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Neuroscience from the comfort
of your home: Repeated,
self-administered wireless dry
EEG measures brain function
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Recent advances have enabled the creation of wireless, “dry”

electroencephalography (EEG) recording systems, and easy-to-use engaging

tasks, that can be operated repeatedly by naïve users, unsupervised in the

home. Here, we evaluated the validity of dry-EEG, cognitive task gamification,

and unsupervised home-based recordings used in combination. Two separate

cohorts of participants—older and younger adults—collected data at home

over several weeks using a wireless dry EEG system interfaced with a tablet for

task presentation. Older adults (n = 50; 25 females; mean age = 67.8 years)

collected data over a 6-week period. Younger male adults (n= 30; mean age=
25.6 years) collected data over a 4-week period. All participants were asked to

complete gamified versions of a visual Oddball task and Flanker task 5–7 days

per week. Usability of the EEG systemwas evaluated via participant adherence,

percentage of sessions successfully completed, and quantitative feedback

using the System Usability Scale. In total, 1,449 EEG sessions from older adults

(mean = 28.9; SD = 6.64) and 684 sessions from younger adults (mean =
22.87; SD = 1.92) were collected. Older adults successfully completed 93% of

sessions requested and reported amean usability score of 84.5. Younger adults

successfully completed 96% of sessions and reported a mean usability score

of 88.3. Characteristic event-related potential (ERP) components—the P300

and error-related negativity—were observed in the Oddball and Flanker tasks,

respectively. Using a conservative threshold for inclusion of artifact-free data,

50% of trials were rejected per at-home session. Aggregation of ERPs across

sessions (2–4, depending on task) resulted in grand average signal quality
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with similar Standard Measurement Error values to those of single-session

wet EEG data collected by experts in a laboratory setting from a young adult

sample. Our results indicate that easy-to-use task-driven EEG can enable

large-scale investigations in cognitive neuroscience. In future, this approach

may be useful in clinical applications such as screening and tracking of

treatment response.

KEYWORDS

electroencephalography, longitudinal, cognition, gamification, humans, dry

electroencephalography, Standard Measurement Error, signal quality

Introduction

Reliable, objective assessment of brain function is a crucial

part of the evidence base for cognitive neuroscience and for

the characterization of neurodegenerative, neurodevelopmental,

and neuropsychiatric disorders. Many external factors can

affect measurements of cognitive functioning, including mood,

stress, and energy levels (1–8). As such, measuring brain

activity at any single time point may not accurately reflect a

person’s typical neurocognitive profile. Furthermore, individual

and group-level estimates of neurophysiological phenomena

may improve with aggregation over larger samples—the same

principle that underlies the use of repeated samples in a single

behavioral or neuroimaging experimental session. Repeated

recording of brain activity—over many days—may therefore

allow for the identification of more reliable metrics of brain

function and cognitive performance, that account for day-to-day

variability (9–11).

EEG is the longest-established and most validated

technology for sampling brain function (12), with a deep and

broad literature establishing key neurophysiological measures

of specific cognitive domains including executive function,

memory, sensory processing and motor planning/execution

(13–16). Recent progress in EEG technology presents additional

opportunities for identifying reliable neurocognitive metrics

and biomarkers (9–11, 17, 18). For example, advances in sensor

development, signal processing, and cloud-based technologies

have led to the creation of wireless, dry EEG recording systems

that can be operated remotely and repeatedly by naïve users

(11, 18–21). As a result, EEG data can now be collected

frequently by research participants themselves over days, weeks,

or months.

To date, evaluation of dry EEG has consisted of direct

comparisons with conventional wet (i.e., electrolytic gel or

water-based) technology or test-retest assessments in controlled

environments (9, 10, 18, 19, 22–24). While these studies

demonstrated that dry EEG can perform similarly to wet EEG

in controlled settings, they did not address the question of EEG

feasibility and variability in ecologically valid environments. In

particular, the usability of self-administered EEG as well as the

amount of data (i.e. trials, sessions) required from at-home

settings when data is self-recorded is unclear.

One challenge with repeated neurocognitive testing

protocols is maintaining participant engagement over extended

periods (25, 26), as has been investigated more extensively in

purely behavioral testing (27–32). Neurocognitive tasks used in

EEG research often require participants to respond to simple

geometric stimuli presented on a uniform background, with

deliberately little variation among trials over several minutes.

Maintaining adherence to these tasks in the home environment

is challenging (28, 33, 34), leading to elevated attrition rates that

reduce sample sizes, waste participant effort, and bias results

(35, 36). Gamification of laboratory paradigms—adding game-

like features (points, graphics, levels, storyline, etc.,)—may

address these problems by keeping participants engaged for

longer (26, 37, 38). For example, a gamified behavioral spatial

memory task administered longitudinally was more effective at

classifying high-risk Alzheimer’s disease (AD) participants than

traditional neuropsychological episodic memory tests (39).

The Oddball and Flanker tasks are two of the most widely

used neurocognitive tasks in EEG research that produce

characteristic event-related potential (ERP) components,

making them ideal candidates for gamification. These tasks

are sensitive to individual differences in attentional allocation,

processing speed (40), and error awareness (41, 42), as

well as group differences in executive functioning (43) and

decision making (40, 44). The Oddball task elicits the P300

ERP—a positive voltage deflection over centro-parietal areas

approximately 300ms post-stimulus, which is thought to reflect

decision making, attention and working memory processes

(40, 45–48). The Flanker task elicits the error-related negativity

(ERN)—a negative voltage deflection observed fronto-centrally

after an erroneous response, which is thought to reflect adaptive

response (43, 49, 50) and attentional control processes (50).

The ERN is followed by a posterior positive rebound, known

as the Error Positivity (Pe), which is linked to conscious error

recognition (51). The ERN and Pe are typically computed

by subtracting response-locked ERPs extracted from Correct

trials to response-locked ERPs extracted from incorrect trials.

Response-locked ERPs extracted from Correct trials consist
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of a positive deflection between 0 to 50ms after a correct

answer while Error trials consist of a negative deflection peaking

50–100ms after an erroneous response. In previous work, we

demonstrated the face validity of gamified visual oddball and

flanker EEG tasks (52). Our analyses demonstrated that ERPs

evoked from gamified tasks yield signals similar in morphology

and topography to those evoked by standard neurocognitive

tasks used in EEG research. Here we aim to further that

validation by looking at the variability of signals over repeated

at-home sessions.

A key question when designing ERP studies is the strategy

taken to balance the quality and quantity of data recorded, as

this will have an effect on the statistical power of experimental

analyses. In laboratory environments it is straightforward to

control signal quality, but noise and artifacts still occur, meaning

choices must be made in how participants and/or individual

behavioral trials (and the EEG epochs they correspond to) are

included or excluded—whichmay bemore liberal (lower quality,

higher quantity) or conservative (higher quality, lower quantity).

