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In the last decade vast data sets are being generated in biological and medical studies. The challenge lies in their summary,
complexity reduction, and interpretation. Correlation-based networks and graph-theory based properties of this type of networks
can be successfully used during this process. However, the procedure has its pitfalls and requires specific knowledge that often lays
beyond classical biology and includes many computational tools and software. Here we introduce one of a series of methods for
correlation-based network generation and analysis using freely available software. The pipeline allows the user to control each step
of the network generation and provides flexibility in selection of correlationmethods and thresholds.The pipeline was implemented
on publishedmetabolomics data of a population of human breast carcinoma cell lines MDA-MB-231 under two conditions: normal
and hypoxia. The analysis revealed significant differences between the metabolic networks in response to the tested conditions.
The network under hypoxia had 1.7 times more significant correlations between metabolites, compared to normal conditions.
Unique metabolic interactions were identified which could lead to the identification of improved markers or aid in elucidating
the mechanism of regulation between distantly related metabolites induced by the cancer growth.

1. Introduction

Advanced technology methods for high-throughput bio-
logical studies, such as metabolomics and transcriptomics
developed during the last decades, are successfully applied
in biomedical research [1], plant studies [2], and micro-
biology [3]. The wide use of these technologies led to
the accumulation of data on biological processes at their
multiple levels (metabolic, genetic, enzymatic, physiological,
phenotypical, etc.) and called for the development of tools
to ease the visualization, analysis, and interpretation of an
often complex and multidimensional matrix. Furthermore,
the readily available “omics” technologies in biological lab-
oratories prompted biologists to enter a field often needing
extensive computational knowhow and led to the increased
interest in biological interaction networks [4]. Thus, in the

recent decades networks describing cellular processes were
generated for human [5], yeast [6], and plants [7].

Networks can be presented as graphs, that is, a set of
vertices (V) connected by edges (E), and consequently can
be analyzed using graph theory, an approach that has been
increasingly implemented in biological studies during the
last decade. It is commonly accepted that graph theory as a
scientific discipline was first used by the Swissmathematician
Leonhard Euler in 1735-1736, tackling the Königsberg bridge
problem. Later, in the 19th and 20th centuries, graph theory
was formulated and eventually introduced for applied fields,
such as physics, computer science, and biology [8]. Today,
graph theory consists of many tens of basic definitions and
properties [9]. The understanding of the biological networks
lies in the nature of the vertices and edges between them; that
is, the vertices may represent one of the components of the
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three major molecular levels: genes, proteins, or metabolites,
while the edges between them represent gene coexpression,
protein-protein interactions, or biochemical conversions of
metabolites, respectively [10]. However, molecular networks
are not delimited to illustrate single-level component inter-
actions. They can also show cross-level interactions. Alter-
natively, and perhaps a little counterintuitive, a network may
incorporate vertices representing a set ofmetabolic reactions,
where the connection between a pair of vertices is established
if the reactions share one ormultiplemetabolites used or pro-
duced by these reactions [11, 12]. In other networks, vertices
represent a community of molecular components, especially
used with very vast data sets (>1000 of components) such as
in weighted gene coexpression network analysis (WGCNA).
Here, a single vertex delineates a module of genes and edges
between vertices represent the correlation between them.
This allows reducing the complexity of the network and
simultaneously retains most of the information used for
the interpretation of the gene coexpression results [13]. In
simple words, vertices and edges represent the information
as defined by the creator/user of the network.

