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A B S T R A C T

A quantitative structure-activity relationship (QSAR) study was conducted using nineteen previously synthesized,
and tested 1-aryl-6-hydroxy-1,2,3,4-tetrahydroisoquinolines with proven in vitro activities against Plasmodium
falciparum. In order to computationally design and screen potent antimalarial agents, these compounds with
known biological activity ranging from 0.697 to 35.978 μM were geometry optimized at the B3LYP/6-311 þ
G(d,p) level of theory, using the Gaussian 09W software. To calculate the topological differences, the series of the
nineteen compounds was superimposed and a hypermolecule obtained with s ¼ 17 and 20 vertices. Other mo-
lecular descriptors were considered in order to build a highly predictive QSAR model. These include the minimal
topological differences (MTD), LogP, two dimensional polarity surface area (TDPSA), dipole moment (μ),
chemical hardness (η), electrophilicity (ω), potential energy (Ep), electrostatic energy (Eele) and number of
rotatable bonds (NRB). By using a training set composed of 15 randomly selected compounds from this series,
several QSAR equations were derived. The QSAR equations obtained were then used to attempt to predict the IC50

values of 4 remaining compounds in a test (or validation) set. Ten analogues were proposed by a fragment search
of a fragment library containing the pharmacophore model of the active compounds contained in the training set.
The most active proposed analogue showed a predicted activity within the lower micromolar range.
1. Introduction

Malaria is a parasitic disease that causes death and economic loss in
about half the population of the world (Bloland, 2001). Malaria caused
by Plasmodium falciparum is transmitted by female anopheline mosqui-
toes (Bloland, 2001). According to the World Health Organization
(WHO), there were 229 million fatal cases reported in the year 2019
(WHO, 2020). Vector control measures and chemoprophylaxis are among
the attempts made to control the disease, but these have had limited
success (World Health Organization, 2010). The most effective current
method of controlling malaria is by the administration of antimalarial
drugs to sick patients (Patel et al., 2003; Vangapandu et al., 2007). Some
of the most effective available antimalarial drugs are quinine-based and
artemisinin derivatives often used in combination therapy (Diallo et al.,
2020). Malaria control has, however, been faced by resistance of the
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mosquito vector to insecticides. Moreover, new strains of Plasmodium
falciparum, the most dangerous malaria parasite to humans have also
emerged that do not respond to known antimalarials (Ridney, 2002),
requiring the need for new antimalarial drugs, including those from
natural-product-like scaffolds (Ongu�en�e et al., 2013; Ntie-Kang et al.,
2014; Bekono et al., 2020).

Despite lots of efforts that have been made towards the discovery of
an effective vaccine against malaria, none has yet been found. With the
increased spread of malaria in developing countries, efforts towards the
development of new synthetic antimalarial drugs have regained impor-
tance. This has also partly been motivated by the increased resistance of
vectors to commonly used drugs and insecticides (Menard and Dondorp,
2017). This calls for interest in the search for new antimalarial drugs that
target aspects of the malaria parasite genome that are not targeted by
antimalarials already in use. Such efforts have been encouraged by the
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sequencing and cloning of P. falciparum kinases, which are protein drug
targets that are homologous to their mammalian cyclin-dependent kinase
(CDK) counterparts (Carvalho et al., 2013).

CDKs are kinases that control progression in cell cycle within the
parasite and have been reported to be potential targets for drug devel-
opment against malaria caused by P. falciparum. The CDKs like PfPK5 and
Pfmrk have high sequence and structural similarity when compared to
their mammalian homologous proteins, e.g. CDK1 (60% identical) and
CDK7 (46% identical) have become attractive targets for novel antima-
larial agents (Woodard et al., 2003). Pfmrk is a well-characterized CDK
protein kinase from P. falciparum and has shown significant homology
with the human CDK7 (Peng et al., 2005). Oxindoles and indoles,
β-carbolines and isoquinolines have been found to be CDK inhibitors.

In the search for novel antimalarial drugs, scientists have investigated
the biosynthesis and identification of known and new tetrahy-
droisoquinolines. Tetrahydroisoquinoline (Figure 1) is a substructure of
the naphthylisoquinoline dioncophylline which has shown antimalarial
activity (Bringmann et al., 2008). Tetrahydroisoquinoline, also called 1,
2,3,4-tetrahydroisoquinoline (TIQ), is the common core structure of
many drugs and many alkaloids isolated from natural sources. Many
compounds having this substructure have exhibited diverse biological
activities, including antibacterial, antifungal, antimicrobial, anti-human
immunodeficiency virus (HIV), antimalarial, antileishmanial, anti-
tumor, antitubercular, antitrypanosomal and cardiovascular activities
(Bringmann et al., 2008; Fayez et al., 2018; Kumar et al., 2006, 2010; Li
et al., 2017; Moyo et al., 2020).