The desire to record more trials, over a longer task duration,

must be balanced against considerations of a fair burden on

users, and the fact that participants may become fatigued and/or

disengaged over time. In a remote study, self-administered by

non-experts, there are additional challenges to quality (which we

may expect to be more variable than in controlled laboratory

settings), but opportunities for data quantity, as it is feasible

to ask participants to split a larger amount of task-driven

behavioral interaction over a number of days. In this paper

we explore this question in the context of gamified tasks that

should encourage repeated task engagement, and with older and

younger user groups for which usability and familiarity with

technology may be an issue.

Here, we conducted post-hoc analyses of two pre-existing

datasets collected for other purposes. Longitudinal dry EEG data

were collected from two separate cohorts: older adults aged 55+
years over 6 weeks (53), and younger adults aged 18–35 over

4 weeks (54). In the younger adult study, a pharmacological

challenge with ketamine was used in a cross-over design, but

the EEG data reported here was from the non-ketamine control

condition only. Participants were asked to complete gamified

Oddball and Flanker tasks 5–7 times per week while EEG

was simultaneously recorded. We sought to evaluate if dry

EEG recorded in the home by unsupervised participants over

multiple sessions could yield datasets of the same aggregate

quality as published results derived from a single wet EEG

session recorded in a controlled environment. We evaluated

dry EEG signal quality and usability by cohort (older vs.

younger adults) and by gamified task (Oddball vs. Flanker).

We expected that, when comparing equal numbers of trials,

the signal quality of dry EEG would be lower than that of

wet EEG; however, we predicted that similar signal quality

could be achieved by aggregating dry EEG data across multiple

sessions from each participant. To our knowledge, no published

study has quantified the variability of self-administered EEG

recorded remotely in younger and older population via gamified

neurocognitive tasks.

Methods

Participants

Younger adult cohort

These data originated in a pharmacological challenge

study investigating the acute and persisting effects of racemic

ketamine (54). Participants were recruited either via public

announcements or from an existing database of participants

who took part in previous studies of the Clinical Affective

Neuroimaging Laboratory (CANLAB) & Leibniz Institute

for Neurobiology, Magdeburg, Germany. Right-handed male

participants aged 18–55 years were included in the study.

Exclusion criteria were a current or lifetime major psychiatric

disorder, including substance or alcohol dependence or abuse,

according to DSM-IV; family history of psychiatric disorders as

assessed by a demographic questionnaire; and neurological or

physical constraints or severe illnesses as evaluated by a study

physician during screening. Only males were recruited in this

study to reduce variability in the sample. Further exclusion

criteria were technological barriers to completing the assessment

at home (e.g., lack of Wi-Fi connection) and color-blindness.

Participants were compensated with €500 (∼US$625), which

participants received after their involvement in the study, but

that amount was not pro-rated to session-wise adherence.

This study was approved by the Institutional Review Board of

the Otto-von-Guericke University Magdeburg, Germany, and

informed consent was obtained from all participants.

Older adult cohort

The data analyzed here were collected as part of a larger

study on memory performance in healthy aging. Participants

were drawn either from an existing database of older adults

who had previously taken part in research studies at Trinity

College Dublin, Ireland, or recruited directly from the local

community via word-of-mouth, newspapers, posters, and

Facebook advertisements. Participants were included if they

were >55 years old. Exclusion criteria were a current diagnosis

of, or taking medications for, any psychiatric or neurological

illness; substance abuse; color-blindness; or technological

barriers to completing the assessment at home (e.g., lack of

Wi-Fi connection). Participants also completed the Wechsler

Memory Scale Logical Memory test (WMS-IV) (55), the

National Adult Reading Test (NART; a measure of pre-morbid

IQ) (56) and the Montreal Cognitive Assessment (MoCA)

(57). Participation in the dry EEG portion of the study was

contingent on a MoCA score >23 [per Murphy et al. (53)].

All participants were compensated with e20 (∼US$25) at the
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FIGURE 1

Screenshots of the gamified Oddball task. (A) Screenshots of the stimulus presentation, (B) Instruction screen in the Older Adult Study, (C)

Instruction screen in the Younger Adult Study.

end of the screening session. If they agreed to participate in

the at-home part of the study, they received an additional e40

for their participation, which was not contingent on adherence.

The study was approved by the ethics committee of the School

of Psychology of Trinity College Dublin, Ireland, and informed

consent was obtained from all participants.

Tasks

The gamified tasks are proprietary to the technology

provider, and not all details of task mechanisms are in the

public domain. We provide the core information about the task

structure here, as it relates to the user experience of performing

the tasks.

Gamified visual oddball task

Within each session, 30 target stimuli and 70 non-target

stimuli were randomly presented across five levels (blocks) of

gameplay. In the older adult cohort, targets and non-targets

were “aliens” of different colors, expressions, and hairstyles.

Responses were made by tapping directly on the stimuli on

the tablet screen. In the younger adult cohort (data collected

6 months after the first cohort), the game had been modified

in two specific ways: responses were captured by tapping on

buttons located on either side of the screen; and non-target

stimuli were “astronauts”, not aliens. In both studies, the target

aliens changed between levels for variety in gameplay and

to encourage an attentive player strategy. During gameplay,

the upcoming stimulus locations were highlighted prior to

stimulus presentation to encourage user attention, in a manner

functionally similar to a fixation cross. Stimuli (e.g., aliens,

astronauts) were then visible on-screen for 200ms. Points were

awarded for a correct response and deducted for an incorrect

response, in conjunctionwith auditory feedback. Points awarded

for correct responses were mapped to reaction time (faster

responses gained more points) to encourage attention and

faster response. Each gameplay session lasted approximately

12min. Screenshots of the gamified Oddball task are presented

in Figure 1. Task graphics were designed with a color-blind-

safe palette.

Gamified adaptive flanker task

At the beginning of each trial, flanking stimuli—a shoal of

orange fish—appeared first on screen, pointing either leftward

or rightward, followed 200ms later by the target (an identical
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orange fish of the same size) positioned in the center of the array.

Participants responded by tapping either the left or right side of

the screen, matching the direction in which the central target

stimulus was pointing. The flanking stimuli pointed either in the

same direction as the target (a “congruent” trial), or the opposite

direction (an “incongruent” trial). The background color

changed between levels for variety in gameplay. Participants

were encouraged not to exclusively prioritize accuracy over

speed in two ways: the response time window was shortened

with correct responses and lengthened with incorrect responses,

and higher points were awarded for quicker responses. These

constraints and incentives were designed such that the ideal

strategy for maximum points was to respond as quickly as

possible and therebymake somemistakes. Gameplay adjustment

values were calibrated to produce sufficient numbers of incorrect

responses per session (typically between 10–20%) to enable

ERP averaging. The task consisted of 150 trials divided into

5 blocks of 30 trials each, evenly split between congruent and

incongruent trials. Each session took approximately 7min to

complete. Screenshots of the gamified Flanker task are presented

in Figure 2. Task graphics were designed with a color-blind-

safe palette.