In the last decade, correlation-based network analysis
(CNA) has become a popular data-mining tool for visualizing
and analyzing biological relationships within large data sets
[13, 14]. In this type of networks, vertices and edges rep-
resent molecular elements (e.g., metabolites or genes) and
their correlation coefficient (strength and sign), respectively
[10, 15, 16]. Edges inferred by correlation analyses reflect a
coordinated behavior between vertices across the data set
(treatments, genotypes, conditions, and time). The type of
correlation has to be selected based on the parametrical
distribution of the data. In large population studies, data has
to be tested for normality using existing tests, for example,
the Shapiro-Wilk test. The Pearson correlation should be
applied to normally distributed data, while Spearman’s rank
correlation should be used for data violating the assumption
of normal distribution. CNA was successfully applied to
various biological systems; it revealed, for example, metabolic
markers related to plant growth and biomass in Arabidopsis
thaliana recombinant inbred lines (RIL) and introgression
lines (IL) [17, 18], the role of geneCol5a2 inmyocardial infarc-
tion [19], effect of hypoxia on tumor cell biochemistry [20],
and recently, identification of genetically based mechanism
of the regulation of amino acid metabolism [2].

Graph theory defines a number of network properties
that allow successful analysis and interpretation of correlation
networks (CN). These properties are a set of measures that
describe the graph topology from different vantage points.
CNs are undirected graphs, reflecting the coordinated behav-
ior of two or more adjacent vertices (connected vertices) and
the biological components they represent and not the effect of
one vertex/component onto another, that is, a directed net-
work. Properties that may have biological significance have
been reviewed by Toubiana et al. [10]; they include (a) vertex
degree: the number of edges incident on a given vertex [21],
(b) centrality score: reflecting the number of shortest paths
between a vertex and any other vertex in the network, (c)
network diameter: themaximal shortest path between any two
vertices in the graph, (d) network density: the ratio of existing

edges to the number of all possible edges of a network,
(e) vertex betweenness centrality: the relative number of the
shortest paths between any two vertices that pass via a specific
vertex, and (f) modules: subgraphs, within a global network
characterized by higher connectivity (biologically interpreted
as possible tighter coordination) between their components
compared to other regions of the network. The analysis of
these modules within the obtained network helped in the
prediction of diseases [22, 23]. In this contribution we aim at
providing an easy-to-implement pipeline for the generation
of CNs for biologists without extensive computational skills.
To do so, we are demonstrating the potential use of CNs in
cancer studies.

Nowadays, there exist a number of software tools that
allow researchers to generate networks, visualize them, and
analyze their structure, via the calculation of a number of
network properties, based on their own experimental data.
Commonly known tools are Cytoscape [24], Gephi [25], and
iGraph [26]. Each software has its benefits and disadvantages.
For example, while iGraph requires programming skills and
knowledge of the R programming language syntax, graphical-
user-interface (GUI) based programs, such as Gephi and
Cytoscape, do not, simplifying the interaction with the user.
On the other hand, while script-based programs allow for the
extension of existing functions and integration of compatible
libraries, increasing the number of potential properties to be
calculated, GUI programs are bound to the functionalities of
the version of the software the researcher is using. However,
Cytoscape andGephi both offer a greater and easier-to-use set
of visualization tools for networks, whereas the visualization
functionalities of iGraph are rather limited and difficult to
handle. Cytoscape allows for the integration of externally
developed plugins, exerting functionality as desired by its
developer. However, this option requires knowledge of the
Java programming language and an understanding of how to
interface it with the Cytoscape software.

The current proposed stepwise pipeline allows the user
to control each step of the network creation, as it provides
flexibility in selection of correlation methods and thresholds
and describes easy-to-handle options to analyze the network
topology. The pipeline works irrespective of the nature of the
data set and can be implemented by a combined use of the
freely distributed Apache OpenOffice software (http://www
.openoffice.org/), built-in packageswithin theR-environment
[27], and Cytoscape [24].

