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ABSTRACT: We report a simple reductive amination protocol to
ligate two peptides, while simultaneously installing a β-turn mimic at
the ligation junction. This strategy uses commercially available
materials, mild chemical conditions, and a chemoselective ligation
reaction of unprotected peptide substrates accessed through standard
solid phase methods. This system was implemented in a designed β-
hairpin system, and biophysical analysis demonstrates effective mimicry
of the β-turn.

Chemical ligation methods have proven to be an enabling
technology in chemical biology.1 However, with the

notable exception of native chemical ligation,2 these chem-
istries typically leave behind a residual chemical functionality
that serves no purpose beyond connecting the two ligation
partners. In some cases it has been suggested that the residual
functionality can act as a mimic of an amide bond;3 however,
there are as yet no reports in the literature of a ligation
junction being designed to act as a mimic of a larger element of
protein structure. Herein we present a simple and synthetically
accessible ligation junction that enables the rapid and high-
yielding chemical ligation of two peptide fragments, and which
in doing so forms a mimic of a β-turn.
β-Turns are ubiquitous protein structural elements that play

a key role in protein folding and function.4,5 β-Turns comprise
four amino acid residues, labeled i to i+3, and are generally
defined by the presence of a hydrogen bond between the
amide carbonyl of residue i and the amide NH of residue i+3
(Figure 1a).6 This leads to a structure in which the protein
backbone is folded back on itself. These turns are often found
connecting secondary structure elements that interact with
each other, such as in β-hairpins, where the two strands of an
antiparallel β-sheet are linked by a β-turn. Modification of
these turns has been proven key for the development of
antimicrobial peptides7 and protein−protein interaction
inhibitors.8 β-Turns have therefore been the focus of previous
efforts at developing chemical mimics of their three-dimen-
sional structure.9,10 Previous examples of β-turn mimics either
have been accessed through multistep organic syntheses11 or
are based on simple building blocks12 that lack structural
preorganization, limiting their utility in peptide and protein
science.

We have made use of the established β-hairpin tryptophan
zipper (TrpZip1)13 as a model system for these studies.
TrpZip1 is a designed 12 residue amino acid sequence that
folds into a soluble, monomeric hairpin structure in solution.
Importantly, TrpZip1 has been extensively characterized in
terms of its 3D structure and thermodynamics of folding, and
has been shown to contain a β-turn, modification of which can
alter the stability of the peptide fold. Therefore, the TrpZip1
scaffold is an ideal base structure through which to investigate
the conformational and thermodynamic effects of alteration to
the β-turn.
In considering mimics of the β-turn structure, we reasoned

that ortho-substituted aromatic systems would be a good
starting point to approximate the geometry of the peptide
chain and facilitate a hydrogen bond analogous to that between
the i and i+3 positions in a canonical β-turn. We further
reasoned that a reductive amination reaction between an
acylhydrazine and an aldehyde could be effected under mild,
chemoselective conditions and would yield an acylhydrazine
moiety capable of forming hydrogen bonding interactions.
These considerations led us to investigate the non-natural
amino acid residue present in peptide 1 (magenta region,
labeled “BTM”, Figure 1b). Importantly, the precursors to this
unit are synthetically accessible through standard peptide
chemistry from commercially available materials. Simple
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atomistic models of BTM indicated that it is geometrically
compatible with a β-turn-like structure.
In order to test the potential of BTM to function as a β-turn

mimic, we carried out molecular dynamics (MD) simulations
of the original TrpZip1 and our modified peptide system, 1.
After position restrained energy minimization, simulations
were run for 100 ns. Overall the structures were similar, with
peptide 1 exhibiting a comparable hydrogen bonded β-hairpin,
with the same pattern of aromatic stacking between tryptophan
residues. Importantly, the β-turn-like hydrogen bond is
maintained in the simulation for 1 and, in fact, is present for
a greater proportion of the trajectory than the comparable
hydrogen bond in the parent TrpZip1 structure. The carbonyl
oxygen to amide NH distance was less than 3 Å for 90% of
frames in the trajectory for peptide 1, compared to 63% of
frames for the TrpZip1 trajectory (Figure 2).
In order to test our design, and to establish a ligation

protocol, the peptide fragments 2 and 3 were synthesized using
standard solid-phase peptide synthesis protocols (Figure 3).
Ligation reactions were conducted at 1.5 mM concentration in
1:1 methanol/acetic acid mixtures using sodium cyanobor-
ohydride as reductant10c,14 and were found to be complete
after 15 min. The reaction proceeded cleanly, with no evidence
of competing reductive amination reactions involving lysine
side chains or the N-terminal amine of 1 or 2. The ligated
peptide was purified by RP-HPLC. Using this protocol,

multimilligram quantities of peptide were readily accessible
for further biophysical characterization.
We characterized the peptide conjugate using circular

dichroism (CD) spectroscopy in order to determine its
secondary structural content and thermal stability. The CD

Figure 1. Original TrpZip1 peptide and peptide 1. (a) 3D and
structural view of TrpZip1 (PDB: 1le0), showing residue numbering
convention and key hydrogen bond for the β-turn. (b) TrpZip1
sequence containing the β-turn mimic (BTM, in magenta) and
indicating key retrosynthetic disconnection.