In this paper, we report the computer-assisted design of a virtual li-
brary of tetrahydroisoquinoline analogues, followed by the in silico
screening by use of quantitative structure-activity relationship (QSAR)
methods. The chemical space surrounding the tetrahydroisoquinoline
scaffold was studied by substitution at position R3 by small and large
groups or fragments with hydrophobic characteristics, with the goal of
improving the antimalarial activity. Other portions of the scaffold were
also modified to improve antimalarial activity. This resulted in a small
but highly focused subset of tetrahydroisoquinoline analogues, derived
combinatorially, and containing antimalarial in silico hits with better
activity than the initial set of compounds. In addition, the designed an-
alogues displayed predicted favorable ADME properties.

2. Materials and methods

2.1. Computer hardware

All the computations were carried out on a desktop work option
running on four processors on both Windows and Linux systems. The
computers used are Pentium ® Dual core CPU, E5400@2.70GHz, with
3.46 GB of RAM, and the system is Microsoft XP Professional version
2002.
2.2. Compound dataset

The synthesis of the training and test set compounds (shown in
Table 1) has been previously published (Ngo Hanna et al., 2014), and so
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Figure 1. Chemical structure of compounds under study.
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far as we know no work has been done towards a QSAR study of anti-
malarial activities on the tetrahydroisoquinolines.
2.3. Geometry optimization

Geometry optimizations of the compounds were carried out by
implementing the density functional theory (DFT) because this method
offers a good compromise of saving computational time while properly
describing the electronic correlation, hence physicochemical properties
of molecules. Moreover DFT is commonly better than other quantum
mechanical methods like the Hartree-Fock (HF) which does not take the
electron spin into account. In this work, we employed the B3LYP, which
is a hybrid functional variant of the DFT. The B3LYP employs the Becke's
three parameter exact exchange functional (B3) (Becke, 1988), and
combines it with the non-local gradient corrected correlation functional
proposed by Lee, Yang and Parr (LYP) (Lee et al., 1988). Using the
Gaussian 09W software (Gaussian, Inc., 2009a, 2009b), the selected basis
set was the 6-311þG (d,p), which was used as the wave function. This is a
6–311 split-valence triple zeta Gaussian basis set developed by the Pople
research team (Curtiss et al., 1992; Ditchfield et al., 1971; Francl et al.,
1982; Hariharan and Pople, 1974; Hehre et al., 1972; Wiberg, 2004),
supplemented by a set of d and p polarization functions (Frisch et al.,
1984). The d polarization functions are applied on the heavy atoms while
the p polarization functions are for the hydrogen atoms. These are further
supplemented by a set of single diffuse s functions (Clark et al., 1983) on
both heavy atoms. The geometry was fully optimized with no symmetry
constraints up to convergence. The convergence criterion was set as the
largest nuclear gradient component ¼ 10�6 a.u./Bohr and the change in
total energy <10�7 a.u.
2.4. QSAR studies

A QSAR model for the molecules in the training set was built using
molecular descriptors, including those available in the Molecular Oper-
ating Environment (MOE 2007.09) software package distributed by the
Chemical Computing Group (CCG Inc., 2010). Such descriptors included
the potential energy, the electrostatic energy and number of rotatable
bonds. Specific descriptors such as molar refractivity (MR) were
computed from ACD-Lab software (Advanced Chemistry Development,
Inc., 2010); logarithm of the n-octanol/water partition coefficients
(Xlogp) were computed from the BROOD software (OpenEye Scientific
Software, Inc., 2006). The dipole moment of the molecules were obtained
from Gaussian 09 (Gaussian, Inc., 2009a, 2009b). The chemical hardness
(η) and electrophilicity (ω) were calculated from the lowest unoccupied
molecular orbital (LUMO) energies and highest occupied molecular
orbital (HOMO) energies values obtained from Gaussian 09W, according
to the following formulae (Eqs. (1) and (2), respectively). The chemical
potential is also defined from the HOMO and LUMO orbital energies
according to Eq. (3). The minimal topological difference (MTDi) value of
each molecule “i” with respect to the receptor was calculated for each
molecule from the hypermolecule obtained from the superposition of all
the molecules. This was computed by using the formula shown in Eq. (4)
(Duda-Seiman et al., 2006).

