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Abstract

Post-traumatic stress disorder (PTSD) is a disabling psychiatric condition that can develop following a physical, psychological,

or sexual trauma. Despite the growing body of literature examining the psychological and biological factors involved in PTSD

psychopathology, specific biomarkers that may improve diagnosis and treatment of PTSD have yet to be identified and

validated. This challenge may be attributed to the diverse array of symptoms that individuals with the disorder manifest.

Examining the interrelated stress and fear systems allows for a more comprehensive study of these symptoms, and through

this approach, which aligns with the research domain criteria (RDoC) framework, neural and psychophysiological measures

of PTSD have emerged. In this review, we discuss PTSD neurobiology and treatment within the context of fear and stress

network interactions and elucidate the advantages of using an RDoC approach to better understand PTSD with fear

conditioning and extinction paradigms.
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Introduction

Post-traumatic stress disorder (PTSD) is an incapacitat-
ing psychiatric condition that some individuals develop
after experiencing stressful or traumatic life events.
According to the Diagnostic and Statistical Manual of
Mental Disorders, 5th Edition (DSM-5), PTSD is
diagnosed based on clusters of symptoms, such as
the re-experiencing/having intrusive memories of the
trauma, avoidance, negative cognition and mood, and
hyperarousal.1 PTSD afflicts 7% to 8% of the adult popu-
lation in theUnited States,2 and despite themany efforts to
understand the pathophysiology of the disease, improved
diagnosis and treatment options are still needed. The het-
erogeneous and complex nature of PTSD may contribute
to the difficulty in achieving these improvements, and one
approach to addressing this challenge is through the
research domain criteria (RDoC) framework.3,4 Through
this perspective, we are able to envision PTSD in a way
that is more comprehensive, not limited by subjectively
reported symptoms or DSM-5 criteria, and inclusive of
neurobiological and physiological measures.

One underlying transdiagnostic feature of PTSD
and other anxiety disorders is fear dysregulation.
Accumulating evidence has demonstrated abnormalities
in the brain circuits that mediate fear responses, and
these abnormalities are associatedwithPTSD.5–8Bothpre-
clinical and clinical data implicate the role of stress and fear
circuit interactions in the development, maintenance, and
treatment of PTSD. In this review, we examine the neuro-
biology of PTSD and its intersection with stress and fear
response systems. Additionally, we discuss the advantages
of using anRDoCapproach (supplied by fear conditioning
and extinction paradigms) in combinationwith theDSM-5
to improve our understanding and treatment of PTSD.
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Neurobiology of Fear and PTSD

Individuals with PTSD have great difficulty regulating
their fear of trauma-associated stimuli, making the
study of fear integral to fully understanding the dis-
order.5,7,9–11 The behavioral and neurobiological
responses to fear are critical to this understanding and
have been investigated extensively using a paradigm
dependent on a Pavlovian learning process called fear
conditioning. During this type of learning, a subject is
presented with a neutral stimulus (conditioned stimulus),
which is typically a light, tone, image, or context. This
neutral stimulus is paired with an unconditioned stimu-
lus, which is usually a shock. As the association between
the two stimuli is learned, the subject expresses a response
that is called the conditioned response. In rodents, the
conditioned response when measuring fear is usually
freezing behavior or the fear-potentiated startle reflex.
In humans, it is typically a psychophysiological index of
fear including measures such as fear potentiation of the
acoustic startle reflex,12,13 skin conductance response
(SCR),5,14–16 or heart rate.17,18 Healthy individuals learn
to reduce their fear response to the conditioned stimulus
in the absence of a threat. The failure to reduce fear in
this way often leads to the development of PTSD
psychopathology.10,19–21

Psychophysiological measures have been valuable to
the study of fear processing and the neurobiology
and symptoms of PTSD.5,22–25 In one example of this,
combat veterans, who were subthreshold for a full
PTSD diagnosis but did express PTSD symptoms,
showed abnormal psychophysiological responses to fear
(i.e., heart rate, SCR, startle, and respiratory rate) that
were similar to those with a full PTSD diagnosis.17 This
suggests that despite not having a PTSD diagnosis, many
individuals may still need treatment for the symptoms of
PTSD and benefit from additional psychophysiological
measures. Using fear paradigms in this way provides a
venue in which specific attributes of PTSD, such as
impaired safety learning, amplified fear responses to
trauma- or stress-related stimuli, and fear generalization
can be distinctly investigated. Moreover, these fear para-
digm-centered findings support the idea that shifting
focus towards the symptoms rather than relying solely
on DSM diagnoses may foster more insight and effective
treatments for PTSD. Considering this and the broad
range of applications for studying fear, examining the
neural correlates of fear in PTSD (or PTSD symptomatic
but subthreshold) individuals may provide insight into
the neurobiological mechanisms underlying the disorder.

