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 Background: This work aimed to screen key biomarkers related to sepsis progression by bioinformatics analyses.
 Material/Methods: The microarray datasets of blood and neutrophils from patients with sepsis or septic shock were download-

ed from Gene Expression Omnibus database. Then, differentially expressed genes (DEGs) from 4 groups (sep-
sis versus normal blood samples; septic shock versus normal blood samples; sepsis neutrophils versus normal 
controls and septic shock neutrophils versus controls) were respectively identified followed by functional anal-
yses. Subsequently, protein–protein network was constructed, and key functional sub-modules were extracted. 
Finally, receiver operating characteristic analysis was conducted to evaluate diagnostic values of key genes.

 Results: There were 2082 DEGs between blood samples of sepsis patients and controls, 2079 DEGs between blood sam-
ples of septic shock patients and healthy individuals, 6590 DEGs between neutrophils from sepsis and con-
trols, and 1056 DEGs between neutrophils from septic shock patients and normal controls. Functional analysis 
showed that numerous DEGs were significantly enriched in ribosome-related pathway, cell cycle, and neutro-
phil activation involved in immune response. In addition, TRIM25 and MYC acted as hub genes in protein–pro-
tein interaction (PPI) analyses of DEGs from microarray datasets of blood samples. Moreover, MYC (AUC=0.912) 
and TRIM25 (AUC=0.843) had great diagnostic values for discriminating septic shock blood samples and normal 
controls. RNF4 was a hub gene from PPI analyses based on datasets from neutrophils and RNF4 (AUC=0.909) 
was capable of distinguishing neutrophil samples from septic shock samples and controls.

 Conclusions: Our findings identified several key genes and pathways related to sepsis development.
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Background

Sepsis represents a serious public health concern and sep-
tic shock is a subset of sepsis [1]. More specifically, sepsis is 
a life-threatening organ dysfunction triggered by a dysregu-
lated host response to infection while septic shock is a dead-
ly health condition caused by uncontrolled sepsis and accom-
panied by the cellular or metabolic abnormalities [2]. It has 
been estimated that over 30 million individuals suffer from 
sepsis worldwide and there has been an increasing incidence 
and mortality rate during the past decade [3]. Although sepsis 
is managed with adequate treatment, the overall clinical out-
comes have been unsatisfactory. Moreover, existing research 
suggests that early diagnosis has been considerably difficul-
ty due to several comorbidities and the lack of an effective 
prediction technique [4]. Therefore, there is a pressing need 
to identify new biomarkers related to sepsis for the early di-
agnosis, monitoring, and therapeutic interventions of sepsis.

Analyzing the characterization of patients based on the molec-
ular basis is a powerful approach that can be used for screen-
ing promising targets related to disease diagnosis and prog-
nosis. For example, Jekarl et al. [5] evaluated the diagnostic 
and prognostic values of several cytokines, chemokines, and 
growth factors. Consequently, their study revealed that he-
patic growth factor represented the best advantage for sep-
sis recognition and epidermal growth factor exhibited a fa-
vorable prognosis [5]. Spoto et al. found that the combination 
of procalcitonin and midregional pro adrenomedullin great-
ly improved the diagnosis of sepsis [6]. Notably, the bioinfor-
matics analysis based on profiling gene expression data has 
also been successfully used for identifying the significant bio-
markers for various diseases including sepsis [7–9]. Qi et al. 
screened several differentially expressed genes (DEGs) between 
sepsis survivors and non-survivors by whole genome profil-
ing and found upregulated type I interferon signaling pathway 
was closely correlated with the death of sepsis patients [10]. 
Recently, Qin et al. [11] performed an RNA-sequencing analy-
sis of 3 sepsis patients and 3 healthy volunteers. They noted 
that several key mRNAs and pathways, such as the T cell re-
ceptor signaling pathway and pathways in cancer, might play 
essential roles in sepsis development [11]. Although existing 
evidence has identified multiple important gene signatures re-
lated to sepsis, the underlying pathogenesis of sepsis has not 
been fully understood.

In this study, we conducted a comprehensive bioinformatics 
analysis based on a larger sample size to screen for promis-
ing gene markers for sepsis. The microarray datasets for sep-
sis were retrieved and downloaded from Gene Expression 
Omnibus (GEO) database. Consequently, we obtained 2 types 
of gene expression datasets which were respectively gener-
ated from blood samples and neutrophil samples. Notably, 

neutrophils released to blood are recruited to the inflammatory 
sites to act as significant players for the host defense against 
microbial invaders [12]. Moreover, studies show that neutro-
phils exert important roles in infection control in sepsis pro-
cess and their migratory activity are impaired during sepsis, 
leading to dysregulated immune responses [13]. Besides, neu-
trophils also can release many signaling cascades and inflam-
matory mediators, which will amplify inflammatory respons-
es and eventually cause multiple system organ failure [14]. 
Sepsis generally tends to develop into septic shock accompa-
nied by vascular dysfunction due to lack of efficient early con-
trol for sepsis. Thus, targeting the underlying gene markers in 
neutrophils will also facilitate identifying key targets for ear-
ly diagnosis and intervention of sepsis. Herein, for this study, 
we first identified the DEGs between sepsis or septic shock 
blood and normal controls, respectively. Then, we respectively 
conducted DEGs analyses between neutrophil from patients 
with sepsis or septic shock and normal controls. Furthermore, 
functional analyses were performed, and the relationships of 
proteins were also investigated. Finally, the diagnostic values 
of key genes were evaluated by the receiver operating char-
acteristic (ROC) analyses. This study will identify several bio-
markers associated with sepsis in blood and gene markers in 
neutrophils during sepsis, which will offer deeper insights into 
the molecular mechanisms of sepsis.

Material and Methods

Data collection

To identify several potential gene signatures associated with 
sepsis, we performed a systematic bioinformatics analysis 
based on the gene expression datasets for sepsis, which were 
retrieved and downloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/) using the searching terms of 
“Sepsis” AND “Homo sapiens” (porgn) AND “gse” (Filter) [15]. 
Notably, the included datasets in this study needed to meet 
the following criteria: 1) the datasets should be the gene ex-
pression profiles; and 2) the gene expression data were gen-
erated from sepsis cases and normal controls.