EEG acquisition

We used a wireless 16-channel dry sensor EEG

headset developed by Cumulus Neuroscience (Cumulus;

www.cumulusneuro.com). Flexible Ag/AgCl coated polymer

sensors of a comb-design (ANT-Neuro/eemagine GmbH) were

used to achieve a stable and dermatologically safe contact

to the scalp at 16 channels (10:10 locations: O1, O2, P3,

Pz, P4, Cz, FT7, FC3, FCz, FC4, FT8, Fz, AF7, AF8, FPz;

Supplementary Figure S4). The left mastoid was used for

reference and the right mastoid for driven-bias, with single-use,

snap-on electrodes attached to wires extending from the headset

(Figure 3). The headset has an input impedance of 1 G�

with features including common-mode rejection, and built-in

impedance checking. The electronics and sensors are mounted

on a flexible neoprene net for comfort and the stretchable

structure was designed to enable consistent placement by

non-experts in line with the 10-10 sensor system. An onboard

processor and Bluetooth module transmitted 250Hz EEG data

to an Android tablet, from where it was transferred to a secure

cloud server for storage and processing.

Procedure

Younger adult study protocol

This study was a placebo-controlled, double-blind,

randomized, cross-over study designed to investigate the acute

and persistent effects of ketamine on EEG and behavioral

FIGURE 2

Screenshots of Gamified Adaptive Flanker task. (A) Instruction

screen, (B) Screenshots of the stimulus presentation.

measures. Participants were invited to the laboratory on five

different occasions to complete repeated measurements: at

enrolment/screening (visit 1); on the days of infusion of

ketamine or saline placebo (visits 2 and 4); and on the days after

infusion (visits 3 and 5). The two infusion days took place 4

weeks apart following the same study protocol, while timing

of ketamine or saline administration was counter-balanced.

Throughout the study, additional task-driven EEG data

collection was remotely performed by participants unsupervised

in the home, for a week period prior to and after each infusion

session (four weeks in total). As the focus of this study

was to evaluate usability and fidelity of dry EEG recording,

pharmacological effects are not described here: only EEG data

collected prior to ketamine administration intervention are

analyzed. In contrast, the adherence report encompasses all

sessions collected during the entire study.

Enrolment session in-lab

The enrolment session, including screening examination,

was performed between 21 and 7 days prior to the first infusion

session for each participant. After having the purpose and risks

of the study explained, all subjects signed an informed consent

form, provided a detailed medical history, and completed a

screening that consisted of physical, neurological and psychiatric

examinations, electrocardiography, and blood draws for clinical

laboratory testing (including serology). Then, participants were

trained in the use of the recording platform and completed the
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FIGURE 3

Cumulus dry EEG recording headset. (A) Positioning of the headset on the head. (B) Interior of the dry EEG cap. (C) Dry EEG electrode. (D)

Screenshot of the built-in calibration step in the mobile app. Figure adapted from McWilliams et al. (52).

full suite of tasks plus two additional standard laboratory tasks

under dry EEG, all under supervision of a researcher. At the

end of the session, participants were given the EEG headset

and tablet to take home to carry out their at-home sessions

unsupervised. At the enrolment session dry EEG onboarding,

familiarization and initial recordings with these two tasks took

about 45 min.

At-home phase

Participants were instructed to perform daily recordings

during the weeks before and after each infusion session, for

a total duration of 4 weeks. Pre-infusion recordings served

to track initial learning/habituation effects and establish an

at-home baseline condition. Post-infusion at-home recordings

were intended to explore any prolonged drug effects that persist

in the days after infusion. Each recording session (including

set-up and calibration for signal quality) lasted approximately

45min. Participants were instructed to complete their sessions in

a quiet place at home around a regular time of the day between

5–9 pm, when they would not be disturbed. The at-home task

list included gamified mismatch negativity, visual Oddball, and

Flanker tasks, and a 7-min resting state recording with eyes open

and closed. Only data extracted from the gamified Flanker and

Oddball tasks are presented here.

Older adult study protocol

Participants were asked to complete a suite of gamified tasks

5 days per week for 6 weeks: visual Oddball, Flanker, N-back,

and delayed match-to-sample tasks, plus resting state, during

simultaneous dry EEG recordings, unsupervised in the home

using the dry EEG recording platform. Due to the cumulative

length of the tasks, they were split across two alternating daily

protocols, meaning that the Oddball and Flanker games were

scheduled on every second day of participation.

Enrolment session in-lab

Participants were invited to the laboratory to be trained

on the dry EEG platform use. Upon arrival, they provided

informed consent and were fitted to the correct headset size.

Participants then completed a training session on how to use

the headset and tablet. This training was led by a research

assistant and explained how to: log into the application; put

on the headset following the in-built, step-by-step instructions

of the mobile app delivering the task suite; and a practice run
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of each game until they felt confident playing the game. After

training, all tasks were performed under dry EEG. Participants

were then given the EEG headset and tablet to perform the at-

home recordings. This initial session lasted ∼2 h, with dry EEG

onboarding, familiarization and initial recordings with these

two tasks took ∼1 h. Participants were the sole recipient of the

training on how to use the platform (i.e., no study partners

or carers were involved in the study nor participated in this

onboarding session).

At-home phase

Each daily session comprised a resting state recording with

eyes open and closed (1min each) and two of the four games

(alternating between sessions). Participants were instructed to

complete their EEG sessions in a quiet place at home at any

time that would suit them, when they would not be disturbed.

Sessions carried in the home lasted <30min. The gamified

Oddball, Flanker and delayed match-to-sample tasks lasted

about 12, 7 and 10min, respectively. Resting state recordings

lasted ∼2min, the N-back tasks ∼ 5min. Only data extracted

from the gamified Flanker and Oddball tasks are presented here.

The order of the gamified tasks were randomized on each day to

mitigate order and fatigue effects.

Mobile app interface

Upon logging into the app, a stepwise tutorial guided

participants through the headset configuration (head placement,

positioning of detachable mastoid sensors and feedback on

electrode impedances) in preparation for recording data during

the gamified tasks. Cloud-based secure methods were used for

collection and automatic processing of behavioral and EEG data,

as well as integration with other data streams (in these studies

participants wore a fitness tracker, the Withings Go, https://

www.withings.com/) and web-based dashboards for monitoring

and data visualization on a daily, session-by-session basis.