Much of what we know about human fear neurocir-
cuitry has correlates in rodents, enabling many preclinical
findings to be translatable to human studies. The fear
network has been extensively studied in rodents, with
the prelimbic (PL) and infralimbic (IL) areas of the
medial prefrontal cortex (mPFC), specific nuclei of the

amygdala, and the hippocampus identified as important
mediators of fear-related processes.26–32 One study deli-
neating the roles of these regions in fear acquisition,
extinction, and memory retrieval found that inactivation
of the PL before extinction training reduced fear expres-
sion during early extinction training (where one would see
evidence of fear memory) but had no effect on extinction
memory.30 IL inactivation prior to extinction training left
the fear memory intact, while extinction learning and
memory were impaired.30 Moreover, stimulation of the
PL during tone presentations increased fear expression
and impaired extinction learning, whereas IL stimulation
reduced freezing to the conditioned tone during extinc-
tion.33 Together, these findings suggest that PL activity is
necessary to drive the expression of conditioned fear, and
IL activity is important for its inhibition.

In addition to identifying these critical brain regions,
numerous rodent studies have also revealed the role of
specific cell types and synchrony of activity or connec-
tions between the regions. While the amygdala’s contri-
butions to fear processes have long been recognized,
further investigations have delineated specific microcir-
cuits within its nuclei. For example, interactions between
the lateral and central divisions of the amygdala have
been shown to increase and decrease fear output based
on the centrolateral amygdala’s inhibitory control of the
centromedial amygdala.34 The connections between the
amygdala and the prefrontal cortex have also been
found to be critical in regulating fear responses.28,35–38

For example, rats exhibiting high anxiety-related behav-
iors showed impaired extinction with abnormal activa-
tions within the prefrontal-amygdala circuit (reduced
prefrontal activity and increased centromedial amygdala
activity).39 During safety learning, theta oscillation syn-
chrony within this circuit also seems to modulate fear
responding.38,40 Theta oscillations are neural signals
that oscillate at a frequency range of 4 to 12Hz, and
synchrony of these oscillatory patterns between brain
areas is important for learning and indicates communica-
tion between the regions during specific learned behaviors
and/or stimuli presentations.40 Increased synchrony of
theta oscillations between the mPFC and the basolateral
amygdala was found to modulate discrimination between
safety and fear learning, suggesting that basolateral
amygdala responses (and their timing) to inputs from
the mPFC determine increases and reductions in fear
behaviors.38

Fear conditioning and extinction studies in humans
support the translatability of these preclinical findings,
identifying critical nodes of the fear network, including
the ventromedial prefrontal cortex (vmPFC), amygdala,
dorsal anterior cingulate cortex (dACC), insula, and
hippocampus (Figure 1).5,41–43 Brain activations within
the dACC (homologous with the rodent PL) appear
critical during fear acquisition, whereas vmPFC
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(homologous with the rodent IL) activation plays an
important role in fear extinction.5,44 Additional brain
regions, including parts of the cerebellum, insula, thal-
amus, and striatum, have also been found to be signifi-
cantly activated during fear acquisition.43,45 As these
regions are not only involved within the threat detection
and fear processing circuitry, these findings suggest other
networks should be investigated as well.

There is accumulating evidence indicating that individ-
uals with PTSD have difficulty regulating their fear and
learning safety signals.6,7,10,19–21,46–52 Studies have shown
extinction learning and memory recall to be significantly
impaired in patients with PTSD compared to trauma-
exposed non-PTSD control participants.5,52,53 Milad
et al.5 found that the impairment was restricted to the
recall of the extinction memory, whereas conditioned
fear acquisition and extinction learning were not dis-
rupted in the PTSD group. While studies such as these
report deficits in only the memory of extinction or extinc-
tion retention, other studies have also reported deficits in
the learning of fear inhibition.8,48,54,55 For example,
PTSD subjects exhibited greater fear-potentiated startle
responses to the extinguished cue during extinction,
showing an impairment in learning to extinguish their
fear, in addition to heightened startle during fear
conditioning.48

PTSD and anxiety literature also describe an inverse
relationship between activations within frontal regions
and the amygdala, i.e., vmPFC hypoactivation and

amygdala hyperactivation; this suggests a loss of pre-
frontal control of the amygdala, which would normally
regulate fear responses.7,56–58 Milad et al.5 reported that
the extinction memory impairment in PTSD patients was
associated with significant deactivation in the vmPFC
and heightened activation within the dACC, suggesting
less prefrontal inhibition, but more excitation, of the
amygdala. A meta-analysis reported that reduced activa-
tion of the vmPFC was correlated with increased activa-
tion of the amygdala in PTSD patients,59 indicating the
consistency of this brain activation pattern in the fear
network in PTSD. Thus, alterations in neural connectiv-
ity or communication between these brain regions due to
disproportionate activation may underlie some PTSD
symptoms.57,60,61 In fact, amygdala hyperreactivity
and differential cortical activity (top-down processing
regions) in response to fearful versus neutral face stimuli
was found to be predictive of the perseverance of PTSD
symptoms.61 This was also observed for symptom sever-
ity in individuals below threshold for a PTSD diagno-
sis.61,62 Higher Clinician-Administered PTSD Scale
scores appeared to be associated with reduced amyg-
dala-vmPFC connectivity, suggesting that communica-
tion between these two structures may be compromised
with more severe cases of PTSD.63 Moreover, structural
differences in these areas have been reported in PTSD;
reduced cortical thickness in the frontal lobes and hippo-
campal volume of soldiers with PTSD compared to those
without PTSD were observed.64,65 Given that daily life
stressors and other triggering stimuli are often unavoid-
able, the altered neurocircuitry in PTSD creates an
ongoing inability to control fear. This is also true in
instances when exposure to stress is prolonged and
becomes chronic stress, which has been shown to exacer-
bate PTSD symptoms.66

