limit, x0 is the GR50 (herbicide dose required to cause a 50%

reduction in shoot dry weight of test plants) or I50 (herbicide concentration required to cause a

50% reduction in ALS enzyme activity), and b is the slope of the curve to relate effect of herbi-

cide dose and concentration, x, on growth of Amaranthus plants and ALS activity, y, respec-

tively. The herbicide dose range has been represented in log form for better visualization of

response. Equation parameters were computed using SigmaPlot (version 11.0, Systat Software,

Inc., San Jose, CA 95110).

Results

Pyrithiobac dose response and cross resistance

Whole-plant dose response of RRPW-S and RRPW-R populations to pyrithiobac, imazaquin,

and trifloxysulfuron is represented in Figs 1–3, respectively. The GR50 values (± confidence

intervals, CI) of the RRPW-S and RRPW-R populations for pyrithiobac, imazaquin, and tri-

floxysulfuron were 0.004±0.001, 0.005±0.001, and 0.0001±0.0 kg ha-1, and 6.2±1.4, 17.5±3.6,

and 0.09±0.005 kg ha-1, respectively. Thus, the R/S values of the RRPW-R population were

1476, 3500, and 900 for pyrithiobac, imazaquin, and trifloxysulfuron, respectively.

Whole-plant dose response of TW-S and TW-R populations to pyrithiobac, imazaquin, and

trifloxysulfuron is represented in Figs 4–6, respectively. The GR50 values (±CI) of the TW-S

Fig 1. Pyrithiobac dose response on shoot dry weight reduction of ALS-inhibiting herbicide-resistant (RRPW-R)

and -susceptible (RRPW-S) Amaranthus retroflexus populations from Mississippi 3 wk after treatment. Vertical

bars represent standard error of mean.

https://doi.org/10.1371/journal.pone.0235394.g001
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Fig 2. Imazaquin dose response on shoot dry weight reduction of ALS-inhibiting herbicide-resistant (RRPW-R)

and -susceptible (RRPW-S) Amaranthus retroflexus populations from Mississippi 3 wk after treatment. Vertical

bars represent standard error of mean.

https://doi.org/10.1371/journal.pone.0235394.g002

Fig 3. Trifloxysulfuron dose response on shoot dry weight reduction of ALS-inhibiting herbicide-resistant

(RRPW-R) and -susceptible (RRPW-S) Amaranthus retroflexus populations from Mississippi 3 wk after

treatment. Vertical bars represent standard error of mean.

https://doi.org/10.1371/journal.pone.0235394.g003
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Fig 4. Pyrithiobac dose response on shoot dry weight reduction of ALS-inhibiting herbicide-resistant (TW-R) and

-susceptible (TW-S) Amaranthus tuberculatus populations from Mississippi 3 wk after treatment. Vertical bars

represent standard error of mean.

https://doi.org/10.1371/journal.pone.0235394.g004

Fig 5. Imazaquin dose response on shoot dry weight reduction of ALS-inhibiting herbicide-resistant (TW-R) and

-susceptible (TW-S) Amaranthus tuberculatus populations from Mississippi 3 wk after treatment. Vertical bars

represent standard error of mean.

https://doi.org/10.1371/journal.pone.0235394.g005
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and TW-R populations were 0.09±0.02, 0.012±0.007, and 0.0005±0.0 kg ha-1, and 4.6±0.82,

11.4±2.7, and 1.3±0.26 kg ha-1 of pyrithiobac, imazaquin, and trifloxysulfuron, respectively.

Thus, the R/S values of the TW-R population for pyrithiobac, imazaquin, and trifloxysulfuron

were 51, 950, and 2600, respectively.

ALS assay

Response of ALS from RRPW-R and RRPW-S to pyrithiobac is represented in Fig 7. I50 values

(±CI) of RRPW-S and RRPW-R populations for pyrithiobac were 0.062±0.015 and 208.33

±12.4 μM, indicating that the ALS enzyme of the RRPW-R population is 3360-fold more resis-

tant to pyrithiobac than the RRPW-S population under our experimental conditions. Response

of ALS from TW-R and TW-S to pyrithiobac is represented in Fig 8. The TW-R population

was 1214-fold resistant to pyrithiobac compared to the TW-S population, with the I50 values

(±CI) for pyrithiobac of TW-R and TW-S populations being 87.4±10.5 and 0.072±0.014 μM,

correspondingly.