Usability analyses

To quantify the platform usability, we recorded if

participants used the hardware correctly when unsupervised,

and we measured subjective feedback via a usability

questionnaire. To assess how often participants were using

the recording platform, mean number of at-home sessions

completed per week and total mean numbers of sessions per

participant were computed. To assess participants’ ability to

use the recording platform unsupervised, we computed the

percentage of sessions that had successfully been conducted

in the home. Success was defined as complete EEG and

behavioral log files containing all the tasks of the day. We report

the mean percentage of successful sessions per participant.

Participants’ subjective feedback on the technology was

captured via the System Usability Scale, a 10-item industry

standard questionnaire (58) designed specifically to develop

and assess the use of technology in industry. In both studies,

the completion of the SUS questionnaire was optional and

performed at the end of the study after the participants returned

their hardware. It was administrated by the researchers either

over the phone when participants mailed back their equipment,

or in-person when participants dropped by the laboratories to

return their headset and tablet. SUS scores from the younger and

older adults were compared using one-sided non-parametric

Mann-Whitney U rank test to evaluate whether age could

modulate usability.

EEG analyses

The total number of sessions analyzed and contributed by

each cohort is described in Supplementary Table S1. Analyses

conducted on the Younger Adult Study dataset only included

data collected during the week before the pharmacological

interventions to avoid any confounding effects.

EEG preprocessing

At the end of each session, the EEG data were automatically

uploaded to the cloud and the proprietary processing pipeline

developed by the technology provider was applied. This was

designed to verify and correct the integrity of timing information

and exclude bad quality signal portions. Corrective procedures

were applied for missing and anomalous data, including eye and

other characteristic artifacts. After that, EEG signals were pre-

processed with filtering from 0.25–40Hz, epoch extraction, and

baseline adjustment. All data were recorded with a left-mastoid

reference. Oddball task epochs were extracted from 500ms

before target stimulus presentation to 1,000ms after. ERP epochs

were baseline adjusted at each electrode by subtracting the

mean signal in the 100ms time window preceding stimulus

presentation. Epochs from the Flanker task were extracted from

500ms before participant’s responses to 1,000ms after. ERP

epochs were baseline adjusted at each electrode by subtracting

the mean signal in the 100ms time window from 500 to 400ms

before a participant’s response.

As an additional step to improve data quality, noisy epochs

were then identified and removed. Epochs were selected per

channel following a stepwise procedure. First, epochs with an

absolute voltage >100 µV were rejected. In each remaining

epoch, ERP amplitude was correlated with the session average

(the data were ERP amplitudes at each timepoint). Any epoch

with a correlation to the session average of <0.25 was rejected.

This threshold was selected to allow for variability in the retained

data while rejecting trials that diverged themost from the session

average. Following this, a z-score-based data-cleaning approach
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was used to further remove outliers. To do this, a set of temporal

and spectral metrics were calculated and z-scores for eachmetric

were obtained. These temporal and spectral metrics consisted

of the Hurst exponent, kurtosis, median gradient value, range,

variance, standard deviation, and ratio of high frequency to low

frequency power. These metrics are commonly used in EEG data

selection steps (59). First, all epochs with z-scores >15 in any

metric were rejected. Next, any epochs with a Hurst exponent

<0.65 or the spectral peak <0.1, respectively, were rejected.

Finally, any remaining epochs with z-score >4 in any metric

were rejected. Median ERP amplitudes were then calculated as

it is a robust measure of central tendency.

EEG data collection success rate computation

Dry EEG signal quality depends greatly on the specific

hardware and how it is used. To check the amount of usable data

that was kept after the preprocessing and trial selection steps

described above, we calculated success rates of data collection.

We report the mean number of trials available per participants

for each task and condition. The number of sessions surviving

after the preprocessing and trial selection steps (as all trials

in a session could be rejected) were used to calculate the

success rates, as a percentage of the total number of sessions

recorded. For each task, the percentage of successful sessions was

computed for all participants in both studies.

EEG signal variability quantification

At-home data variability

To evaluate signal quality as a function of the number of

trials available, we computed the SMEi for each participant i and

for various number of trials according to the following equation

(60, 61):

SMEi =
σi
√
ni

(1)

where σi corresponds to the standard deviation of the metric

of interest, and ni, to the number of trials available. Luck and

colleagues define the SME as “the standard error of measurement

for an ERP amplitude or latency score.” To keep our analyses

centered on data quality and avoid having to account for the

variability introduced by different peak selection approaches,

we focused on the time-window mean amplitude approach

(60). ERP amplitudes extracted from the Oddball task were

calculated by taking the mean voltage amplitude across the 300-

400 and 400-500ms windows after stimulus presentation for

Target trials for the Younger and Older Adult study, respectively

(see Figures 7, 8 for the suitability of these parameters; the

older adult P300 peaked ∼100ms later than the younger adult

P300). Analyses of the Oddball and Flanker tasks were focused

on electrodes Pz and FCz, respectively. These electrodes were

chosen as the P300 and ERN signals are expected to be maximal

around central and fronto-central regions, respectively (62).

ERP amplitudes extracted from the Flanker task were calculated

by taking the mean voltage amplitude between 0–100ms time

windows after participants’ response for both Correct and

Incorrect trials. The standard deviation of these time-window

mean scores σi was then used to compute the SMEi. The

trials used for the calculation were added in sequential order,

meaning that trials were aggregated as they were recorded: when

calculating the SME for n trials, the first n available trials of a

participant were used.

We report group-level SME for increasing numbers

of at-home trials, aggregated over multiple sessions. The

corresponding 95% confidence intervals were computed as the

standard error of the SME across all participants, divided by the

square root of N, the number of participants. We note that as we

increased the number of trials to aggregate, fewer participants

had sufficient data to be included and we quantify this in each

analysis. SME is compared to the value achieved in the wet EEG

reference dataset, and the number of trials in wet and dry studies,

after their respective trial rejection procedure.

Finally, we tried to answer the question of how much at-

home gamified dry-EEG data is as good or better than a single

session’s worth of laboratory-derived wet-EEG data. This is

not straightforward, as the duration of tasks and rate of trial

presentation were not the same in wet and dry settings. However,

we did project how many pre-rejection trials of home dry-

EEG data would be required to achieve an SME level similar

to laboratory wet-EEG, and therefore how many additional

sessions of dry EEG data collection would be required.