Screening DEGs

Firstly, raw gene expression data was pre-processed to elim-
inate the heterogeneity from different platforms, which pri-
marily included data normalization and log2 transformation. 
Then, the differential expression analysis between sepsis and 
normal control groups was carried out. In brief, the P val-
ues and false discovery rate (FDR) were respectively calculat-
ed using the R metaMA package which has been frequently 
used for the integrated analysis based on different microar-
ray datasets [16]. Herein, those genes with FDR <0.01 were 
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considered as the DEGs. Furthermore, the bidirectional hier-
archical clustering analyses of DEGs extracted were also con-
ducted with the R pheatmap package (https://cran.r-project.
org/package=pheatmap).

Functional enrichment analyses

To further recognize the underlying biological functions of 
identified DEGs in cells, we performed the Gene Ontology (GO) 
functional analysis to annotate all DEGs according to 3 cate-
gories: molecular function (MF), cellular component (CC) and 
biological process (BP). Meanwhile, the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment analy-
sis was also carried out to elucidate DEG pathways. Herein, 
we used the R clusterProfiler package to undertake GO and 
KEGG analyses [17]. The parameters selected were as follows: 
OrgDb=org.Hs.eg.db, pAdjustMethod=“Benjamini & Hochberg”, 
PvalueCutoff=0.05, qvalueCutoff=0.2.

Protein–protein interaction (PPI) network analysis

Generally, proteins function as team players in a complicated 
dynamic network. Therefore, identifying and analyzing protein–
protein interaction (PPI) pairs promote recognizing key inter-
acting protein partners and better understanding how proteins 
are organized into specific functional units. Herein, to extract 
key proteins and explore their potential regulatory roles in 
the molecular mechanisms of sepsis, we conducted PPI analy-
ses based on the Biological General Repository for Interaction 
Datasets (BioGRID) database [18]. The Cytoscape software (ver-
sion 3.0; http://apps.cytoscape.org/apps/cytonca) was used to 
construct the PPI network [19]. The CytoNCA plugin (version 
2.1.6; http://apps.cytoscape.org/apps/cytonca) was employed 
to evaluate the topological properties of PPI network nodes ac-
cording to the parameter of without weight (unweighted) [20]. 
Accordingly, the scores of degree centrality (DC), betweenness 
centrality (BC), and closeness centrality (CC) were computed 
and ranked. Moreover, those nodes with high degree were de-
fined as hub proteins which were functional points and played 
critical roles in the network structure. Additionally, the MCODE 
plugin (version 1.5.1; http://apps.cytoscape.org/apps/mcode) of 
Cytoscape software was used to perform the PPI sub-module 
analysis using the default parameters of Degree Cutoff=2, Node 
Score Cutoff=0.2, K-core=2 and Max.Depth=100. Furthermore, 
the clustering analysis was performed to obtain significantly 
functional modules and those sub-modules with PPI score >4 
were retained. Finally, the KEGG enrichment analysis of DEGs 
in functional modules was carried out.

ROC analysis

To evaluate whether identified DEGs had important diagnos-
tic values for sepsis or septic shock, the ROC analyses were 

carried out using the R “pROC” package (https://cran.r-project.
org/web/packages/pROC/index.html) [21]. The area under the 
ROC curve (AUC) of each gene was calculated. The diagnostic 
accuracy of key biomarkers for sepsis was evaluated with AUC 
value. Herein, when AUC value was greater than 0.8, the gene 
could differentiate patients with sepsis or septic shock from 
healthy individuals.

Results

Acquisition of microarray datasets

We searched the GEO database to obtain the gene expression 
microarray data about sepsis and found that these profiles were 
generated by blood samples or neutrophil samples from pa-
tients with sepsis or septic shock. In this study, we first identi-
fied the potential biomarkers related to sepsis or septic shock 
by analyzing the gene expression profiles from blood samples. 
Seven datasets (GSE69528, GSE46955, GSE54514, GSE32707, 
GSE28750, GSE13015, and GSE9960) from blood samples of 
341 sepsis patients and 145 normal controls were considered 
as group 1 and used to identify underlying gene markers in-
volved with sepsis (Table 1). Three datasets obtained from blood 
samples of 204 patients with septic shock and 89 healthy indi-
viduals, including GSE33118, GSE95233, and GSE57065, were 
regarded as the group 2 to extract key biomarkers correlated 
with septic shock (Table 1). Notably, overwhelming evidence 
has demonstrated that neutrophils play pivotal roles in the 
pathogenesis of sepsis. Therefore, we next focused on target-
ing neutrophils to screen the potential gene signatures asso-
ciated with sepsis or septic shock, which will facilitate devel-
oping effective medical treatment strategies for conquering 
sepsis or controlling its development. Accordingly, 3 datasets 
(GSE49755, GSE49756, and GSE49757) were used as group 3, 
involving neutrophil samples from 88 sepsis and 48 healthy 
controls (Table 1). Meanwhile, GSE123729 and GSE64457 as 
group 4 were generated based on neutrophil samples from 30 
septic shock patients and 19 normal controls (Table 1).

Identification of DEGs in sepsis and septic shock

To eliminate the heterogeneity from different sequencing plat-
forms, the R metaMA package was used to identify the DEGs 
in different groups using the FDR <0.01 as the screening cri-
terion. Here, we extracted 2082 DEGs from group 1, including 
928 upregulated genes and 1104 downregulated genes. There 
were 2079 DEGs (865 upregulated genes and 1214 downreg-
ulated genes) from group 2. For group 3, 6590 DEGs were ob-
tained, which contained 3070 upregulated genes and 3520 
downregulated genes. We also identified 1056 DEGs (478 up-
regulated genes and 578 downregulated genes) from group 4. 
Furthermore, the bidirectional clustering analysis of the DEGs 

e920818-3
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Zhai J. et al.: 
Profiling microarray data of sepsis
© Med Sci Monit, 2020; 26: e920818

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

DATABASE ANALYSIS



in different groups suggested that they remarkably separat-
ed patients with sepsis or septic shock from healthy controls, 
which further implied that these DEGs may be closely associ-
ated with sepsis (Figure 1).

Functional enrichment analyses

We further performed the functional analyses for DEGs in 
different groups to explore their underlying biological roles. 
The DEGs in group 1 were enriched in 266 GO-BP terms and 
several significant terms were exhibited in Figure 2A such as 
ribosome biogenesis, ribonucleoprotein complex biogenesis, 
and ncRNA processing. Meanwhile, there were 97 GO-CC terms; 
specific granule, secretory granule lumen, and tertiary granule 

were top 3 remarkable GO-CC terms (Figure 2A). The GO-MF 
analysis also revealed that these DEGs in group 1 were dra-
matically enriched in 10 key GO-MF terms such as rRNA bind-
ing, catalytic activity, acting on RNA and translation factor ac-
tivity, RNA binding (Figure 2A). In addition, they also were 
responsible for 15 KEGG pathways, which mainly included ri-
bosome, ribosome biogenesis in eukaryotes and viral carcino-
genesis (Figure 3A).