Chemical hardness; η¼ ELUMO � EHOMO

2
(1)

Electrophilicity; ω¼ μ2

2η
; (2)

where μ; the chemical potential is defined as μ¼ELUMO þ EHOMO

2
(3)

When studying the quantitative structure-activity relationships
(QSAR) of drugs, the relative potency of the various analogues is
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considered to be determined by several physicochemical properties. To
analyze these relationships, both the calculation of the best least square
equation for all data and evaluation of statistical significance of the
contribution of each individual predictor variable is carried out.
Regression analysis establishes and quantifies the dependence of rela-
tive potency on molecular parameters or descriptors. Multiple re-
gressions are done only by the computer. The validity of the QSAR
model results is highly dependent on how representative are the
training series and the biological data. If the structural variations within
the training series are too narrow the predictive power of the resulting
model is limited. The result is therefore verified by applying leave-one-
out techniques. In this technique, groups of n compounds are alterna-
tively left out of discriminant analysis and then classified with the aid of
the discriminant function obtained from the remaining compounds. The
result can be trusted only if the model remains stable during such
procedures.

The inhibitory concentration (IC50) for evaluating the antimalarial
activities tetrahydroisoquinoline analogues was taken from our pre-
vious work (Ngo Hanna et al., 2014) (Table 1). The inhibitory con-
centration (expressed as IC50 values in μM) values were converted to
the logarithmic forms (pIC50) with the goal of establishing models that
correlate the experimental activities with the calculated molecular
descriptors for the 15 training set molecules. The partial-least-squares
(PLS) regression method (Cramer et al., 1988) was used to correlate
the value of molecular descriptors calculated with the experimental
pIC50 (- log IC50) values. The “leave-one-out” cross validation pro-
cedure (Cramer et al., 1988) was repeated for the training set mole-
cules with the aim of searching the highest squared correlation
coefficient (R2 values) and the highest number of principal compo-
nents (PCs). The PLS method was used to fit the QSAR models
generated. However, the goal was not to generate just one QSAR
model. Our approach consisted in building several QSAR models and
choosing among the most predictive ones. The linear regression
analysis was carried out using the QuaSAR module of MOE (Chemical
Computing Group Inc., 2010). The QSAR equation obtained from the
15 molecules in the training set was verified by applying it to correctly
to predict the activities of 4 analogues with known ICexp

50 values that
were left in the validation or test set.
Table 1. Training and test set used in the QSAR model of anti-malarial agents.

Training

No. R1 R2

1 OH H

2 OH H

3 OH H

4 OH H

5 OH H

6 OH H

7 OH H

8 OH H

9 OH H

10 OH H

11 OH H

12 OH H

13 OH H

14 OH H

15 OH H

Test

16 OH H

17 OH H

18 OH H

19 OH H

3

2.5. Minimal topological differences (MTD)

The parameter that takes into account the steric properties of whole
chemical structures is the MTD concept (earlier referred to as the mini-
mal steric difference). According to the MTD concept, the affinity of a
drug towards a given receptor decreases linearly with the non-
overlapping volume of the molecule and the receptor cavity. The
hypermolecule approach assumes that:

� all the molecules bind to the same binding pocket, and
� the free-ligand minimum-energy conformation is the same as the
bound ligand.

Since the shape and size of the receptor cavity is not known, the
volume cannot be calculated directly. Therefore an indirect method was
developed in which a “receptor map” derived from the structures within
the sample compounds considered is used instead of the receptor struc-
ture. The non-overlapping volume for a given molecule is then approxi-
mated by the MTD value which is the number of non-overlapping atoms
(hydrogens being neglected) between this molecule and that part of the
receptor map which represents the receptor cavity (Figure 2). The prin-
cipal steps in calculating the MTD are:

1. The structures of all molecules considered are superimposed to give
an artificial hypermolecule, H, representing a topological network
with the atoms as vertices.

2. Each molecule is superimposed over H. As a result a vector of k logical
parameters (k ¼ number of vertices in H), xj (j ¼ 1,…, k), is obtained
which describes its structure. For the i-th molecule, xj is defined as: xij
¼ 1, if the j-th vertex in H is occupied by an atom of the compound i;
and xij ¼ 0, if not.

3. An initial guess is made as to which vertices of the supermolecule H
fall into the receptor cavity, the cavity wall or outside the receptor
binding site by assigning a ternary parameter εj to each vertex: εj ¼ -1, if
vertex j belongs to the space of the receptor cavity; εj ¼ 0, if vertex j is
outside; and εj ¼ þ1, if vertex j belongs to the wall of the cavity.

Minimal topological difference for the i-th molecule,
R3 IC50 (μM)

4-chlorophenyl 0.697

3,4-dichlorophenyl 1.343

3-chlorophenyl 1.336

3-methoxyphenyl 2.530

2,3-dimethoxyphenyl 3.126

2,5-dimethoxyphenyl 4.276

4-bromophenyl 1.581

α,α,α-trifloromethylphenyl 0.760

biphenyl 3.006

2-florophenyl 9.495

4-florophenyl 2.446

4-chloro-3-nitrophenyl 6.727

5-bromo-2-methoxyphenyl 2.226

2-hydroxy-5-nitrophenyl 35.978

4-methylphenyl 3.955

phenyl 2.304

3-nitrophenyl 1.284

3-bromophenyl 3.550

3-florophenyl 6.787
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Figure 2. Hypermolecule obtained by superposition of the minimum energy
conformations of 19 tetrahydroisoquinoline analogues.