Data quality of dry EEG recordings collected under

supervision in the laboratory

To evaluate the impact on data quality of completing the dry

EEG recordings in the laboratory in a controlled environment

with the supervision of a trained technician, we computed

group-level SME for sessions completed in the laboratory for

both cohorts. The older cohort only completed one session in

the laboratory during their initial on-boarding study visit. For

the younger cohort, 3 sessions were completed in the laboratory

prior any drug administration: during the initial on-boarding

study visit and before the infusion of the ketamine and placebo

solutions. We report group-level SME for increasing numbers of

in-laboratory trials. The corresponding 95% confidence intervals

were computed as the standard error of the SME across all

participants, divided by the square root of N, the number

of participants.

Wet EEG dataset

Wet EEG reference SME values were extracted from the

open-source ERP CORE EEG database provided by Kappenman

et al. (62) using Equation (1). The objective of this study was
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to provide the community with an optimized reference dataset

performed by experts in the field of ERP experimentation.

Processed and raw data as well as the experiment control

scripts can be downloaded at https://doi.org/10.18115/D5JW4R

and the details of their Flanker and Oddball tasks have been

described in a previous publication (62). In brief, EEG data

was collected from 40 participants (25 females, mean age: 21.5

years old) who completed six 10-min optimized paradigms

including an Oddball and a Flanker task. In the active visual

oddball task, 4 letters (A, B, C, D, E) were presented in random

order and for each block, with one of the letters designated

as the Target, and presented with a probability of 0.2. In

the Flanker task, a central arrowhead was the target stimulus

and was flanked on each side by a set of arrowheads. These

flanking stimuli pointed either in the same direction as the target

(a congruent trial) or the opposite direction (an incongruent

trial). A Biosemi ActiveTwo recording system with 128 active

electrodes (Biosemi B.V., Amsterdam, the Netherlands) was

used to collect the data. An average of electrodes P9 and P10

(located near the mastoid) was used to reference the data. Semi-

automatic algorithms were used to remove largemuscle artifacts,

extreme voltage offsets, or break periods longer than 2 s. After

that, Independent Component analysis (ICA) was performed,

and components associated with eye movements (including

eye blinks) were removed. The remaining components were

then remixed and projected back to electrode space. These

trials were further examined using individualized thresholds

and any trial still containing large voltage excursions and large

eye movements were excluded. SME values were computed

at electrode Pz and across the 300–600ms time window post

stimulus presentation for the Oddball task, and at FCz across

the 0–100ms time-window post participants’ response for

the Flanker task. SME data, derived from the open-source

data, were provided by Prof. Steven Luck’s group (personal

correspondence 02/04/2022).

Results

Participants

Of 56 participants recruited in the Older Adult study, 50

commenced and completed the study (see Table 1 for details).

Six participants were excluded for the following reasons: two

did not meet the inclusion criteria (one was mistakenly enrolled,

and another revealed taking medications after enrolment), three

were ill during the at-home data collection (unrelated to this

study), and one person could not be accommodated due to

head size.

In the Younger Adult study, 36 participants were initially

recruited but two were excluded for medical reasons and four

withdrew. The reasons given for withdrawal were the following:

one person expressed discomfort while wearing the headset, one

TABLE 1 Participant demographics.

Gender Mean age

in years

(SD,

range)

Mean

MoCA

score

(SD)

Mean years

of

education

(SD)

Older adult

study

25 males

25 females

67.84

(5.03, 58–81)

27.22

(2.04)

15.24

(3.6)

Younger adult

study

30 males 25.56

(3.74, 18–36)

Not collected Not collecteda

Wet EEG

study (65)

25 females

15 males

21.5

(2.87, 18–30)

Not collected Not collected

SD, standard deviation.
a83% of the sample were current students.

expressed anxiety about the blood draws, one expressed anxiety

about taking the drug, and one felt sick during the study (see

Table 1).

Usability

In the Younger Adult study, 965 sessions were collected,

including 281 sessions collected in the laboratory around

the enrolment and infusion sessions. On average, participants

attempted 22.87 sessions (SD = 1.92, range: 16–24), of 23 at-

home sessions requested (including data from 17 participants

who submitted extra sessions). Of 30 participants, 22 attempted

the 23 sessions requested. On average, per participant, 96% of

the sessions (SD = 5%, range: 79–100%) resulted in a complete

EEG/behavioral dataset for input into the preprocessing

pipeline. Of 30 participants, 10 successfully completed 100% of

their attempted sessions.Weekly adherence results are presented

on Figure 4.

In total, 1,499 EEG sessions were collected in the Older

Adult study, of which 50 were collected in the laboratory during

the enrolment sessions. On average, participants attempted 28.9

at-home sessions (SD = 6.64, range: 10–49), of 29 at-home

sessions requested (including sessions from the 24 individuals

who submitted more sessions than were requested). Of 50

participants, 33 participants attempted the 29 sessions requested.

On average, per participant, 93% of sessions commenced (SD =
7%, range: 73%-100%), resulted in a complete EEG/behavioral

dataset for input into the preprocessing pipeline. Of the

50 participants, 12 successfully completed 100% of their

attempted sessions.

At conclusion of the studies, 32 of the older participants and

18 of the younger participants chose to complete the optional

debrief session, including the self-report SUS usability scale. The

mean SUS score at the end of the Older Adult study was 84.53

(SD = 10.15) and 88.33 (SD = 10.18) at the end of the Younger

Adult study (Figure 5). The individual response components of
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FIGURE 4

Weekly at-home adherence to the experimental protocol. Data in purple correspond to the Older Adult study (N = 50). Data presented in blue

correspond to the Younger Adult study (N = 30). Error bars represent 95% confidence intervals. The gray areas correspond to the number of

at-home sessions requested in the protocol. The number of sessions requested varied as per protocol, to accommodate scheduled in-lab

sessions.

FIGURE 5

Median System Usability Scale component scores across all participants in the Data of Older Adult study are depicted in purple (N = 32), and of

the Younger Adult Study in blue (N = 18). Whiskers denote interquartile range. Datapoints outside of the 1.5*interquartile ranges were defined as

outliers.

the scale are displayed in Figure 5. No significant differences

were observed between the younger and older cohorts in the

main SUS composite score, or any of the individual components

(full results are presented in Supplementary Table S2).

EEG Results

EEG data collection success rate

Table 2 summarizes the number of trials collected for

Oddball and Flanker tasks in the two studies and the wet EEG

dataset, and how many of those trials survived epoch rejection

to reach analysis at key electrode locations.

In some cases, all trials were rejected, and a session was not

available for analysis. Of tasks for which the data was complete

in the Younger Adult study, on average across all electrodes,

95% of the Oddball task sessions (SD = 5%, range: 82–100%)

and 94% of the Flanker task sessions (SD = 6%, range: 83–99%)

remained following pre-processing (results are presented on

Figure 6 and Supplementary Table S1). In the Older Adult study,

on average across all electrodes, 84% of completed Oddball task

sessions (SD = 7%, range: 68–91%), and 85% of the Flanker

task sessions (SD= 6%, range: 69–90%) were retained following
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TABLE 2 Mean number of available trials after processing and percentage of data discarded per session per participant.