We found that the DEGs in group 2 were associated with 585 
GO-BP terms. Moreover, multiple GO-BP terms associated 
with neutrophil activity were markedly enriched by numer-
ous DEGs, including neutrophil activation, neutrophil activa-
tion involved in immune response, neutrophil degranulation, 

GEO 
accession

Type Case Control Platform Author

GSE69528 Blood samples
(sepsis vs. controls)

83 24 GPL10558 IlluminaHumanHT-12 V4.0 expression 
beadchip

Scott 
Presnell

GSE46955 Blood samples
(sepsis vs. controls)

8 6 GPL6104 IlluminahumanRef-8 v2.0 expression 
beadchip

Michael 
Poidinger

GSE54514 Blood samples
(sepsis vs. controls)

127 36 GPL6947 IlluminaHumanHT-12 V3.0 expression 
beadchip

Grant 
Parnell

GSE32707 Blood samples
(sepsis vs. controls)

30 34 GPL10558 IlluminaHumanHT-12 V4.0 expression 
beadchip

Judie Ann 
Howrylak

GSE28750 Blood samples
(sepsis vs. controls)

10 20 GPL570 [HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array

Gareth 
Price

GSE13015 Blood samples
(sepsis vs. controls)

29 5 GPL6947 IlluminaHumanHT-12 V3.0 expression 
beadchip

Damien 
Chaussabel

GSE9960 Blood samples
(sepsis vs. controls)

54 16 GPL570 [HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array

Benjamin Man 
Piu Tang

GSE33118 Blood samples
(septic shock vs. controls)

20 42 GPL570 [HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array

Wolfgang 
Raffelsberger

GSE95233 Blood samples
(septic shock vs. controls)

102 22 GPL570 [HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array

Julien 
Textoris

GSE57065 Blood samples
(septic shock vs. controls)

82 25 GPL570 [HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array

Marie-Angélique 
Cazalis

GSE49755 Neutrophil samples
(sepsis vs. controls)

29 17 GPL10558 IlluminaHumanHT-12 V4.0 expression 
beadchip

Damien 
Chaussabel

GSE49756 Neutrophil samples
(sepsis v controls)

24 12 GPL10558 IlluminaHumanHT-12 V4.0 expression 
beadchip

Damien 
Chaussabel

GSE49757 Neutrophil samples
(sepsis vs. controls)

35 19 GPL10558 IlluminaHumanHT-12 V4.0 expression 
beadchip

Damien 
Chaussabel

GSE123729 Neutrophil samples
(septic shock vs. controls)

15 11 GPL21970 [HuGene-2_0-st] Affymetrix Human 
Gene 2.0 ST Array

Carsten
Sticht

GSE64457 Neutrophil samples
(septic shock vs. controls)

15 8 GPL570 [HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array

Julien 
Textoris

Table 1. Gene expression datasets for sepsis and septic shock.

GEO – Gene Expression Omnibus.

e920818-4
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Zhai J. et al.: 
Profiling microarray data of sepsis

© Med Sci Monit, 2020; 26: e920818

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

DATABASE ANALYSIS



and neutrophil mediated immunity (Figure 2B). Additionally, 
these DEGs played essential roles in 101 GO-CC terms contain-
ing 3 most enriched terms: specific granule, secretory gran-
ule lumen, and cytoplasmic vesicle lumen; Figure 2B). We also 
observed that these DEGs were involved in 22 GO-MF terms 
such as catalytic activity acting on RNA, catalytic activity act-
ing on a tRNA and ligase activity (Figure 2B). The KEGG anal-
ysis suggested that DEGs in group 2 were also significantly 
enriched in 15 KEGG pathways, such as Th17 cell differenti-
ation, Th1 and Th2 cell differentiation, and primary immuno-
deficiency (Figure 3B).

For DEGs extracted from group 3, the GO-BP analysis showed 
that they were involved in 354 terms and several neutrophil 

activity-related terms such as neutrophil activation, neutrophil 
activation involved in immune response, neutrophil degranula-
tion and neutrophil mediated immunity were most remarkably 
enriched (Figure 2C). These DEGs were also strongly correlat-
ed with 83 GO-CC terms, primarily including secretory granule 
membrane, specific granule, and specific granule membrane 
(Figure 2C). Meanwhile, GO-MF analysis of DEGs in group 3 
indicated that they exerted crucial roles in 15 protein activity 
and binding-related terms such as protein serine/threonine ki-
nase activity, 14-3-3 protein binding, phosphatase binding, and 
Rho GTPase binding (Figure 2C). Besides, these DEGs were en-
riched in 19 KEGG pathways, mainly including insulin signal-
ing pathway, Fc gamma R-mediated phagocytosis, and plate-
let activation (Figure 3C).
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Figure 1.  The bidirectional clustering analysis of differentially expressed genes (DEGs). (A) The heatmap of DEGs from blood 
samples of sepsis and healthy controls. (B) The heatmap of DEGs from blood samples of septic shock and healthy controls. 
(C) The heatmap of DEGs from neutrophil samples of sepsis and normal controls. (D) The heatmap of DEGs from neutrophil 
samples of septic shock and normal controls. The “label” shows the type of microarray dataset. Each row and column 
respectively represent the gene and sample. The blue-green color represents the control samples and the pink color 
represents the sepsis or septic shock samples.
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Figure 2.  The GO functional annotation of DEGs. (A) The top 10 GO terms enriched by DEGs from blood samples of sepsis and healthy 
controls in 3 GO categories (GO-BP; GO-CC and GO-MF). (B) The top 10 GO terms enriched by DEGs from blood samples of 
sepsis and healthy controls in 3 GO categories (GO-BP; GO-CC and GO-MF). (C) The top 10 GO terms enriched by DEGs from 
neutrophil samples of sepsis and normal controls in 3 GO categories (GO-BP; GO-CC and GO-MF). (D) The top 10 GO terms 
enriched by DEGs from neutrophil samples of septic shock and normal controls in 3 GO categories. GO – Gene Ontology; 
DEGs – differentially expressed genes; MF – molecular function; CC – cellular component; BP – biological process.
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For those DEGs in group 4, we noted that they were closely 
related to 242 GO-BP terms and significantly enriched terms 
contained multiple neutrophil activity-associated terms such 
as neutrophil activation, neutrophil degranulation, neutrophil 
mediated immunity and neutrophil activation involved in im-
mune response (Figure 2D). Our functional annotation analy-
ses also demonstrated that these DEGs were enriched in 63 
GO-CC terms and 11 GO-MF terms. As displayed in Figure 2D, 
tertiary granule, ficolin-1-rich granule, and nuclear speck were 
3 remarkable terms while protein binding-related terms such 
as histone binding, ubiquitin-like protein ligase binding, and 
ubiquitin protein ligase binding were dramatically enriched by 
DEGs from group 4 (Figure 2D). Moreover, the KEGG analysis 
revealed that there was only one KEGG pathway (autophagy-
animal pathway; Figure 3D).