J. Ngo Hanna et al. Heliyon 7 (2021) e07032
MTDi ¼ sþ
XM

εj � xij; i ¼ 1; ::::;N; (4)

j¼1

where s represents the number of points common to all the 19 mole-
cules in the hyperstructure (H), j stands for the vertices and varies
from 1 to 20 in our case. A matrix was constructed for the binary
components xij, which can take the value of 1 or 0, depending on
whether the vertex j is respectively occupied by an atom of molecule i
or not. We therefore obtained a (19 � 20) matrix representing our 19
molecules and 20 vertices. The values of the entries of the matrix εj ¼
could either be -1, 0 or þ1 respectively representing the vertices
supposed to belong to the cavity of the receptor (hence of benefit to
Figure 3. Superposition of the minimal energy conformations of the 19 tetra-
hydroisoquinoline analogues using the MOPAC method from MOE software
(Chemical Computing Group Inc, 2010).

4

biological activity), to the exterior of the receptor (not relevant for
activity) and to the receptor walls (detrimental for activity) (Duda--
Seiman et al., 2006). Figure 3 shows the superposition of the confor-
mations of minimal energy. The hypermolecule that is formed by this
superposition has 20 vertices and it is presented in Figure 4. Molecular
modeling and MTD were performed with the geometry optimized
structure of the 19 molecules using the MOE package (Chemical
Computing Group Inc., 2010). The 19 antimalarial agents minimal
energy conformations optimized with B3LYP (Becke, 1988; Clark
et al., 1983; Curtiss et al., 1992; Ditchfield et al., 1971; Francl et al.,
1982; Frisch et al., 1984; Hariharan and Pople, 1974; Hehre et al.,
1972; Lee et al., 1988; Wiberg, 2004) of the DFT with the 6-311þG (d,
p) basis set, were superposed on the most active molecule (1) of
Table 1.
2.6. Other molecular descriptors

11 descriptors that best fit the regression model were selected by the
QuaSAR-Contingency of MOE and 10 descriptors are described as
follows:

2.6.1. Hydrophobicity parameter
Hydrophobicity or lipophilicity is measured as the relative affinity of

a molecule for a non-polar phase versus that for water. The partition
coefficient of a molecule is very important for drug activity. The loga-
rithm of the partition coefficient for n-octanol/water (logP) is a property
that governs its partitioning into a non-aqueous phase (n-octanol). It was
determined using the BROOD software provided by OpenEye (Advanced
Chemistry Development, Inc., 2010). The smaller values of logP imply an
increase in hydrophobicity of the solute.

2.6.2. Molar refractivity
Molar refractivity is related to the polarizability of a substance. It

characterizes the size of the substituents and the steric effect in inter-
molecular interactions. Molar refractivity terms are interpreted to reflect
drug-receptor dispersion interaction. It is the additive and constitutive
property of a compound which is easily and unambiguously measurable.
This was computed using the ACD-Lab software (Advanced Chemistry
Development, Inc., 2010), as defined in Eq. (5).
Figure 4. Geometry optimized structure of the most active 6-hydroxy-1,2,3,4-
tetrahydroisoquinoline molecule (1).
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Figure 5. Scaffold structure and position of R-groups indicates.
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MR¼4
3
πNα; (5)
where π is the usual irrational real number¼ 3.1416, N is the Avogadro's
number and α is polarizability.

2.6.3. Potential energies and electrostatic energies and number of rotatable
bonds

These descriptors were computed using the MOPAC module of the
MOE package (CCG Inc., 2010) and represented as Ep.

2.6.4. Dipole moments
This was determined from the geometry optimized structures derived

from Gaussian 09W (Gaussian, Inc., 2009a, 2009b).

2.6.5. Chemical hardness
This was computed as the difference between the energies of the

lowest unoccupied molecular orbital (LUMO) and the highest occupied
molecular orbital (HOMO), as proposed by Parr, Yang and Pierson (Parr
and Yang, 1989; Parr and Pearson, 1983), with the LUMO and HOMO
energies (eq. (1)) derived from the geometry optimized structures.