Number of trials

collected

Percentage of

trial discarded

(%)

Number of available

trials after artifact

rejections

(SD, range) (SD, range) (SD, range)

Older adult study

(N= 50)

Oddball task Target trials 30 64.2

(26.5, 0–100)

10.7

(7.9, 0–30)

Flanker task Correct trialsa 126.2

(4.8, 64–134)

73.9

(21.8, 6.5–100)

32.6

(27.4, 0–117)

Error trialsa 6.7

(4.1, 1–24)

61.9

(36.4, 0–100)

2.5

(2.8, 0–16)

Younger adult study

(N= 30)

Oddball Task Target trials 30 43

(23.4,0–100)

17.1

(7, 0–30)

Flanker task Correct trialsa 117.8

(9.6, 85–136)

59.3

(18.7, 4.7–100)

47.5

(21.9, 0–104)

Error trialsa 20.2

(13.3, 1–64)

40

(24.7, 0–100)

11.3

(8.2, 0–39)

Wet EEG dataset

[N= 40; Kappenman et al.

(62)]

Oddball task Target trials 40 23.69

(21.2, 0–87.5)

30.5

(8.5, 5–40)

Flanker task Correct trialsb 352.1

(36.2, 182–398)

4.5

(7.3, 0–34.9)

337

(46.2, 151–390)

Error trialsb 42

(22.4, 2–83)

4.3

(7.2, 0–33.3)

40.1

(21.4, 2–80)

The number of trials passing quality control were computed at the Pz electrode for the Oddball task, and at the FCz electrode for the Flanker task. The wet EEG tasks lasted about 10min.

The gamified Oddball and Flanker lasted about 12 and 7min, respectively.
a150 trials were presented and could be answered correctly or incorrectly.
b400 trials were presented and could be answered correctly or incorrectly.

pre-processing (see 2.8.1; results are presented on Figure 6 and

Supplementary Table S1).

To check that the number of trials rejected remained

stable across sessions, we plotted the number of trials

rejected across sessions at FCz and Pz in both cohorts.

Percentages of trials rejected across sessions are presented

on Supplementary Figure S3. A summary of the number and

percentage of available sessions at each step of the data analyzes

are presented in Table 3.

Younger adult study

ERPs extracted from the Oddball and Flanker task of

the Younger Adult Study are presented in the top row of

Figure 7. ERPs extracted at all electrodes are presented on

Supplementary Figures S5–S7. The typical waveform features of

a P300 ERP can be observed: negative readiness potentials,

P2 and N2 components occurred from before 0 to 250ms,

followed by the P300 component peaking around 350ms. When

examining data from the Flanker task we observe the expected

positive deflection after Correct Trials and negative deflection

after Error trials around 50ms after participants’ response.

The central row of Figure 7 projects what SME can be

achieved by aggregating increasing numbers of trials per

participant over multiple at-home dry sessions. As noted above,

as that number increases, the number of participants that can

be included in the sub-analysis decreases (as some participants

may not have collected enough data to be included in the sub-

analyses). The SME can be seen to decrease with the inverse of

the root mean square of numbers of trials.

The wet EEG study (62) reported achieving an SME

of 1.83 µV based on the average of 30.5 Oddball target

trials that survived their epoch rejection strategy (gray-

dotted lines in the figure). Comparing that to data

from our Younger adult at-home data, we found that

33 Target trials (red line in the figure) were required

in the Younger Adult Study an equivalent level of ERP

variability (though with the higher rate of epoch rejection

previously mentioned).

For the Flanker task, the wet EEG study reported

achieving SME values of 0.51 µV and 1.68 µV for Correct
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FIGURE 6

Percentage of available sessions after pre-processing per channel. The top row corresponds to data collected in the Older Adult study. The

bottom row corresponds to data collected during the Younger Adult study. The left column of each figure corresponds to data collected during

the gamified Oddball task, the right column of each quadrant to data collected during the gamified Flanker task.

and Error trials, respectively. We found that 467 Correct

trials and 56 Error trials were required to reach the

same SME values obtained with 337 Correct trials and

40 Error trials using a wet EEG system (all following

epoch rejection).

The bottom row of Figure 7 shows the total number of

experimental trials required to reach wet-EEG benchmark SME

values for each ERP, and we can project from that to the

number of at-home sessions to achieve or exceed that (based on

trial numbers and rates of rejection in Table 2). For this study,

which had a comparable cohort to the wet EEG dataset, we

can project that 2 equivalent sessions of at-home gamified dry

EEG would provide a superior SME (lower signal variability)

than the single lab-based session for the Oddball Target—

assuming the number of trials per session were the same in

both studies. For the Flanker task 3 dry EEG sessions would be

sufficient for the Error trials ERP, and 4 sessions for the Correct

trial ERP.

Figure 8 shows SME data from the in-laboratory sessions for

both the Oddball and Flanker tasks.

Older adult study

ERPs extracted from the Oddball and Flanker tasks

from the Older Adult Study are presented in the top row

of Figure 9 and ERPs at all electrodes are presented in

Supplementary Figures S8–S10. As in the Younger Adult Study,

Negative readiness potentials, P2 and N2 components occurred

from before 0 to 250ms, followed by the P300 component

peaking a bit later compared to the younger adult at about

450ms in the ERPs extracted from the Oddball task. As before,

we observe in the Flanker task data, the expected positive

deflection after Correct Trials and negative deflection after Error

trials around 50ms after participants’ response.

The central row of Figure 9 projects the SME that can be

achieved in the Older Adult Study. When comparing with SME

values extracted from the wet EEG study, 31 Target trials were

required in the Older Adult Study to reach the same SME value

obtained with 30.5 Target trials using the wet EEG system.

For the Flanker task, 667 Correct trials and 71 Error trials

were required to reach the same SME values obtained with 337

Correct trials and 40 Error trials in the wet EEG study.
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TABLE 3 Number of available at-home sessions at each step of the data collection analysis, including percentage retained relative to previous step.

At-home sessions Older adults Younger adultsa

Session % Cumulative % Session % Cumulative %

Oddball task

Requested 725 100 100 390 100 100

Attempted 750 103.4 103.4 347 89.0 89.0

Task data complete 730 97.3 100.7 346 99.7 88.7

Survived epoch rejectionb 634 86.8 87.4 339 98.0 86.9

Flanker task

Requested 725 100 100 390 100 100

Attempted 699 96.4 96.4 347 89.0 89.0

Task data complete 675 96.6 93.1 347 100.0 89.0

Survived epoch rejectionb 577 85.5 79.6 339 97.7 86.9

The number of sessions that passed quality control were computed at the Pz electrode for the Oddball task, and at the FCz electrode for the Flanker task.
aOnly data collected before the infusion interventions are evaluated here, therefore percentages may vary somewhat relative to the figures cited in section Usability.
bAll the epochs in a session could be rejected during this step.