PPI analyses

PPI network analysis of DEGs in group 1 revealed that there were 
1600 nodes and 8911 interaction pairs (Supplementary Figure 1). 

In this study, the top 5 genes according to the DC value were 
regarded as the hub genes. Herein, the hub genes in the PPI 
network of DEGs from group 1 contained upregulated tripar-
tite motif containing 25 (TRIM25) and amyloid beta precur-
sor pro (APP), and downregulated ring finger protein 4 (RFN4), 
MYC proto-oncogene (MYC), and exportin 1 (XPO1) as showed 
in Supplementary Table 1. Then, the functional sub-modules 
were further extracted. Our results suggested that there were 
4 significant sub-modules (Figure 4A–4D). Specifically, there 
were 34 genes (30 upregulated genes and 4 downregulat-
ed genes) in sub-module 1, primarily containing several ribo-
somal protein (RP) genes such as RPL3, RPL8, and RPL12. We 
also found that TRIM25 and MYC were key genes in sub-mod-
ule 1. The functional enrichment analysis showed that sev-
eral RP genes, such as RPL3, RPL8, RPL12, and RPS18, were 
significantly involved in ribosome pathway while MYC partic-
ipated in the cancer-related pathways such as thyroid cancer 
pathway (Supplementary Table 2). For sub-module 2, there 
were 15 downregulated genes including eukaryotic transla-
tion initiation factor 3 (EIF3) complex gene (EIF3A-B, EIF3D, 
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Figure 3.  The KEGG pathway enrichment analysis of DEGs. (A) The top 15 KEGG pathways of DEGs from blood samples of sepsis 
patients and healthy controls. (B) The top 15 KEGG pathways of DEGs from blood samples of sepsis patients and healthy 
controls. (C) The top 15 KEGG pathways of DEGs from neutrophil samples of sepsis and normal controls. (D) The significant 
enriched KEGG pathway of DEGs from neutrophil samples of septic shock and normal controls. The color close to red shows 
a higher significance. KEGG – Kyoto Encyclopedia of Genes and Genomes; DEGs – differentially expressed genes.
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EIF3F-I, EIF3K-M) and eukaryotic translation initiation factor 
4B (EIF4B), RNF4, CD81 molecule (CD81), poly(A) binding pro-
tein cytoplasmic 1 (PABPC1), and HECT and RLD domain con-
taining E3 ubiquitin protein ligase 2 (HERC2). Our KEGG anal-
ysis revealed that numerous EIF genes (EIF3A-B, EIF3D, EIF3F-I, 
and EIF4B) primarily participated in RNA transport pathway 

(Supplementary Table 2). Moreover, PABPC1 was strongly associ-
ated with RNA pathway including RNA transport, RNA degrada-
tion, and mRNA surveillance pathway (Supplementary Table 2). 
There were 29 genes (8 upregulated genes and 21 downreg-
ulated genes) in sub-module 3. The KEGG enrichment analy-
sis showed that several genes were predominately enriched 

A

D E F

G

B C

Figure 4.  The functional sub-network analysis of PPI network based on the blood and neutrophil samples from sepsis patients. 
(A–D) The 4 sub-modules from PPI network of DEGs from blood samples of sepsis and healthy controls. (E, F) The 3 
sub-modules from PPI network of DEGs from neutrophil samples of sepsis and healthy controls. The red color nodes 
represent upregulated genes and the blue nodes show the downregulated genes. PPI – protein–protein interaction; 
DEGs – 0differentially expressed genes.
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in RNA degradation (exosome component/EXOSC 1, name-
ly EXOSC1, and EXOSC4-10), spliceosome (eukaryotic trans-
lation initiation factor 4A3/EIF4A3, pre-mRNA processing fac-
tor 19/PRPF19, splicing factor 3A subunit 1/SF3A1, SF3A2, and 
SF3A3), and ribosome biogenesis in eukaryotes (uridine triphos-
phate 14 small subunit processome component/UTP14A and 
GTP binding protein 4/GTPBP4; Supplementary Table 2). Besides, 
we found 13 genes (3 upregulated genes and 10 downregu-
lated genes) in PPI sub-module 4 and top 2 KEGG pathways 
were respectively spliceosome and RNA degradation pathways 
(Supplementary Table 2). Furthermore, the LSm family of RNA-
binding proteins LSM4 and LSM8 played pivotal roles in these 
2 pathways (Supplementary Table 2).