2.6.6. Electrophilicity
The global electrophilicity indices (ω) of the molecules, Eq. (2), which

represent their electrophilic character, were defined from Eqs. (1) and (3)
Table 2. Computed molecular descriptors for the training set, used to obtain the QSA

# logP MR TDPSA μD

1 3.0 73.39 32 1.8076

2 3.6 78.20 32 2.9481

3 3.0 73.39 32 2.2771

4 2.2 75.05 41 2.2664

5 2.3 81.52 50 3.2212

6 2.1 81.52 50 3.1697

7 3.2 76.21 32 1.8277

8 3.3 74.56 32 3.1778

9 4.2 93.73 32 1.0667

10 2.8 68.81 32 2.2028

11 2.5 68.81 32 1.6401

12 2.4 79.54 78 5.8340

13 3.0 82.68 41 2.9018

14 1.2 76.52 98 5.1969

15 2.7 73.63 32 1.4431
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from the electronic chemical potential values (μ) and their chemical
hardness (η).

The electrophilicity index value (ω) of each molecule was defined by
Eqs. (2) and (3) as encompassing the propensity of the electrophilic
molecule to acquire an additional electronic charge (i.e. the square of the
electronic chemical potential (μ2)), which is actually the square of its
electronegativity as well as its resistance of the molecular system to ex-
change electronic charge with its environment, as defined by η (Domingo
et al., 2002; Lacerda et al., 2010).

2.6.7. Two-dimensional polar surface area (TDPSA)
This was computed using BROOD software (OpenEye Scientific

Software, Inc., 2006).

2.7. Fragment search and filtering for pharmacokinetic properties of
suitable analogues

In the design of antimalarial agents, we made use of the following
core structure, as shown in Figure 5. Some suitable fragments for the
bioisosteric replacement at positions R1/2 and R3 were selected using the
MedChem Transformation module of MOE (Chemical Computing Group
Inc., 2010). The proposed analogues were then designed and geometry
optimized using the previously described procedure, molecular de-
scriptors for the QSAR were then calculated and used to determine the
predicted pIC50 values, while the pharmacokinetic properties were pre-
dicted using QikProp (Schr€odinger, 2009). These proposed analogues
were then used to design suitable ligands to be screened. An initial
designed fragment search from a subset of aromatic and hydrophobic
fragments was selected as suitable and diverse enough for replacements
at the positions R1/2 and R3 according to Figure 5. This was used to design
a combinatorial library using medicinal chemistry rules implemented in
the CombiGen modules of the MOE package (CCG Inc., 2010), following
a previously described methodology (Frecer et al., 2009). The analogues
designed were further filtered for properties known to drug-like com-
pounds (Lipinski's criteria for drug-likeness), i.e, molecular weight be-
tween 0 and 750 g/mol, n-octanol/water LogP between -2 and 6.0,
number of donors and acceptors between 1 and 20 and number of
rotatable bond between 1 and 15 from Qikprop (Schr€odinger, 2009).

2.8. ADME prediction

Descriptors often used to predict the absorption, distribution, meta-
bolism and excretion (elimination) of compounds were computed using
the QikProp software by implementing methods developed by the
R models.

Ep MTD η ω

48.4335 45 0.0979 0.0889

49.1185 29 0.0960 0.0977

46.2053 45 0.0.987 0.0874

57.1440 43 0.0997 0.0743

78.5233 42 0.0998 0.0717

71.9990 43 0.0936 0.0698

46.5528 45 0.0977 0.0893

50.7209 37 0.0929 0.1064

70.5986 39 0.0912 0.0975

45.4703 57 0.0981 0.0857

45.0356 45 0.0978 0.0878

64.7792 27 0.0685 0.2127

60.0532 45 0.0960 0.0857

58.9141 44 0.0666 0.2035

46.8571 45 0.1000 0.0763

mailto:Image of Figure 5|tif


Table 3. Computed molecular descriptors for the test set, used to validate the QSAR model.

# logP MR TDPSA μD Ep MTD η ω

16 2.4 68.597 32 1.0989 46.5928 61 0.1002 0.0780

17 1.8 74.64 78 5.4562 59.7424 41 0.0664 0.2188

18 3.2 76.215 32 2.2863 46.7146 45 0.0982 0.0887

19 2.5 68.808 32 2.1578 44.9500 45 0.0992 0.0854

Table 4. Statistical parameters of derived QSAR models.