2. Method

The construction of correlation-based networks starts form
the calculation of the pairwise correlation coefficients
between any two pairs of vectors of a given data set. One
of the easiest ways to complete this calculation in big sets
of data is to exploit the freely available R-software. There are
several packages developed for correlation analysis under the
R-environment. It is very important for the output matrix
to select the proper type of correlation coefficient (Pearson,
Spearman, Kendal, etc., represented as the letter “r”) and its
corresponding thresholds (r and p). We recommend using
the “psych” package under the R-environment [27, 28]. This
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package allows calculation of two diagonal matrices: (1) a
symmetric diagonal r-matrix and (2) a symmetric diagonal
p-matrix, where the lower triangle stores the 𝑝-values and
the upper triangle the multiple hypotheses corrected 𝑝-
values, corrected either by the Bonferroni correction or
by applying a false discovery rate (FDR) correction. The
obtained matrix with both r- and raw/adjusted 𝑝-values can
be then transformed to the table view and exported to any
spreadsheet software for a supervised selection of significant
correlation coefficients.The thresholds of significance should
be selected in respect to the nature and size of the data
and considering the general suggestions as described in the
introduction and elsewhere [29]. The selected significant
correlation values can be easily converted to a table, listing
in three columns the vertices that are adjacent to each other.
This table is subsequently used as a template to illustrate the
network using Cytoscape. We have chosen Cytoscape out of
the list of network software as it was specifically developed
for biological data, because of its intuitively understandable
interface, wide range of visualization options, and available
additional plugins for calculations of the main network
properties. The method’s workflow is presented in Figure 1.

2.1. Method Pipeline
2.1.1. Download R-Environment and Required R-Packages.
To start the workflow, first download and install the latest

version of R-environment from the following website:
https://www.r-project.org/. For the processes described here
two R-packages will be used: “psych” [28] and “reshape2”
[30]. Both packages are freely available for downloading via
the R-environment window. As mentioned above, the R-
environment is a freely available powerful statistical soft-
ware often used to analyze biological data. Its benefits
stem from the integration of various built-in functions and
libraries/packages, supplemented by its ability to complement
these by numerous externally developed packages and the
freedom to combine them as necessary. Often, different
packages offer different functions tackling the same task. For
example, to compute correlation coefficients, one may use
the core built-in function “cor” or the “rcorr” function of
the Hmisc-package [31]. For the current work we have cho-
sen specifically the “psych” package to perform correlation
analysis as it conveniently computes the 𝑟 coefficients and its
corresponding 𝑝 values and also performs post hoc tests to
correct for multiple hypothesis testing (MHT). The package
“reshape2” allows converting a matrix into a table and was
chosen for this work for its easy implementation.

2.1.2. Adjusting the AllocatedMemory. Before beginning with
the actual analysis, we recommend checking for the size of
virtual memory available for R and Cytoscape, considering
the potential large size of a data set. To do so for R under
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Windows OS type memory.limit() and if the result is smaller
than the potential amount of your data set, increase the
memory by typing memory.limit(size = 4096). This step
allocates 4096 MB, equivalent to 4GB (maximal number for
32GB systems) of virtual memory, to the R-software. Unix-
based OS’s do not offer this function, as their virtual memory
management is dynamic, adjusting itself to new and existing
processes.

Similarly to the R-software the user may increase the
memory allocated to Cytoscape, if, for instance, the size of
a network is too large. Cytoscape is a Java-based software, so
the first step here will be to access the Configure Java option
via the Programs list. Next, select the Java tab in the displayed
window, click on View button, and type -Xms4096m into
the Runtime parameters line to allocated 4GB of memory to
the Cytoscape software. The amount of allocated memory is
editable.

2.1.3. Producing the Matrices (the R Code Necessary to Com-
plete the Steps Described below Can Be Found in Supplemen-
tary Figure 1). After the size of virtualmemory is set, the user
can start the pipeline according to the protocol presented in
Supplementary Figure 1 available online at http://dx.doi.org/
10.1155/2016/8313272 .The described protocol represents a set
of consequent commands (with an exception to the parallel
computation of the r- and 𝑝-valuematrices using the “psych”
package), where the execution of one step is dependent on the
former.

The output of the executed protocol will provide two
separate files that can be opened in spreadsheet software.
One of the files, “r table.csv,” will represent a table view of
the correlation matrix, and the second file, “p table,” will
represent the same table where r-values will be replaced by
the correspondent 𝑝 values. Probably the single disadvantage
of thismethod is the time of calculation that strongly depends
on number of the variables for the analysis and can be
problematic for large (more than 500 variables) data sets.
Nevertheless, the vast majority of metabolomics data sets
does not exceed this amount of variables and usually is much
smaller. Thus, the reader should not run into problems when
executing the above code.