The bottom row of Figure 9 shows the total number of

experimental trials from our older cohort required to reach

wet-EEG SME values from a younger cohort. Here, 3 dry EEG

sessions for the Oddball Target, and 7 at-home sessions are

sufficient for both Error and Correct ERPs in the Flanker task,

would have provided a superior SME (lower signal variability)

than the single lab-based session if the same number of trials

were collected per session with the wet and dry EEG system.

Figure 10 shows SME data from the in-laboratory sessions

for both the Oddball and Flanker tasks.

Discussion

The overall objective of this study was to evaluate if dry

EEG recorded in the home by unsupervised participants, with

easy-to-use engaging tasks, could yield datasets of the same

quality as published results derived from wet EEG recorded

by an expert group in a controlled environment. The primary

finding was that it was feasible to reach similar SMEs compared

to a wet EEG study with the same numbers of dry trials when

comparing populations of similar age. However, the percentage

of trials discarded after artifact rejection was substantially

higher in the dry system compared to what was reported in

the wet EEG study used as reference. We also evaluated the

recording platform usability using the participants’ adherence

to the protocol, successful data collection rate, and subjective

reports. Participants reliably collected EEG data on a near-

daily basis.

Participants exhibited high adherence to the dry EEG

protocol: on average >94% of requested sessions were

commenced in both cohorts. Notably, the compensation of

each cohort was not pro-rated to the number of sessions

session completed in the home. The older group were modestly

compensated (e40) for the at-home study, whereas the younger

group were paid e500 for their participation in the study:

suggesting that monetary compensation alone was not the most

important factor in adherence. There was a high rate (over

93%) of sessions successfully completed at home. Furthermore,

the positive user feedback [mean SUS score >84 in the older

cohort and >88 in the younger cohort; corresponding to

“good/excellent” ratings (58)] demonstrated that participants,

including older adults up to 81 years-old, did not appear to

feel the lack of supervision of a trained technician to complete

neurocognitive tasks. No clear evidence of usability barrier in

the older cohort was found as attested by the lack of differences

in usability scores between the two groups. This result is in

agreement with findings from Nicosia and colleagues who

reported that, while older age is associated with less technology

familiarity, older adults are willing and able to participate

in technology-enabled studies (32). The high percentage of

successful sessions in the older cohort also underlines that

the ease-of-use of the platform was satisfactory and enabled

populations who were not digital natives to use the system.

Notably, there was no substantial drop in adherence during later

phases of the studies. These results are consistent with previous

findings from McWilliams and colleagues who deployed the

same dry EEG technology in a separate cohort of 89 healthy

older adults and reported high adherence and usability scores

(e.g., mean adherence of 82% and mean SUS score of 78.7)

(52). Our compliance levels are also slightly higher than those

observed in purely cognitive remote studies using smartphone

for repeated testing [e.g., adherence of 85.7% (32)]. As discussed

by Moore et al., it is likely that our older participants’ high

adherence rate is due to a combination of extrinsic factors

including the ease-of-use of the technology, and intrinsic factors
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FIGURE 7

ERPs analyses extracted from the Younger Adult Study (N = 30). Top row: Grand study average computed across all participants. Middle row:

Standardized Measurement Errors per number of trials. The gray continuous lines correspond to the number of participants remaining in the

SME calculation after trial rejection. Bottom Row: Mean numbers of trials available after preprocessing. The black dotted lines correspond to the

mean numbers of trials extracted from the wet EEG study. From left to right: Target Trials extracted from the Oddball task at electrode Pz,

Correct Trials extracted from the Flanker task at electrode FCz, Error Trials extracted from the Flanker task at electrode FCz. The shaded areas

correspond to the 95% confidence intervals.

such as personal motivation (the older cohort self-referred into

our study) (63). No carer or study partner attended the initial in

laboratory on-boarding visit suggesting that a single in-person

training session was sufficient for older adults to commence at

home recording. However, we do not know if participants were

helped by another person once in the home.

In the context of neurodegenerative research, the dry

EEG approach described here could be especially useful for

prodromal phase studies as change can emerge over years (64).

One could imagine asking an at-risk population to complete 2

weeks of recordings every year to detect subtle changes in brain

function and cognition. The P300 latency has, for example, been

proposed as a marker of cognitive decline in older population

and appears to be sensitive to disease stage within the context of

Alzheimer’s type of dementia (14, 65, 66). The observation of the

classical features of the ERN and P300 in both cohorts suggest

that gamified dry EEG can capture these ERP components.

These results taken together suggest that intermittent at-home
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FIGURE 8

Standardized Measurement Errors per number of trials of data collected in the laboratory under researcher supervision extracted from the

Younger Adult Study (N = 30). The blue line corresponds to data collected in the laboratory. The gray line corresponds to data collected in the

home. The black dotted lines correspond to the mean numbers of trials extracted from the wet EEG study. From left to right: Target Trials

extracted from the Oddball task at electrode Pz, Correct Trials extracted from the Flanker task at electrode FCz, Error Trials extracted from the

Flanker task at electrode FCz. The shaded areas correspond to the 95% confidence intervals.

EEG recording is well tolerated by older adults and would make

the monitoring of such markers longitudinally possible.

The comparison of the ERP CORE wet EEG data evaluated

participants of similar age profile to our younger adult cohort

revealed that similar numbers of trials were required to reach the

same SME values. However, on average (and as expected), more

dry EEG trials were rejected during preprocessing (between

2 to 14 times more). This result demonstrates that applying

stringent data rejection techniques to dry EEG data makes

it possible to generate averaged ERPs trials similar to those

collected in laboratory environments. When accounting for the

number of trials lost during artifact rejection, our analyses

suggest that between 2 to 4 at-home gamified dry EEG sessions

using the same tasks parameters would yield the same SMEs as

the wet EEG system for comparable cohorts. The main factor

guiding the decision of how many trials should be collected in

traditional in-clinic wet EEG studies is the quality and variability

of the signal. The burden of the tasks is a secondary concern.

Indeed, as participants are in the laboratory once or twice

only and as the hardware can be cumbersome to configure,

researchers aim to collect as many trials as possible in the

shortest amount of time.When designing tasks for repeated self-

administered measurements in the home, the recordings need to

be short and enjoyable enough so that participants are inclined

to conduct additional sessions (26). Thus, considering this

factor combined with the fact that dry EEG data are inherently

noisier than wet data because of the dry electrode higher

impedance, it is unsurprising to find that one must aggregate

over a number of sessions to reach equivalent quality levels.