QSAR Model R2 RMSE SDEP F

Q1 0.7434 0.2142 0.2015 9.862

Q2 0.7460 0.2131 0.2131 10.778

Q3 0.7275 0.2207 0.2207 9.797

Q4 0.7434 0.2142 0.2142 10.631
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Jorgensen group (Schr€odinger, 2009). Pharmacokinetically-related pa-
rameters include log P, the aqueous solubility, the partition coefficient
for crossing the brain/blood barrier, the cell permeability parameter
(Caco-2), the binding affinity to human serum albumin, the number of
likely primary metabolic reactions, etc. An overall drug-likeness param-
eter (referred to as #stars) was also computed. This connotes the number
of computed properties derived from QikProp that deviate from the
known range values for 95% of known drugs.
Figure 6. Cross-validated correlation plots for QS

6

3. Results and discussion

3.1. QSAR equation

In order to develop a correlation between antimalarial activity and
the computed molecular descriptors (physicochemical properties), the
Hansch approach was employed. The 19 synthesized compounds were
divided into two sets; a set of 15 compounds for training the models and a
AR models for (A) model 1, and (B) model 2.

mailto:Image of Figure 6|tif


Table 5. Validation of derived QSAR models using residuals.

Validation Set Residual ðpICexp
50 � pICpred

50 Þ RMSE

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

16 0.4043 0.4433 0.4940 0.3860 0.2870 0.1891 0.2131 0.1134

17 1.0077 1.2516 1.2906 1.0546 0.2234 0.2148 0.2365 0.1248

18 -0.2339 -0.2801 -0.2649 -0.2045 0.1145 0.1236 0.2135 0.2341

19 -0.5693 -0.5030 -0.4768 -0.5621 0.1478 0.2897 0.1278 0.2358
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test set of 4 compounds for validation (Table 1). The computed molecular
descriptors for the compounds in the training and test sets are repre-
sented in Tables 2 and 3. Sequential multiple linear regression (MLR)
analysis was conducted on the training set compounds with the goal of
establishing a correlation between physicochemical properties and
experimental activities.

Several equations were obtained, with the best correlation co-
efficients being between 0.74 and 0.75 [Eqs. (6), (7), and (9)]. Only the
QSAR model shown in Eq. (8) had an R2 value of less than 0.74. The
squared correlation coefficients (R2) of the QSAR models Q1, Q2, Q3 and
Q4 were very similar, only varying within narrow limits. Besides, all the
root mean square error (RMSE) values were located between 0.213 and
0.221. A high correlation coefficient and low RMSE value both show that
the QSAR models could be considered to be statistically valid. All the
Figure 7. Cross-validated correlation plots for QS

7

models were further validated by Fischer statistics. The statistical pa-
rameters of the 4 best QSAR models have been shown in Table 4 (Q1, Q2,
Q3, and Q4).

The regression analysis correlating all the molecular descriptors with
activity was obtained as follows, for the 4 best QSAR models derived:

Model 1

pIC50
exp ¼ – log10IC50 ¼ 2.300 - (0.032 x MTD) – (0.025 x TDPSA) - (0.132 x

log P) - (0.001 x Ep), (R
2 ¼ 0.743, RMSE ¼ 0.214) (6)

Model 2

pIC50
exp¼ – log10IC50¼ -1.815 - (0.031 x MTD)þ (0.012 x TDPSA) - (14.812 x

η) - (0.008 x Ep), (R
2 ¼ 0.746, RMSE ¼ 0.213) (7)
AR models for (A) model 3, and (B) model 4.
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Figure 8. R3 fragments used in the design of library of anti-malarial agents.
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Model 3

pIC50
exp¼ – log10IC50¼ 1.966 - (0.033 x MTD) – (0.139 x log P) - (13.652 x ω) -

(0.013 x Ep), (R
2 ¼ 0.728, RMSE ¼ 0.221) (8)

Model 4

pIC50
exp ¼ – log10IC50 ¼ 2.283 - (0.032 x MTD) – (0.132 x log P)þ (0.003 x η) -

(0.025 x TDPSA), (R2 ¼ 0.743, RMSE ¼ 0.214) (9)

The cross-validated correlation plots for models Q1 and Q2 have been
shown in Figure 6, while those for models Q3 and Q4 have been shown in
Figure 7.

The regression relations include the minimal topological differences
(MTD) of each molecules, which is a representation of the steric factor,
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Figure 9. Chemical structures of predicted activities of six theoretically most
potent analogues of 6-hydroxy-1,2,3,4-tetrahydrosioquinoline designed against
P. falciparum.
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as well as polarity (represented by the TDPSA parameters), the lip-
ophilicity (represented by the computed logP values), the total poten-
tial energies from the forcefield, (which includes the electrostatic
energies and changes due to number of rotatable bonds), the chemical
hardness (η), and the electrophilicity (ω). The parameters not included
in the best models included dipole moments, number of rotatable bonds
and molar refractivity. Each model was internally validated by its
ability to predict the activities (experimental pIC50s) by using the leave-
one-out (LOO) method, leading to cross-validated correlation co-
efficients that could explain about three quarters (~75%) of the
observed activities. Besides, each model showed low standard deviation
of error prediction (SDEP) values (<0.22) and low root mean square
error (RMSE) values (<0.22). F-statistics was used to access the statis-
tical significance of each QSAR equation. Eq. (10) was used to deter-
mine the F-test:

Fp2�p1;n�p2 ¼ SSmean � SSpred
SSmean

� n� p2
p2� p1

(10)

where SSmean is the sum of squares of the residuals or the differences
between the (measured) experimental activities and their mean value,
SSpred is the sum of squares of the differences between the experimentally
measured activities and their respective predicted activities, n is the
number of compounds in the training set (15), while p1 and p2 are the
respective number of parameters in the derived reference equations, i.e.
Eqs. (6), (7), (8), and (9), i.e. for each of these equations, p1¼ 4 and p2¼
5. In this scenario, all F-values are referred to as F5-4,15-5, i.e. F1,10 and
have been shown in Table 4, all ~10, indicating that the probability level
of the significant correlations lie between 0.9 and 0.95.

It must be also mentioned that the regression coefficients of the MTD
parameter are negative in all derived models, implying that bulkiness
(the steric factor) rather plays a negative role in binding towards the
putative receptor. In designing more active analogues to this compound
series, we had to be careful to avoid bulky groups and very polar groups
(since the regression coefficients for TDPSA are also negative for models
Q1 and Q4, corresponding to Eqs. (6) and (9)). This is also verified by the
fact that the least active training set compounds (i.e. compounds 12 and
14), having IC50 values of 6.727 and 35.978 μM, respectively, had the
highest computed TDPSA values (78 and 98, respectively).

Each model was validated against the 4 compounds included in the
validation set (not initially used to derive the models Q1 to Q4), showing
the abilities of the models to predict the experimentally verified activ-
ities. This was represented by residuals (differences between experi-
mental and predicted activities (Table 5)).

It was observed that the residual values showed that all four models
were able to accurately predict the experimental pIC50 values (with re-
siduals less than 0.5), except for compound 17. It must be noted that
compound 17 is the only nitro-containing compound in the test set (we
also note that there are only two nitro-containing compounds within the
training set, when compared with the other chemotypes like fluro,
chloro, bromo and methoxy groups). Besides, the nitro compounds in the
training set represents the weakest activities, meaning that their contri-
bution towards the QSAR models could be insignificant. This observation
could either be explained by the fact that the parameters used to derive
models Q1 to Q4 were not accurately computed for the nitro compound
or that the nitro compound simply did not fall within the domain of
applicability of the derived QSAR models (Q1 to Q4).

mailto:Image of Figure 8|eps
mailto:Image of Figure 9|eps


Table 6.Molecular weights (MW) and computed QSAR descriptors and predicted activities of six theoretically most potent analogs of 6-hydroxy-1,2,3,4-tetrahydrosio-
quinoline designed against P. falciparum.

Analog LogPa MWb NRBc MTD TDPSAc Ep η ω pICpred
50

(Model 1)
pICpred

50

(Model 2)
pICpred

50

(Model 3)
pICpred

50

(Model 4)
ICpred

50 (μM,
Model 1)

ICpred
50 (μM,

Model 2)
ICpred

50 (μM,
Model 3)

ICpred
50 (μM,

Model 4)

TIQ-02 2.2 255.31 2 43 41 55.064 0.827 0.068 -0.446 -15.341 -1.400 -0.406 2.796 2.196 25.132 2.546

TIQ-03 2.1 260.72 1 45 45 34.274 0.971 0.459 -0.576 -17.321 -6.520 -0.556 3.771 2.092 33.113 3.600

TIQ-04 3.1 298.77 1 37 48 45.084 0.372 0.152 -0.538 -8.255 -2.346 -0.509 3.454 1.800 221.685 3.229

TIQ-08 1.7 260.72 1 45 45 75.038 0.594 0.418 -0.564 -12.070 -6.439 -0.505 3.668 1.175 27.459 3.196

TIQ-09 2.3 249.69 1 43 45 92.87 0.547 0.068 -0.597 -11.458 -1.914 -0.520 3.958 2.868 82.004 3.311

TIQ-10 2.1 248.71 1 43 48 38.495 0.408 0.170 -0.592 -8.928 -2.565 -0.569 3.906 8.466 367.120 3.707

a P is defined as the n-octanol/water partition coefficient.
b MW is the molecular weight of the compound.
c NRB is the number of rotatable bonds and TDPSA is the two dimensional polarity surface area (logp P, MW, NRB, 2DPSA were calculated using BROOD [12]).

Table 7. Computed ADMET-related parameters for newly designed analogs.