The obtained files “r table.csv” and “p table.csv” can be
opened in any spreadsheet software (in our case OpenOffice).
The next step is to remove the first column in each file and
copy the rest to a newmultisheet file on separate sheets for the
r-values and the 𝑝-values, respectively. This step will provide
two tables with two identical columns with the names of the
variables, for example, metabolites/genes, and different third
column with r- and 𝑝-values, respectively. At this stage the
correlation threshold has to be selected.

2.1.4. Selection of Significant Interactions and Arrangement
of the Data to the Network Format Spreadsheet Software.
Correlation coefficients, r, are the determining elements in
CN construction; the threshold of acceptable 𝑟-value range
and the threshold of its statistical significance will greatly
affect the output of the network and its interpretation. The
significance of a correlation is a two-factor concept. The
first factor, the correlation coefficient (r), is expressed as

a value ranging from −1 to 1, where positive and negative
values represent a relation, alike or inverse, between the
changes in the measure of the two variables. The magnitude
of the coefficient reveals the strength of this relationship.
However, the reliability of the model also depends on a
second factor: the probability (p) of the detected r-values,
reflecting a true relation. This value ranges from 0 to 1
and depends to a great extent on the sample size [32] but
also on the experimental setup and the biological system of
study. The selection of the threshold for both values depends
largely on the researcher. It is trivial that 𝑟 = 1 (perfect
positive correlation) or 𝑟 = −1 (perfect negative correlation)
represent strong coordinated behaviors, while 𝑟 = 0 shows
the absence of a relation between the variables. But what
can be said about intermediate r’s? The “rule of thumb”
suggests that there is no absolute r-threshold and different
scientific disciplines apply different r-value thresholds. For
example, in biology, thresholds from as low as |±0.3| have
been proposed to be relevant, for example, for metabolic
data in tomato introgression lines seeds and fruits [33], while
in physics, an r-value lower than |±0.9| is often considered
insignificant. Usually r ≥ |±0.5| is considered as “strong” by
most of researches in biological systems [34]. The 𝑝-value
that reflects significance of a correlation is usually accepted
at three levels: 0.05, 0.01, and 0.001 [32]. However, since
correlation analysis is applied on large data sets, 𝑝-values
should usually be corrected by one of the post hoc tests for
MHT, such as the Bonferroni correction or the false discovery
rate (FDR) method, with the aim of avoiding false positives.

After both parameters of significance are decided, create
a new sheet and copy the first two columns from any of the
sheets (they are identical). In the first cell of the third column
input the following formula:

= if (and (abs (𝑋) > 𝑅, 𝑌 < 𝑃) , 1, 0) . (1)

In this formula 𝑋 is the value of the 1st cell in the “r values”
sheet; 𝑅 is the selected critical r-value; 𝑌 is the value of the 1st
cell in the “p values” sheet; 𝑃 is the selected critical 𝑝 value.
Expand this formula to the whole table. This will provide an
adjacency list that can be easily converted to the network
format for Cytoscape software. For this, input in the next
column following formula:

= if (𝑋 = 1, concatenate (𝑌, “ − ”, 𝑍) , “ ”) . (2)

In this formula 𝑋 is a number of 1st cell of the obtained
column (usually 3rd) on the current sheet; 𝑌 and 𝑍 are
the numbers of 1st cell in the 1st and 2nd column on the
current sheet, respectively. At this stage copy 1st, 2nd, and 4th
columns as the values to the new sheet, filter out and remove
rows with empty last cell, and save the obtained fully filled
three-column table in .txt tab delimited format.