Our results indicated 5145 gene nodes and 46251 protein pairs 
in PPI network of DEGs in group 2 (Supplementary Figure 2). 
Downregulated KIAA1429/VIRMA (vir like M6A methyltrans-
ferase associated), upregulated TRIM25, upregulated RecQ-like 
helicase 4 (RECQL4), downregulated MYC, and downregulated 
ELAV-like RNA binding protein 1 (ELAVL1) were considered as 
the key hub genes (Supplementary Table 1). Furthermore, there 
were 8 PPI sub-modules (Figure 5A–5H). The sub-module 1 con-
tained 34 genes (3 upregulated genes and 31 downregulated 
genes). More specifically, numerous RP genes such as RPL3, 
RPL8, and RPS3 were clustered in sub-module 1. However, no 
significant KEGG pathway was found (Supplementary Table 2). 
The sub-module 2 consisted of 28 upregulated genes and 26 
downregulated genes. These genes were mainly associated 
with cell cycle (tumor protein P53/TP53 and cell division cycle 
25B/CDC25B), MAPK signaling pathway (TP53, CDC25B, MYC 
associated factor X/MAX and arrestin beta 2/ARRB2), and mi-
croRNAs (miRNAs) in cancer pathways (TP53, CDC25B, histone 
deacetylase 4/HDAC4, and heterogeneous nuclear ribonucleo-
protein K/HNRNPK; Supplementary Table 2). There were 3 up-
regulated genes and 23 downregulated genes in PPI sub-mod-
ule 3. Moreover, the KEGG enrichment analysis suggested that 
spliceosome, oocyte meiosis, and cell cycle were significantly 
enriched pathways. Seven genes (heterogeneous nuclear ribo-
nucleoprotein A3/HNRNPA3, U2 small nuclear RNA auxiliary fac-
tor 1/U2AF1, SF3A1, pre-mRNA processing factor 19/PRPF19, 
small nuclear ribonucleoprotein polypeptide A/SNRPA1, DEAH-
box helicase 15/DHX15, and DEAD-box helicase 5/DDX5) were 
involved in the spliceosome pathway. Cell division cycle 25C 
(CDC25C) and tyrosine 3-monooxygenase/tryptophan 5-mo-
nooxygenase activation protein theta (YWHAQ) were enriched 
in oocyte meiosis and cell cycle pathways (Supplementary 
Table 2). Four upregulated genes and 7 downregulated genes 
were found in sub-module 4. Three pathways (spliceosome, 
ribosome, and PI3K-Akt signaling pathway) were markedly en-
riched. Two genes poly (RC) binding protein 1/PCBP1 and het-
erogeneous nuclear ribonucleoprotein/HNRNP were implicated 
with spliceosome pathway. RPS27L and RPS28 had key roles in 
ribosome pathway while integrin subunit alpha 4/ITGA4 and 

breast cancer 1/BRCA1 were dramatically enriched in PI3K-Akt 
signaling pathway (Supplementary Table 2). We found that 65 
genes (18 upregulated genes and 47 downregulated genes) in 
sub-module 5 and several genes were significantly enriched in 
cell cycle (BUB3 mitotic checkpoint protein/BUB3), RNA deg-
radation (EXOSC4-8 and DIS3 like exosome 3’-5’ exoribonu-
clease/DIS3L), and spliceosome pathway (SF3A2, serine and 
arginine rich splicing factor 7/SRSF7, PRPF3, small nuclear ri-
bonucleoprotein U5 subunit 40/SNRNP40, peptidylprolyl isom-
erase E/PPIE and small nuclear ribonucleoprotein polypeptide 
E/SNRPE; Supplementary Table 2). The sub-module 6 included 
13 upregulated genes and 22 downregulated genes were in 
sub-module 6. The KEGG pathway analysis showed that these 
genes were mainly responsible for cell cycle, endocrine resis-
tance, and PI3K-Akt signaling pathway. Notably, cyclin depen-
dent kinase 4 (CDK4) was closely associated with these 3 path-
ways (Supplementary Table 2). For sub-module 7, there were 
99 genes, including 19 upregulated genes and 80 downregu-
lated genes. Functional analysis revealed that they predomi-
nately played important roles in DNA replication, RNA trans-
port and proteasome. EIF1B, EIF3A, EIF3C, EIF3D, and EIF3J were 
enriched in RNA transport. Meanwhile proteasome 26S sub-
unit, ATPase 4 (PSMC4), proteasome subunit beta 5 (PSMB5), 
proteasome activator subunit 1 (PSME1), and proteasome 26S 
subunit, non-ATPase 1 (PSMD1) were involved in proteasome 
(Supplementary Table 2). There were 41 upregulated genes 
and 73 downregulated genes in sub-module 8 and they were 
mainly enriched metabolism-related pathways such as purine 
and pyrimidine metabolism. RNA polymerase I and III subunit D 
(POLR1D), RNA polymerase III subunit C (POLR3C) and POLR3D 
participated in these metabolic pathways.

For the PPI analysis of DEGs in group 3, we found 1375 nodes 
and 6198 interactions in PPI network (Supplementary Figure 3). 
Moreover, downregulated COP9 signalosome subunit 5 (COPS5), 
downregulated methylphosphate capping enzyme (MEPCE), 
downregulated histone deacetylase 1 (HDAC1), upregulated 
TRIM25, and downregulated RNF4 acted as the critical hub 
genes (Supplementary Table 1). Additionally, 3 sub-modules 
were identified from PPI network (Figure 4E–4G). As indicat-
ed in Supplementary Table 2, the sub-module 1 contained 7 
upregulated genes and 4 downregulated genes. Many genes 
were markedly enriched in transcriptional mis-regulation in can-
cer (B-cell lymphoma 6/BCL6 and zinc finger and BTB domain 
containing 16/ZBTB16), nicotinate and nicotinamide metabo-
lism (nicotinamide adenine dinucleotide kinase/NADK), acute 
myeloid leukemia (ZBTB16), Fc epsilon RI signaling pathway 
(growth factor receptor bound protein 2-associated binding 
protein 2 (GAB2) and chronic myeloid leukemia (GAB2). There 
were 11 genes in sub-module 2. Moreover, they were primar-
ily related to endocytosis, protein processing in endoplasmic 
reticulum pathway, endocrine and other factor-regulated cal-
cium reabsorption, legionellosis, and synaptic vesicle cycle. 
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Figure 5.  The functional sub-network analysis of PPI network based on the blood and neutrophil samples from septic shock patients. 
(A–H) The 8 sub-modules from PPI network of DEGs from blood samples of septic shock and healthy controls. (I) The one 
sub-module from PPI network of DEGs from neutrophil samples of septic shock and normal controls. The red color nodes 
represent upregulated genes and the blue nodes show the downregulated genes. PPI – protein–protein interaction; 
DEGs – differentially expressed genes.
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We noted that clathrin light chain B (CLTB) and adaptor re-
lated protein complex 2 subunit Mu 1 (AP2M1) were strongly 
related to 3 pathways (endocytosis, endocrine and other fac-
tor-regulated calcium reabsorption and synaptic vesicle cycle 
(Supplementary Table 2). Finally, 3 upregulated genes and 3 
downregulated genes were clustered in sub-module 3. In addi-
tion, the hippo signaling pathway and multiple cancer-associ-
ated pathways were remarkably enriched. Ras association do-
main family member 1 (RASSF1) played critical roles in these 
significant pathways.