Hits #stars MW SASA FOSA Volume NRB HBdon HBacc logPo/w logSwat logKhsa logBB BIPcaco #metab

TIQ-02 0 255.32 501.228 197.373 858.666 2 2 3 2.423 -2.642 0.21 0.172 466.401 4

TIQ-03 0 260.72 488.775 110.363 821.025 1 2 2.5 2.512 -3.019 0.234 0.258 327.856 4

TIQ-04 0 298.77 523.246 108.051 903.608 1 3 2.25 2.892 -3.412 0.365 0.216 306.337 3

TIQ-08 0 260.72 489.188 108.839 822.53 1 2 3.25 2.315 -2.853 0.132 0.324 384.408 4

TIQ-09 0 249.69 466.843 117.788 775.681 1 2 2.000 2.497 -2.748 0.185 0.405 458.461 4

TIQ-10 1 248.71 473.853 116.618 785.775 1 3 1.5* 2.285 -2.684 0.139 0.172 263.105 3

MW: molecular weight in Da (range for 95% of drug: 130-725Da).
SASA: total solvent-accessible molecular surface, in Hydrophobic portion of the solvent-accessible molecular surface, in Å2 (range for 95% of drug: 300-750Å2).
Volume: total volume of molecule enclose by solvent-accessible molecular surface, in Å3.
NRB: number of rotatable bonds (range for 95% of drug: 0–15).
HBdon: number of hydrogen bonds donated by the molecule (range for 95% of drug: 0–6).
HBacc: number of hydrogen bonds accepted by the molecule (range for 95% of drug: 2–20).
LogPo/w: logarithm of partition coefficient between n-octanol and water phases (range for 95% of drug: -2 to 6).
LogSwat: logarithm of aqueous solubility (range for 95% of drug: -6.0 to 0.5).
LogKhsa: logarithm of predicted binding constant to human serum albumin (range for 95% of drug: -1.5 to 1.2).
LogBB: logarithm of predicted blood/brain barrier partition coefficient (range for 95% of drug: -3.0 to 1.0).
BIPcaco: predicted apparent caco-2 cell membrane permeability in Boehringer-ingelheim scale in nm/s(range for 95% of drug: <5 low, >100 high).
#metab: number of likely metabolic reactions.
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3.2. Novel analogues

3.2.1. Fragments for library design
These consisted of 7 R3 fragments presented in Figure 8. Other po-

sitions of the scaffold, apart from position R3 were also modified to
improve on the activity. The compounds obtained include those shown in
Figure 9.

3.2.2. In silico search
The best designed analogues of 6-hydroxyl-1,2,3,4-tetrahydroisoqui-

noline were screened in silico by using the calculated molecular de-
scriptors used to derive the four QSAR Eqs. (6), (7), (8), and (9). The
predicted antimalarial activities of the analogues designed within this
study were then computed using the specific QSAR equations (Q1 to Q4),
shown in Eqs. (6), (7), (8), and (9). The analogues were then ranked
according to the predicted antimalarial activities according to the esti-
mated pIC50 values. The analogues showing the highest predicted ac-
tivities (referred to as virtual hits) have been shown in Table 6. The
design analogue with the most promising antimalarial activity, TIQ-08,
contains two aromatic rings, one heterocyclic aromatic ring (R3-group)
attached to the heterocyclic cyclohexane ring that fills the hydrophobic
and aromatic pocket occupied by the 4-chlorophenyl in the most active
compound in the training set. This compound was predicted to have an
IC50 value of 1.175 μM according to the QSAR Model 2.
9

3.2.3. ADME-related properties and hit prioritization
Incorporation of ADME properties into lead selection is very impor-

tant in order to determine the pharmacokinetic properties of the selected
virtual hits. Some pharmacokinetically-relevant molecular properties
computed for the TIQ-analogues were used to prioritize the choice of
virtual hits for further development. Some 13 of these descriptors have
been shown in Table 7 (the chemical structures are shown in Figure 9).
The overall ADME-compliance is reflected by the low values of #stars.
the parameter that indicates the number of properties falling out of the
optimal range of values for 95% of known drugs. The six designed ana-
logues with the best computed antimalarial activities and pharmacoki-
netic profiles have been shown, with only one compound (TIQ-10, Figure
9) violating the optimum range of the ADME-related properties in one
descriptor. We expect that some of these designed analogues could
further be developed.

4. Conclusions

This study involved the use of computer models to generate a library
of small molecules based on the hydroxyl-1,2,3,4-tetrahydroisoquinoline
core, which includes compounds with predicted antimalarial activities.
The designed analogues with the predicted activities show IC50 values
within the vicinity of the most active compounds in the training set, but
with favourable predicted pharmacokinetic parameters. The most
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promising designed analogues were shown to be drug-like molecules and
have predicted favourable ADMET profiles. The importance of the study
is highlighted by the fact that the proposed analogues could help
chemists interested in preparing novel THIQs with the potential to be
developed into next generation antimalarials.
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