This file can be imported as a network to the Cytoscape
software and analyzed using the built-in NetworkAnalyzer
plugin. To import the file run the Cytoscape and select
“import” from the main menu bar, then locate the previously
saved three-column file in .txt format, and import it as
“table” (Supplementary Figure 2). To run the plugin locate
NetworlAnalyzer in the Tool menu and execute “Analyze
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Network” (Supplementary Figure 3).The pluginwill calculate
the degree of vertices, vertex betweenness centrality, vertex
clustering coefficient, and edge betweenness. The obtained
parameters will be automatically added as attributes of
vertices and edges of the network and can be visualized
by customizable view options, including color, size, shape,
and thickness. Additionally, NetworkAnalyzer can check if a
vertex distribution of a network fits the power law, calculates
themain properties of the network topology, such as diameter
and global transitivity, and shows the average shortest path
and other useful parameters.

3. Results and Discussion

Hypoxia is one of the major features of solid tumors affecting
their development and treatment selection [35, 36]. The
simulation of hypoxia in cancer cells in vitro can be used
as a model study to understand the alteration of cancer
cell metabolism that supports tumor growth under hypoxic
conditions, the phenomena known as the “Warburg effect”
[20, 37–39].

In short, the experiment included MDA-MB-231 breast
adenocarcinoma cells that were incubated in 95% air and
5% CO2 at 37

∘C and 95% relative humidity and then were
transferred to normoxic (21% oxygen) conditions. After 24
hours cell culture was divided into two groups, and one
group was maintained under the normoxic condition, while
the second group was transferred to a specific vessel with
flow of gas containing 1% O2 and 5% CO2 balanced with N2
(hypoxic conditions).Next, GC-MSmetabolic profiling of the
two groups was performed [20].

Prior to network construction, we first elaborated the
published data, keeping uniquely identified metabolites only.
Considering the sample size (𝑛 = 30) and the relatively
large number of missing values in the data set, we decided
to use Spearman’s rank correlation with the thresholds 𝑟 ≥
| ± 0.7| and 𝑞FDR < 0.05. The applied procedure resulted
in two adjacent tables (control (c) and hypoxia (h)) (Supple-
mentaryData 1-2, control/hypoxia adjacent table resp. sheet)
that were loaded to Cytoscape and visualized as a network
(Figures 2(a) and 2(b), Supplementary Data 3). The simple
comparison of two graphs revealed that the normalmetabolic
network was smaller compared to the network under hypoxic
conditions. The differences in the number of vertices, V, were
not very high (V𝑐 = 19 versus Vℎ = 23, control versus hypoxia,
resp.), but the number of edges, 𝑒, differed significantly (𝑒𝑐 =
87 versus 𝑒ℎ = 144, control versus hypoxia, resp.).

In order to identify metabolites or metabolic interactions
specific to the hypoxic conditions, we used the “merge” tool
in Cytoscape, selecting the two data networks. The tool
gives multiple merging options visualizing either unique
or common edges between two (or more) networks (Sup-
plementary Data 3). The resulting merged graph displays
common links (the union, for this kind of comparisons
graph theory uses set-theory jargon). The comparison of the
original graphs with the merged one is done by the same
merging tool selecting the “difference” option and eventually
it generates a graph (difference graph) for each comparison

Table 1: The main properties of the networks with unique interac-
tions under control and hypoxia conditions, respectively.

Network name Density Diameter Transitivity
Unique interactions under
normal conditions (Figure 2(c)) 0.23 4 0.38

Unique interactions under
hypoxia conditions (Figure 2(d)) 0.36 3 0.63

based on unique edges and vertices of the selected condition.
The resulting difference graphs emphasize many condition-
specific relations between metabolites existing in the two
original networks (Figures 2(c) and 2(d)). The number of
vertices changed to V𝑐 = 16 and Vℎ = 22 for the control
and the hypoxic conditions, respectively, and number of
edges changed to 𝑒𝑐 = 27 and 𝑒ℎ = 84, respectively. Thus,
the gap (in folds) between the two 𝑒 values increased from
1.67 to 3.1. The increased number of edges under hypoxia
suggests the appearance of alternative metabolic routes to
sustain the cell metabolism. Hypoxia treatment is used to
mimic the conditions occurring in cancer cells because of
high “uncontrolled” growth rate. Here, the unique metabolic
relation identified could lead to the isolation of biochemical
steps/reactions or common regulatory mechanisms between
distantly related metabolites induced by the cancer growth
(hypoxia treatment). Eventually the potential to identify
markers defined as edges and not as vertices is significantly
higher; just consider that the potential number of edges in a
correlation (undirected) network with 𝑛metabolites can have
𝑛 ∗ (𝑛 − 1)/2 interactions.