The PPI analysis of DEGs in group 4 revealed that there were 
791 nodes and 2548 protein pairs (Supplementary Figure 4). 
Upregulated ubiquity in C (UBC), downregulated ring finger 
protein 2 (RNF2), downregulated RNF4, downregulated SUZ12 
poly comb repressive complex 2 subunit (SUZ12), and down-
regulated CYLD lysine 63 deubiquitinase (CYLD) were regard-
ed as hub genes (Supplementary Table 1). Moreover, only one 
sub-module was extracted, which included 5 downregulated 
genes (mediator complex subunit 28/MED28, MED29, MED30, 
MED31, and cyclin dependent kinase 19/CDK19; Figure 5I). 
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Figure 6.  ROC curve of 3 differentially expressed genes. The ROC curves to show the diagnostic value of 3 key genes (MYC, TRIM25, 
and RNF4) in sepsis or septic shock with sensitivity and 1-specificity. The x-axis shows 1-specificity and y-axis represents 
sensitivity. (A) ROC curve of MYC in sepsis. (B) ROC curve of MYC in septic shock. (C) ROC curve of TRIM25 in septic shock. 
(D) ROC curve of RNF4 in septic shock. The gene has a great diagnostic value for septic shock when AUC value of this gene 
>0.8. ROC – receiver operating characteristic; AUC – area under the ROC curve.
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Similarly, one significant KEGG pathway (thyroid hormone 
signaling pathway) was obtained (Supplementary Table 2).

ROC analysis

The ROC curve analysis was carried out to assess the diagnos-
tic values of several key DEGs. We found that TRIM25 and MYC 
was respectively upregulated and downregulated. Furthermore, 
they also served as the overlapping hub genes in PPI networks 
of DEGs from group 1 and 2. In addition, RNF4 was downregu-
lated in 4 groups and also an overlapping hub gene in PPI net-
works of DEGs from group 3 and 4. Herein, we assessed the 
diagnostic implication of these 3 genes in sepsis. The results 
indicated that MYC (AUC=0.912) could dramatically differen-
tiate septic shock blood samples and normal control samples. 
However, this gene exhibited poor identification capability for 
sepsis blood samples and corresponding controls (AUC=0.712), 
which suggested that they had important diagnostic values 
for the detection of septic shock (Figure 6A, 6B). Similarly, our 
finding revealed that TRIM25 (AUC=0.843) had significant di-
agnostic value for discriminating septic shock blood samples 
and normal controls (Figure 6C). Additionally, RNF4 (AUC=0.909) 
was capable of distinguishing neutrophil samples from septic 
shock samples and controls (Figure 6D).

Discussion

In this study, we performed a bioinformatics analysis based 
on the relevant microarray datasets about sepsis to identi-
fy several potential markers associated with sepsis. Our find-
ings suggested that ribosome-related pathway, cell cycle, and 
neutrophil activation involved in immune response might be 
critical for the sepsis progression. Additionally, TRIM25, RNF4, 
and MYC were key hub genes in PPI analysis. Moreover, MYC 
and TRIM25 could significantly discriminate septic shock blood 
samples and normal control samples. RNF4 had great diag-
nostic value for differentiating neutrophil samples from sep-
tic shock samples and controls.

The functional analysis of DEGs in group 1 revealed that ribo-
somal biological function played essential roles in the develop-
ment of sepsis. Furthermore, the KEGG analysis of DEGs in PPI 
sub-network also showed that ribosome-related pathway was 
one of significantly enriched pathways. Ribosomes are remark-
ably crucial for catalyzing protein synthesis in the course of all 
life forms. Functional ribosomes are ribonucleoprotein com-
plexes assembled by rRNA and proteins. Therefore, the ribo-
somal dysfunction can lead to various human diseases [22,23]. 
An early research indicated that sepsis dramatically decreased 
the formation of 40S ribosome initiation complex in skele-
tal muscle, which would be not conducive to protein synthe-
sis [24]. Orellana et al. pointed out that sepsis could retard the 

muscle protein synthesis (MPS) in neonatal pigs via diverse 
ribosomal molecular mechanisms. For example, the MPS re-
duction triggered by lipopolysaccharide was closely correlat-
ed with the decreased ribosomal efficiency during sepsis [25]. 
Additionally, our results showed that the cell cycle regulation 
also might be involved in the progression of sepsis. Similarly, 
Real et al. examined the expression of RNA transcripts (mRNAs 
and miRNAs) in exosomes of patients undergoing septic shock 
and found that exosomes conveyed miRNAs and mRNAs asso-
ciated with cell cycle regulation [26]. A later study suggested 
that ghrelin could increase the expression of cell cycle posi-
tive regulators and decrease the expression of a cell cycle neg-
ative regulator in mice with sepsis, thereby inducing the CD4 
T cell proliferation [27]. Our functional analysis also suggest-
ed that neutrophil activation pathway was possibly implicated 
with the sepsis development. Overwhelming evidence has im-
plied that neutrophil activation was significant for sepsis de-
tection [28]. Törnblom et al. argued that increased plasma ac-
tivin A denoted the activation of neutrophil and neutrophil was 
accumulated into impaired kidneys, which further indicating 
neutrophil activation had pivotal pathophysiological roles for 
septic patients with acute kidney injury [29]. Taken together, 
further focusing on the ribosome-related pathway, cell cycle 
and neutrophil activation pathway would contribute to devel-
oping promising strategy for conquering sepsis.