ALS sequence analysis

Summary of results from sequencing of the ALS gene is presented in Table 1. Sequences for

RRPW-S (MT495631), RRPW-R (MT495632), TW-S (MT495633), and TW-R (MT495634)

have been submitted to GenBank. All plants, five each, of RRPW-R and TW-R populations

had the same point mutation at position 574 of the ALS gene leading to substitution of trypto-

phan (W) residue with a leucine (L) residue. All plants were homozygous for the above substi-

tution, except one plant of the RRPW-R population. The RRPW-S and TW-S plants were

Fig 6. Trifloxysulfuron dose response on shoot dry weight reduction of ALS-inhibiting herbicide-resistant

(TW-R) and -susceptible (TW-S) Amaranthus tuberculatus populations from Mississippi 3 wk after treatment.

Vertical bars represent standard error of mean.

https://doi.org/10.1371/journal.pone.0235394.g006
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Fig 7. Pyrithiobac dose response ALS enzyme activity of ALS-inhibiting herbicide-resistant (RRPW-R) and

-susceptible (RRPW-S) Amaranthus retroflexus populations from Mississippi. Vertical bars represent standard

error of mean.

https://doi.org/10.1371/journal.pone.0235394.g007

Fig 8. Pyrithiobac dose response on ALS enzyme activity of ALS-inhibiting herbicide-resistant (TW-R) and

-susceptible (TW-S) Amaranthus tuberculatus populations from Mississippi. Vertical bars represent standard error

of mean.

https://doi.org/10.1371/journal.pone.0235394.g008
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homozygous for the wildtype allele (W) at the 574 position. All ALS residues with known

mutations leading to evolved resistance to ALS-inhibiting herbicides, including A122, P197,

A205, D376, R377, W574, S653, and G654, were sequenced and analyzed, but only the W574L

substitution was detected in the RRPW-R and TW-R populations.

Discussion

Previously, redroot pigweed accessions/biotypes/populations resistant to one or more ALS-

inhibiting herbicides, including those evaluated in this research, have been reported from

Brazil, Canada, China, Germany, Israel, Italy, Serbia, and the USA [5,19–21]. The resistance

level of the RRPW-R population to pyrithiobac, 1476-fold, is higher compared to resistance

factors of 3 to 71 [19] and 7 to 38 [20] reported earlier for redroot pigweed from Brazil. The

resistance index of 900 to trifloxysulfuron in the RRPW-R population was higher compared to

redroot pigweed populations from Brazil that exhibited R/S values of 23 to 58 in 2014 [19] and

339-fold levels reported in 2019 [20]. The 2019 ALS-inhibiting herbicide resistant redroot pig-

weed populations from Brazil were also multiple resistant to Photosystem II (PSII) inhibitors

[20]. Resistance levels to pyrithiobac in redroot pigweed from other parts of the world have

not been clearly documented.

Resistance to imazaquin in redroot pigweed populations has been confirmed in several

states in the USA including Arkansas, Maryland, and Pennsylvania (multiple resistance to PSII

inhibitors) [5] in addition to our report of 3500-fold resistance. Resistance to imazethapyr, an

IMI herbicide like imazaquin, in a redroot pigweed biotype from Italy was 1900-fold, with R/S

values ranging between 34 and>500 for several ALS inhibitors [18]. Resistance factors for

imazethapyr ranged from 33 to 168 in five redroot pigweed populations from Ontario, Canada

[21]. Two of these populations were also cross resistant to thifensulfuron, an SU herbicide, at

270- and 1104-fold higher than a susceptible population.

The ALS enzyme of the RRPW-R population was highly insensitive to pyrithiobac com-

pared to the RRPW-S population, 3360-fold resistant, indicating an altered ALS enzyme as the

mechanism of resistance. DNA sequencing analysis provided further evidence corroborating

the above mechanism, wherein, a point mutation leading to the replacement of a TGG codon

with a TTG codon at the 574 position of ALS in the RRPW-R population resulted in the

Table 1. DNA codons and corresponding amino acids at eight loci on the ALS gene, known to have point mutations leading to an altered ALS enzyme, in popula-

tions of Amaranthus retroflexus (RRPW-R and RRPW-S) and A. tuberculatus (TW-R and TW-S) that are resistant and susceptible to selected ALS-inhibiting

herbicides.