We then applied the NetworkAnalyzer plugin to calculate
some of the topological properties of the networks such as
network density, diameter, and transitivity and vertex degree
and betweenness centrality (Tables 1, 2, and 3).

The results of the NetworkAnalyzer analysis of the net-
works topology suggested a reorganization of the metabolic
network under hypoxia. Thus, a smaller (3 versus 4, Table 1)
diameter, the longest shortest path between any two vertices
in the network, and a larger (0.63 versus 0.38, Table 1) transi-
tivity, the probability to form cliques in the network, suggest
that the reorganization of the metabolic network under
hypoxic conditions occurs via specific metabolites, namely,
Ala, creatinine, 2OG, Tyr, and citrate. They act as hubs
as they exhibit the greatest vertex degree and betweenness
centrality measures (Table 3). In contrast, the properties of
the network under normal conditions showed the topological
importance of lactate,Thr, andGABA inTable 2. Surprisingly,
lactate, the vertex with the highest betweenness centrality
under normal conditions (0.46, Table 2), is absent in the
hypoxia network (Figure 2(d)). This can be explained by
the fact that nonoxidative metabolism is induced under
stronger hypoxic conditions [20]. Alternatively, considering
that lactate production is an indicator of inhibited respiratory
[40], its absence in the correlation network under hypoxic
conditions can suggest a strong specific effect of hypoxia
on lactate irrespectively of other related metabolites. The
results of GC-MS analysis revealed almost 1.3 times increase
of lactate level under hypoxia compared to control conditions
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Figure 2: Correlation-based networks of metabolite data sets. (a) Original network under control conditions, (b) original network under
hypoxic conditions, (c) network of unique relationships under control conditions compared to hypoxic conditions, and (d) network of unique
relationships under hypoxic conditions compared to control conditions. Metabolic profiling of breast cancer cells under control and hypoxia
(30 samples each) was used for pairwise correlation analysis between metabolites and network-view production. The data used to generate
the network is from Kotze et al., 2013 [20]. Each vertex represents a metabolite; each edge represents a significant correlation between pairs
of metabolites across samples. Vertex colors reflect biochemical classes: amino acids and N-compounds (blue), sugars and sugar alcohols
(orange), and carboxylic acids (green). Vertex size reflects degree.

and support this suggestion [20]. Furthermore, the oxygen
deficient condition leads not only to the increased conversion
of glucose to lactate but also to the sharp suppression of citrate
production [41]. The results of the GC-MS showed almost
a twofold decrease in citrate levels under hypoxia compared
to the control conditions [20]. The replacement of lactate to
citrate in the metabolic network under hypoxic conditions,
the high centrality of citrate in the network according to
its vertex degree and betweenness centrality (Table 3), and
the appearance of the citrate-2OG edge suggest the shift

of citrate production from glucose oxidation to reductive
carboxylation of 2OG (Figures 2(c) and 2(d) andTable 3) [41].

Glycolytic activity is high in cancer cells under both
normal and hypoxic conditions. In the hypoxia network
glycolysis derived pyruvate is strongly correlated with a row
of biochemically related amino acids Ala, Asp, and Tyr, while
in the network under normal conditions these associations
were not detected (Figures 2(c) and 2(d)). Additionally,
the unexpected drop of the correlation between pyruvate
and GABA under hypoxia and the great centrality of Ala
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Table 2: The properties of the network of unique interactions
under normal conditions in the descending order according to
betweenness centrality. The compound class 1 represents amino
acids, 2 sugars and sugar alcohols, and 3 carboxylic acids.