These observations are also consistent with behavioral findings

from studies evaluating online platforms and mobile-apps (39,

67–71). For example, Lipsmeier and colleagues were able to

distinguish healthy controls from individuals with Parkinson’s

disease by aggregating sensor-based features collected from

mobile phones over 14 days (71).

The percentage of data that survived the different data

selection procedures varied as a function of cohorts, tasks, and

electrode location. Overall, dry EEG data collected from older

adults were noisier than data from younger adults: between

15 to 20% more trials were rejected during the data selection

procedures. Further investigations are needed to disentangle the

origin of these differences, but one working hypothesis is that

it could be due to age-related impairment in manual dexterity

(72) and its effect on headset setup and sensor contact quality.

When comparing Flanker data extracted from the Younger and

Older Adult studies, we observed that on average, each older

adult session yielded less data compared to the young one. Two

factors seem to be driving this effect, on average: i) more data

were rejected from the Older Adult study and ii) older adults

committed 3 to 4 times fewer errors compared to younger adults.

The latter result suggests that older adults may use different

speed vs. accuracy trade-off strategies compared to younger

adults (73) and this should be taken into consideration when

planning for the number of trials to be collected in studies within

older populations.

Finally, we also discovered that the yield of usable data

varied as a function of the electrode location and that Cz,

O1, and O2 yielded the lowest amounts of usable data,

possibly due to individual variation in head shape and

hair style. These results suggest that future headset design

should consider potential solutions to this problem such as

adjusting the length of the pins, changing the morphology

of the electrodes at these locations, or making the headset

more adjustable.
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FIGURE 9

ERPs analyses extracted from the Older Adult Study (N = 50). Top row: Grand study average computed across all participants. Middle row:

Standardized Measurement Errors per number of trials. The gray continuous lines correspond to the number of participants remaining in the

SME calculation after trial rejection. Bottom Row: Mean numbers of trials available after preprocessing. The black dotted lines correspond to the

mean numbers of trials extracted from the wet EEG study. From left to right: Target Trials extracted from the Oddball task at electrode Pz,

Correct Trials extracted from the Flanker task at electrode FCz, Error Trials extracted from the Flanker task at electrode FCz. The shaded areas

correspond to the 95% confidence intervals.

In the context of drug clinical trials, recording across a

week prior to a therapeutic intervention could establish a

baseline of brain activity more robust to daily fluctuations (e.g.,

caused by lifestyle factors). Once identified, changes in baseline

metrics over time could act as biomarkers for the detection

and monitoring of neurodevelopmental, neuropsychiatric, or

neurodegenerative disorders (74–77). Brain changes associated

with neurodegenerative disorders typically occur over years (64,

78), while neurodevelopmental disorders impact brain function

across the lifespan (79, 80). Conversely, some disorders (e.g.,

Multiple Sclerosis, Lewy Body Dementia, Schizophrenia) are

also characterized by fluctuating cognitive symptoms at the scale

of days or week (81–86). Consequently, cognitive biomarkers are

likely to be more effective when brain activity is intermittently

monitored over long periods (11), or in intensive bursts of

frequent sampling (87).

This study had some limitations. The ideal comparison

between dry vs. wet EEG would involve near-daily at-home
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FIGURE 10

Standardized Measurement Errors per number of trials of data collected in the laboratory under researcher supervision extracted from the Older

Adult Study (N = 50). The purple line corresponds to data collected in the laboratory. The gray line corresponds to data collected in the home.

The black dotted lines correspond to the mean numbers of trials extracted from the wet EEG study. From left to right: Target Trials extracted

from the Oddball task at electrode Pz, Correct Trials extracted from the Flanker task at electrode FCz, Error Trials extracted from the Flanker task

at electrode FCz. The shaded areas correspond to the 95% confidence intervals.

wet EEG, but the burden of this design renders this unfeasible

as wet EEG requires the presence of a trained technician

for set-up. Some brain data variability could be related to

task learning effects (both in specific task performance—see

Supplementary Figure S11—and usability of the technology)

rather than device performance. In addition, it is also likely

that participants improved at using the platform during the

first week of recordings. To quantify the amount of variability

emerging from learning how to use the headset itself, future

studies should consider first providing participants with the

tablet before introducing the headset at a later stage. The

headset correct placement in the home was not controlled

and may have introduced noise in the signals. However,

the risk of misplacement was mitigated using a semi-rigid

neoprene frame which ensured the correct relative electrodes

positions. The headset has also natural orientation points to

ensure a consistent correct positioning: the earpieces go behind

the ears and the front strap aligns with the brows. Specific

emphasis was also given to participants during onboarding

on the importance of headset placement and reminders were

sent at the beginning of each session via the mobile app

on the procedure to ensure a correct use. However, future

studies may consider evaluating this specific question by

taking pictures of participants in the home. Part of the signal

variability may also originate from day-to-day changes related

to lifestyle factors, mood, and stress levels, which we did not

quantify here. Different preprocessing pipelines were applied

in our studies and the reference dataset, and it is possible

that further optimization of data exclusion strategies could

result in improved SME levels for the wet lab and/or dry

home data. The younger cohort dataset did not include any

females, preventing us from evaluating the impact of sex on

the variability of the data. Additionally, future studies will

have to test validity in specific target clinical populations

for whom it may be relevant to increase stimulus size and

presentation time. Finally, the studies differed on numerous

levels including site, age, gender, educational background,

motivation for participation, task protocol, cadence of sessions,

and number of in-lab sessions, which prevented us from

performing direct comparison.

Conclusions

Overall, our study contributed to the field in the following

ways. We evaluated two innovative neurocognitive studies with

repeated sampling in a remote setting, conducted with cohorts

of younger and older age profiles. Participants regularly and

successfully used a portable dry EEG system and recorded

behavioral and ERP data comparable to traditional wet EEG

paradigms. This generated rich longitudinal data that would

not have been possible in a traditional experimental laboratory-

based design. Due to the volume of data collected (i.e.,

near daily), multiple strategies were employed to improve

signal quality, including aggregation of multiple sessions

within subjects and conservative data inclusion protocols. ERP

data were similar in morphology to those reported in the

literature from laboratory-based studies, and with aggregation,

signal quality was also comparable. Overall, these results

demonstrate that portable EEG technology is a suitable tool

for cognitive neuroscience investigations, and has the potential

to provide objective, frequent and patient-centered tracking

of biomarkers of functional neurophysiology. This approach

has potential to facilitate large scale longitudinal studies of

neurodegenerative, neurodevelopmental and neuropsychiatric

disorders that manifest on different time scales.
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