Figure 2. MD Analysis of mimic and control, showing the key region
of a representative frame from the MD trajectory and a histogram of
the O−H distance for the β-turn hydrogen bond. (a) TrpZip1. (b)
Peptide 1.

Figure 3. Synthetic conditions and representative HPLC traces. (a)
Conditions for the ligation and product. (b) HPLC trace of the
ligation progress.
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spectrum of peptide 1 was directly comparable to that of the
parent TrpZip1 peptide. Both peptides display far-UV signals
commensurate with β-strand structure (Figure 4a), as well as

characteristic near- and far-UV signals indicative of aromatic
stacking of the Trp indole side chains (Figure S12). The
thermal stability of peptide 1 was assessed by monitoring the
CD signal at 228 nm as a function of temperature.15,16 Peptide
1 exhibited a thermal denaturation and spectra of the pre- and
postmelt samples at 5 °C were fully superimposable, indicating
that the thermal unfolding was completely reversible (Figure
S10). The melt curve for 1 is slightly shallower than that for
TrpZip1 and, in contrast to the TrpZip1 curve, does not
exhibit a clear transition midpoint from the first or second
derivative of the curve. Taken together, these data indicate that
the β-hairpin structure is maintained in peptide 1, the structure
melts and refolds reversibly, and the β-turn mimic maintains
the overall stability of the hairpin structure compared to the
glycine-asparagine turn of TrpZip1.
Detailed structural insights into peptide 1 were gained by

NMR spectroscopy (Figure 5). All resonances were assigned
using 2D NOESY, COSY, and TOCSY spectra. The chemical
shifts of the HN and Hα protons of peptide 1 are consistent
with a β-strand secondary structure, which is supported by
intense Hα(i)−HN(i+1) crosspeaks.17,18 More significantly,
cross-sheet NOE interactions are observed between the amide
NH groups at hydrogen-bonding positions of the hairpin
(Thr3 to Thr9 and Glu5 to Lys7). Similarly, Hα to Hα
through-space interactions are evident for the non-hydrogen

bonding positions (Trp2 to Trp10 and Trp4 to Trp8). Within
the BTM unit, through-space interactions are visible between
the benzylic and OCH2 protons, indicating a compact
structure. The presence of a cross peak between the Glu5
NH and Lys7 NH confirms the presence of the key β-turn-like
hydrogen bond. Furthermore, the dispositions of the side
chains are conserved between peptide 1 and TrpZip1, the two
peptides having the same ordering of side chains within the
aromatic stack. Consistent with what is observed for TrpZip1,
Trp4 and Trp10 in peptide 1 have lower than usual chemical
shifts for their ε3 protons (5.9 and 5.4 ppm, respectively),
indicating their participation in an edge-to-face stacking
interaction. These data show that the BTM unit operates as
designed, resulting in a hydrogen bonded β-turn-like structure
that does not perturb either the backbone or side chain
conformations.
In conclusion, we have demonstrated a readily accessible

ligation protocol that installs a β-turn mimic at the same time
as ligating together two peptide fragments under mild
conditions. The β-turn mimic is constructed using established
peptide synthesis methods and commercially available
materials. This mimic has been shown to replicate key contacts
present in a model β-hairpin structure, indicating that it
mimics the key hydrogen bond and subsequent geometry of a
β-turn. We anticipate that this mimic will be useful in the
development of peptidomimetic systems, and chemical biology
more generally.

Figure 4. CD analysis of the peptide conjugate 1 and control. (a) Far-
UV CD at 5 °C. (b) Thermal denaturation monitored at 228 nm.

Figure 5. Key NOE interactions for peptide 1. (a) Across-chain and
BTM NOEs. (b) Representative frame from MD simulation (left) and
through-space interactions confirming Trp stacking (right).
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Experimental section: Initial computational models were
prepared with Avogadro19 and minimized using the MMFF94
force field and gradient descent minimization. Molecular
dynamics simulations were prepared using ambertools20 and
run using OpenMM.21 MD trajectories were analyzed using
the MDanalysis python module.22 Peptides were synthesized
on a CEM Liberty Blue peptide synthesis instrument, using
DIC/OxymaPure activation and rink amide and 2-chlorotrityl
chloride polystyrene resins. Peptides were purified on a
semipreparative scale on a Phenomenex, Gemini C18, 5 μm,
250 mm × 21.2 mm column. CD spectra were acquired on a
Jasco J-810 spectropolarimeter using a 20 mM sodium
phosphate buffer (pH 7). NMR spectra were collected on a
Bruker AVANCE 600 MHz spectrometer equipped with a TCI
cryoprobe, at 288 K in an AcOD buffer with 5% D2O (pH
5.5), and the data were analyzed using CCPN analysis.23 Full
experimental details are given in the Supporting Information.
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