Metabolite Compound class Degree Betweenness centrality
Lactate 3 10 0.460
Thr 1 8 0.255
GABA 1 7 0.224
Threitol 2 4 0.085
Putrescine 1 4 0.084
Met 1 3 0.065
Asp 1 3 0.015
Myo-inositol 2 3 0.015
Pyruvate 3 2 0.015
Fructose 2 2 0.000
Glucose 2 2 0.000
Glycerol 2 1 0.000
Lys 1 1 0.000
Malate 3 2 0.000
Tyr 1 1 0.000
Xylitol 2 1 0.000

Table 3: The properties of the network of unique interactions
under hypoxia conditions in the descending order according to
betweenness centrality. The compound class 1 represents amino
acids, 2 sugars and sugar alcohols, and 3 carboxylic acids.

Metabolite Compound class Degree Betweenness centrality
Ala 1 15 0.147
Creatinine 1 16 0.133
2OG 3 16 0.127
Tyr 1 13 0.113
Citrate 3 14 0.103
Pyruvate 3 11 0.060
Xylitol 2 11 0.037
Fructose 2 7 0.033
Threitol 2 6 0.010
Glycerol 2 8 0.006
Asp 1 8 0.005
Glucose 2 7 0.004
Met 1 6 0.004
Glu 1 7 0.003
Myo-inositol 2 7 0.003
Lys 1 4 0.001
Putrescine 1 3 0.001
GABA 1 1 0.000
Gly 1 1 0.000
Leu 1 2 0.000
Malate 3 3 0.000
Thr 1 2 0.000

in the hypoxia network should be noted. GABA can be
used in the transamination of pyruvate to produce alanine
and succinic semialdehyde. GABA also accumulates under

hypoxia in neurons of rats [42], and the present study shows
that the level of GABA increased 1.5 times under hypoxia
compared to control conditions [20]. Taken together these
results suggest the transamination of pyruvate toAla, possibly
via GABA. Alternatively pyruvate is converted to Ala via
alanine transaminase (ALT), involving Glu and 2OG (the
latter also exhibiting a high centrality in the network), which
act in a concerted action with aspartate transaminase (AST).
The AST/ALT ratio in the blood of a human or animal is
used in the diagnosis of liver damage or hepatotoxicity. By
emphasizing the tight interaction between pyruvate, Ala, and
Asp, our results likely show the metabolic reflection of a
toxic condition imposed on the cell by hypoxia. Last, Ala is
considered a marker of prostate [43] and breast [44] cancers
where it significantly accumulates. However, the results by
Kotze and coworkers did not reveal this in Ala level under
hypoxia. We hypothesize that the changes in content of
Ala might not be consistent between systems, while the
actual coordinated response of Ala with a few tightly linked
metabolites reflected within the network could potentially be
a better candidate.

4. Conclusions
The interpretation of the CNs shows the relevance of graph
theory in the analysis of biological data in general and
specifically in the works dedicated to metabolic and genetic
pathways. Implementing a network-based workflow using
previously published data, we show how the pipeline can
generate and visualize a network and how the network
analysis can be used in biological studies. The presented
pipeline aims at providing an easy to use but relatively
powerful tool for in silico analysis of experimental data.
The pipeline is not limited to metabolic data and can be
effectively applied to gene coexpression network analysis,
like the previously identified human disease-associated genes
[45], lethal genes combination in yeast, and others [46–
48]. This short essay exemplifies that the usage of CNs can
lead to biologically sound conclusions on metabolic pathway
regulation and original hypothesis generation without the
need for complex and capacity consuming approaches. That
said, CNs can be used as a part of top-down, complexity
reduction approach leading to insights in the search and
identification of marker genes or metabolites, respectively.
Having said that, we wish to emphasize that the quality of the
analysis more often than not depends on the design of the
experiment and the sampling strategy.
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