It is reported that MYC as a proto-oncogene exerted several 
roles in cellular processes, such as cell cycle progression, cell 
proliferation and apoptosis. Liu et al. previously performed a 
bioinformatics analysis using the GSE26440 dataset, which 
was obtained from children suffering from septic shock and 
healthy controls. As a result, they found that MYC was upregu-
lated and NFkB was probably implicated with the progression 
of septic shock via elevating the expression levels of MYC and 
other key genes, which was supported by a later study that 
found that MYC was upregulated and was possibly involved 
in the molecular mechanism of sepsis [30,31]. However, our 
finding indicated that MYC was downregulated and it acted 
as key hub gene in PPI network analysis. A plausible explana-
tion for expression difference of this gene was the different 
sample source. Zhang et al. analyzed long non-coding RNA 
(lncRNA) and mRNA sequencing data from rat models of sep-
tic shock-induced myocardial depression and they highlight-
ed that lncRNA rPvt1 knockdown elevated the levels of c-Myc, 
Bax and caspase-3, promoting cell apoptosis in heart tissue of 
septic rats, suggesting that MYC may be also correlated with 
septic shock-induced complication [32]. Interestingly, we also 
observed that MYC exhibited a good discriminatory power for 
septic shock blood samples and controls. However, this gene 
could not distinguish sepsis blood samples and normal con-
trols primarily due to limited number of sample size. Taken to-
gether, these evidences suggested that MYC was strongly re-
lated to the development of sepsis. Herein, our results also 
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demonstrated that TRIM25 was a key gene for sepsis accord-
ing to the transcriptome profiling from blood samples of sep-
sis patients. TRIM25 is a key member of tripartite motifs of 
E3 ubiquitin ligase enzyme which was implicated with numer-
ous biological processes such as the regulation of innate im-
mune responses against viruses [33]. For example, Liu et al. 
recently revealed that the activation of TRIM25-mediated ret-
inoic acid-inducible gene I in macrophages increased the anti-
viral immune processes [34]. Moreover, extensive studies have 
reported that sepsis acted as a proper balance between com-
peting pro- and anti-inflammatory pathways [35,36]. However, 
there is no evidence that TRIM25 participate in the pathogen-
esis of sepsis by regulating immune responses. In addition, our 
ROC analysis showed that TRIM25 had good diagnostic values 
for predicting septic shock blood samples from normal con-
trols. Therefore, we inferred that MYC and TRIM25 were es-
sential gene markers for the recognizing sepsis and predict-
ing septic shock.

By microarray data analysis from neutrophils, we found that 
RNF4 was an overlapping key hub gene in PPI network of DEGs 
between 2 groups (sepsis versus normal controls and septic 
shock versus normal controls). The ROC analysis suggested 
that this gene could distinguish septic shock neutrophil sam-
ples from normal controls. RNF4 is a transcriptional cofactor 
containing small ubiquitin-like modifiers (SUMOs)-interacting 

motif and a RING finger domain which functions as an E3 
ubiquitin ligase to link SUMOylation to ubiquitination [37]. 
Interestingly, a previous study showed that silencing SUMO-
targeted ubiquitin ligase RNF4 could increase the levels of 
SUMOylated c-Myc [38]. However, no report investigated the 
potential interactive roles of RNF4-MYC-TRIM25 in the molec-
ular mechanism of sepsis.

There are still limitations in the present work. First, the rele-
vant experimental assays should be conducted to confirm the 
underlying biological roles of key genes and pathways in sep-
sis. Second, the bioinformatics analysis based on the regula-
tory network was needed to screen more potential gene bio-
markers involved in sepsis. Third, the corresponding clinical 
information also needed to be integrated into further analysis.

Conclusions

Three key pathways (ribosome-related pathway, cell cycle, 
and neutrophil activation involved in immune response) were 
closely associated with the pathogenesis of sepsis. Moreover, 
TRIM25, RNF4, and MYC were key biomarkers related to sep-
sis progression and acted as significant predicators for sep-
tic shock. However, further experimental analysis was still re-
quired to validate these findings.

Supplementary Data

Group 1 Group 2 Group 3 Group 4

Gene Degree Type Gene Degree Type Gene Degree Type Gene Degree Type

TRIM25 329 Up KIAA1429 1056 Down TRIM25 313 Up RNF4 112 Down

MYC 317 Down TRIM25 796 Up RNF4 185 Down UBC 111 Up

APP 269 Up MYC 713 Down COPS5 110 Down RNF2 77 Down

XPO1 206 Down ELAVL1 697 Down MEPCE 91 Down SUZ12 66 Down

RNF4 203 Down RECQL4 520 Up HDAC1 89 Down CYLD 60 Down

Supplemenatry Table 1. The hub genes in the PPI network.

Group 1: the PPI network analysis of DEGs between sepsis and normal controls from blood samples; Group 2: the PPI network analysis 
of DEGs between septic shock and normal controls from blood samples; Group 3: the PPI network analysis of DEGs between sepsis 
and normal controls from neutrophil samples; Group 4: the PPI network analysis of DEGs between septic shock and normal controls 
from neutrophil samples. PPI – protein–protein interaction; DEGs – differentially expressed genes; Up represents the upregulation of 
the gene and Down represents the downregulation of the gene.
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Names Terms
Gene 
count

P-value Gene symbols

Group1_sub-module 1 Ribosome 28 2.78E-62 PRL19, RPL37A, RPL23A, RPL22, RPL3, RPL32, 
RPL35A, RPL7, PRS18, RPS19, RPS12, RPS23, 
RPS3, RPS15A, RPL30, RPL14, RPL38, RPL15, 
RPL10A, RPL8, RPL12, RPL11, RPS16, RPS4X, 
RPS5, RPS28, RPS25

Thyroid cancer 1 0.025 MYC

Bladder cancer 1 0.035 MYC

Endometrial cancer 1 0.044 MYC

Acute myeloid leukemia 1 0.048 MYC

Group1_sub-module 2 RNA transport 9 3.35E-18 PABPC1, EIF3A, EIF3B, EIF3D, EIF3F, EIF3G, EIF3H, 
EIF3I, EIF4B

Malaria 1 0.0187 CD81

B cell receptor signaling 
pathway

1 0.0276 CD81

RNA degradation 1 0.0290 PABPC1

mRNA surveillance pathway 1 0.0345 PABPC1

Group1_sub-module 3 RNA degradation 9 6.46E-18 EXOSC1, EXOSC4, EXOSC5, EXOSC6, EXOSC7, 
EXOSC8, EXOSC9, EXOSC10, SKIV2L2

Spliceosome 5 5.37E-08 EIF4A3, PRPF19, SF3A1, SF3A2, SF3A3

Ribosome biogenesis in 
eukaryotes

2 0.0020 UTP14A, GTPBP4

Rap1 signaling pathway 2 0.0105 TIAM1, SIPA1L1

MicroRNAs in cancer 2 0.0202 CDC25B, HDAC4

Group1_sub-module 4 Spliceosome 3 1.11E-05 LSM4, LSM8, PPIH

RNA degradation 2 0.0003 LSM4, LSM8

RNA polymerase 1 0.0107 POLR2D

Basal transcription factors 1 0.0149 TAF1

Pyrimidine metabolism 1 0.0341 POLR2D

Group2_sub-module 1 – – –

Group2_sub-module 2 Cell cycle 2 0.0128 TP53, CDC25B

MAPK signaling pathway 4 0.0003 TP53, CDC25B, MAX, ARRB2

MicroRNAs in cancer 4 0.0007 TP53, CDC25B, HDAC4, HNRNPK

Viral carcinogenesis 3 0.0029 TP53, HDAC4, HNRNPK

Chronic myeloid leukemia 2 0.0047 TP53, GAB2

Group2_sub-module 3 Spliceosome 7 3.76E-12 HNRNPA3, U2AF1, SF3A1, PRPF19, SNRPA1, 
DHX15, DDX5