Population Mutation loci

A122 P197 A205 D376 R377 W574 S653 G654

Codon

RRPW-S GCA CCC GCT GAT CGA TGG AGC GGT

RRPW-R GCA CCC GCT GAT CGA TTG AGC GGT

TW-S GCT CCT GCT GAT CGA TGG AGC GGT

TW-R GCT CCT GCT GAT CGA TTG AGC GGT

Amino acida

RRPW-S A P A D R W S G

RRPW-R A P A D R L S G

TW-S A P A D R W S G

TW-R A P A D R L S G

a Amino acid symbols and corresponding amino acids: A, alanine; D, aspartic acid; G, glycine; L, leucine; P, proline; R, arginine; S, serine; W, tryptophan.

https://doi.org/10.1371/journal.pone.0235394.t001
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substitution of the amino acid tryptophan with leucine. Similar results were reported in an

ALS-inhibiting herbicide resistant redroot pigweed biotype from Italy [5]. In a resistant red-

root pigweed population from Ontario, Canada, three mutations A122T, A205V, and W574L,

were identified [22]. Resistance-endowing mutations in the ALS gene are partially dominant

at the minimum, and the resistant gene is spread by seed and pollen due to nuclear-regulated

expression [4]. In addition, there has been no fitness cost regarding growth and reproduction

in ALS inhibitor-resistant weed species in the absence of selection pressure from herbicides

[4].

In addition to the TW-R population characterized here, several occurrences of resistance

to ALS-inhibiting herbicides in tall waterhemp have been reported from several states in the

USA and the Canadian province of Ontario [5]. Almost all these cases involve cross resistance

among several herbicides within or across the five families of ALS-inhibiting mode of action

and/or multiple resistance to other herbicidal modes of action [5]. Commonly cited examples

include resistance to imazethapyr and thifensulfuron in a biotype from Kansas [23] and a bio-

type from Illinois with >1000-fold resistance index to imazethapyr and cross resistance to thi-

fensulfuron and flumetsulam [24]. Another report on an Illinois population documented a

130-fold resistance index to imazethapyr [25]. Other reports of tall waterhemp populations

that are resistant to ALS-inhibiting herbicides are known but are not summarized herein.

The ALS enzyme from the TW-R population exhibited >1200-fold resistance to pyrithio-

bac compared to the TW-S population. Similarly, ALS of an Illinois tall waterhemp population

was>1900-fold more resistant to imazethapyr than a sensitive population [25]. As discussed

earlier, such a response most likely involves an altered ALS enzyme. DNA sequencing analysis

indicated presence of a point mutation at the 574 position of TW-R ALS leading to a substitu-

tion of the tryptophan residue at that location with a leucine. Similar results were reported in

an ALS-inhibiting herbicide resistant biotype from Illinois [24]. In other resistant tall water-

hemp populations from Illinois, mutations leading to a substitution of serine with threonine

or asparagine at position 653 in ALS that imparted resistance to imazethapyr and thifensul-

furon were confirmed [26].

Tall waterhemp is generally considered a wetland weed [27], whereas Palmer amaranth, a

close ‘cousin’, traditionally prefers dry and semi-arid environments [28]. However, present

day populations of both species have adapted to diverse environments across the North and

South American continents. Both weed species are dioecious in nature, i.e. male and female

reproductive organs form on different plants. Endowed with the ability to cross pollinate

within [29] as well as across species [14,30–32] transferring herbicide-resistance traits, a fast

growth rate, C4 plant physiology enabling adaptability to hot and dry conditions, and high

fecundity, tall waterhemp and Palmer amaranth have established themselves as two of the

most troublesome weeds to manage in row crop production systems. Increasing their manage-

ment challenge multifold is the ability of tall waterhemp and Palmer amaranth to evolve multi-

ple resistance to more than one unique herbicide modes of action [5]. As an indirect result,

other summer annual weed species such as redroot pigweed have become lesser management

challenges or have disappeared from row crop growing areas.

Conclusions

Redroot pigweed and tall waterhemp populations from Mississippi that are highly resistant to

pyrithiobac and cross resistant to imazaquin and thifloxysulfuron, all ALS-inhibiting herbi-

cides, have been confirmed. The mechanism of resistance in both weed species has been char-

acterized to be due to an altered ALS enzyme based on ALS enzyme assays and sequencing of

the respective ALS gene. Public and private land managers must implement a combination of
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chemical, mechanical, and cultural weed management strategies wherever and whenever feasi-

ble to manage herbicide resistant populations such as RRPW-R and TW-R.
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