Oocyte meiosis 2 0.0030 CDC25C, YWHAQ

Cell cycle 2 0.0031 CDC25C, YWHAQ

Pathogenic Escherichia coli 
infection

1 0.0360 YWHAQ

Shigellosis 1 0.0423 U2AF1

Supplementary Table 2.  The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes (DEGs) in 
protein–protein interaction (PPI) sub-modules (top 5).
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Names Terms
Gene 
count

P-value Gene symbols

Group2_sub-module 4 Spliceosome 2 0.0006 PCBP1, HNRNP

Ribosome 2 0.0007 RPS27L, RPS28

PI3K-Akt signaling pathway 2 0.0039 ITGA4,  BRCA1

Intestinal immune network 
for IgA production

1 0.0140 ITGA4

Legionellosis 1 0.0154 EEF1A1

Group2_sub-module 5 Cell cycle 1 0.1849 BUB3

RNA degradation 6 5.10E-09 EXOSC6, DIS3L, EXOSC4,  EXOSC8,  EXOSC5,  
EXOSC7

Spliceosome 6 1.18E-07 SRSF7,  PRPF3, SNRNP40,  PPIE,  SNRPE, SF3A2

Proteasome 4 1.19E-06 PSMD6, PSMD7,  PSMB6,  PSMD12

Ribosome 5 3.86E-06 MRPL10,  MRPS14,  MRPL30,  MRPL4, MRPL28

Group2_sub-module 6 Axon guidance 3 0.0005 CFL1,  KRAS,  EPHA2

Cell cycle 2 0.0055 CDKN2C,  CDK4

Endocrine resistance 3 9.50E-05 CDKN2C,  CDK4,  KRAS

PI3K-Akt signaling pathway 4 0.0002 KRAS,  CDK4,  FGFR4,  EPHA2

Signaling pathways 
regulating pluripotency of 
stem cells

3 0.0003C SOX2, KRAS,  FGFR4

Group2_sub-module 7 DNA replication 3 0.0001 RFC5,  RFC1,  SSBP1

RNA transport 6 5.79E-06 EIF1B,  EIF3A,  EIF3C,  EIF3D,  EIF3J,  SRRM1

Proteasome 4 6.41E-06 PSMC4, PSMB5, PSME1, PSMD1

Nucleotide excision repair 4 8.18E-06 RFC5, RFC1, XPC, ERCC6

Cell cycle 1 0.2675 CCND1

Group2_sub-module 8 Cell cycle 4 0.0005 E2F1, SMC1A, TFDP1, MCM3

Metabolic pathways 19 3.30E-09 DNMT3A, CYC1, B3GNT2, ALDH18A1, PFAS, 
SORD, MOGS, SMS, POLR3D, MAN2A1, NAGK, 
POLE3, POLR1D, LDHAL6B, POLR3C, SDHA, 
NTPCR, PFKP, DLST

Purine metabolism 7 1.04E-06 PNPT1, PFAS, POLR3D, NTPCR, POLE3, POLR1D, 
POLR3C

Pyrimidine metabolism 5 1.68E-05 POLE3, POLR3C, PNPT1, POLR1D, POLR3D

RNA polymerase 3 0.0001 POLR3C, POLR1D, POLR3D

Group3_sub-module 1 Transcriptional 
misregulation in cancer

2 0.0011 BCL6, ZBTB16

Nicotinate and nicotinamide 
metabolism

1 0.0085 NADK

Acute myeloid leukemia 1 0.0159 ZBTB16

Fc epsilon RI signaling 
pathway

1 0.0189 GAB2

Chronic myeloid leukemia 1 0.0203 GAB2
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Names Terms
Gene 
count

P-value Gene symbols

Group3_sub-module 2 Endocytosis 4 6.04E-07 CLTB,ARF1,IGF2R,AP2M1

Protein processing in 
endoplasmic reticulum

3 1.21E-05 SEC24C,SEC23B,MAN1A1

Endocrine and other 
factor-regulated calcium 
reabsorption

2 8.12E-05 CLTB,AP2M1

Legionellosis 2 0.0001 RAB1A,ARF1

Synaptic vesicle cycle 2 0.0001 CLTB,AP2M1

Group3_sub-module 3

Hippo signaling pathway 
-multiple species

3 9.45E-09 SAV1, RASSF1,LATS2

Hippo signaling pathway 3 1.20E-06 SAV1, RASSF1,LATS2

Ras signaling pathway 2 0.0004 RASSF1,MET

MicroRNAs in cancer 2 0.0008 RASSF1,MET

Pathways in cancer 2 0.0015 RASSF1,MET

Group4_sub-module 
Thyroid hormone signaling 
pathway

1 0.0149 MED30

Group 1: the blood samples of sepsis and healthy controls; Group 2: the blood samples of septic shock and healthy controls; Group 3: 
the neutrophil samples of sepsis and normal controls; Group 4: the neutrophil samples of septic and normal controls.
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Supplementary Figure 1.  PPI network of DEGs between sepsis patients and healthy controls according the gene expression profile 
from blood samples. The red color nodes represent upregulated genes and the blue nodes show the 
downregulated genes. PPI – protein–protein interaction; DEGs – differentially expressed genes.
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Supplementary Figure 2.  PPI network of DEGs between septic shock patients and healthy controls according the gene expression 
profile from blood samples. The red color nodes represent upregulated genes and the blue nodes show the 
downregulated genes. PPI – protein–protein interaction; DEGs – differentially expressed genes.
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Supplementary Figure 3.  PPI network of DEGs between sepsis patients and healthy controls according the gene expression profile 
from neutrophil samples. The red color nodes represent upregulated genes and the blue nodes show the 
downregulated genes. PPI – protein–protein interaction; DEGs – differentially expressed genes.
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Supplementary Figure 4.  PPI network of DEGs between septic shock patients and healthy controls according the gene expression 
profile from neutrophil samples. The red color nodes represent upregulated genes and the blue nodes show 
the downregulated genes. PPI – protein–protein interaction; DEGs – differentially expressed genes.
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