Chronic Stress, Fear, and PTSD

Fear is an adaptive threat response, and as such, it is
important for survival. A certain level of stress can be
similarly beneficial, promoting alertness and energy in
situations when a quick reaction is necessary.67 When a
stress response is activated in these situations, it triggers
components mediating the ‘‘fight-or-flight’’ response.
These include the locus coeruleus/norepinephrine (NE)
system, the corticotropin-releasing factor/hypothalamic-
pituitary-adrenal (HPA) axis, as well as other neurobio-
logical systems.68,69 Traumatic or chronic stress, which is
similar to an exaggerated fear response that cannot be
turned off, can alter functioning of these systems (often
increasing responsivity to future stressors). This may
contribute to PTSD symptoms and have serious conse-
quences for mental and physical health.70–74 Chronic
stress refers to not only normally occurring, daily life
stressors and any subsequent trauma experienced after a

Figure 1. Summary of brain activations commonly considered the

fear network regions. In healthy subjects, the dACC, insula, and

amygdala exhibit robust activations during fear acquisition. During

fear extinction, the AMY and vmPFC show increased activations.

The vmPFC and hippocampus are activated during extinction recall.

dACC: dorsal anterior cingulate cortex; vmPFC: ventromedial pre-

frontal cortex; AMY: amygdala; HIPP: hippocampus; INS: insula.
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PTSD-inducing event but also the repeated stress caused
by re-experiencing trauma through recurring, intrusive
thoughts, and/or nightmares. Prior traumatic stress
exposure is a prerequisite for PTSD diagnosis according
to DSM-5 criteria, but persistent alterations in the neuro-
biological mechanisms mediating the stress response also
appear to underlie many PTSD symptoms,70,75,76 suggest-
ing that consequent stressors following the diagnosis are
also critical contributors to the disease. As the type of
initial trauma can affect PTSD symptomatology, it may
also be important to account for the type or source of
chronic stress exposure in PTSD research.

The literature on PTSD consistently reports increased
NE and dysregulation of the HPA axis, a neurobiological
system that modulates stress hormones and reactions to
trauma, in individuals with PTSD.77–80 Compared to
healthy controls, the pharmacological stressor yohimbine
produced increased levels of plasma NE metabolite, as
well as PTSD symptoms such as intrusive memories of
trauma, emotional numbing, and grief.81 Geracioti
et al.82 reported that combat-related film footage also
elicited elevations in NE levels in the cerebrospinal fluid
of combat-related PTSD patients compared to neutral
film footage. In contrast, cerebrospinal fluid concentra-
tions of corticotropin-releasing hormone, also known as
corticotropin-releasing factor, were shown to be reduced
in response to the traumatic film compared to the neutral
film. Yehuda et al.80,83–86 have reported numerous find-
ings on the relationship between low cortisol levels and
the risk for PTSD. Urinary cortisol samples revealed that
combat veteran PTSD patients had low levels of cortisol
excretion compared to non-PTSD individuals, and these
low levels were associated with PTSD symptom presen-
tation.80 Subjects administered a low-dose dexa-
methasone test exhibited greater cortisol suppression
compared to healthy participants, suggesting greater
negative feedback sensitivity of the HPA axis and subse-
quently lower baseline cortisol levels in PTSD.86

Competing findings on baseline levels of cortisol
remain, with some studies describing increased levels in
PTSD, whereas others report blunted baseline levels as
mentioned above.78,84,87 These mixed findings suggest
another measure may be necessary to understand the
role of stress hormones in PTSD.

Stress hormones also influence brain structure and
function as many preclinical studies have indicated. The
brain regions involved in fear and PTSD circuitry, such
as the amygdala, prefrontal cortex, cingulate cortex, and
hippocampus, are significantly affected by stress.79,88–90

Evidence in the animal literature describes dendritic
remodeling in regions that are necessary for fear process-
ing following stress exposure. In rodents, neuronal hyper-
trophy within the amygdala and dendritic atrophy in the
hippocampus were observed following chronic restraint
stress or prolonged periods of glucocorticoid

exposure.91–95 Chronic restraint stress exposure for 21
days also reduced dendritic branching within the mPFC
in rats,96 suggesting less synaptic plasticity and function
within the mPFC and less control over the amygdala.
Furthermore, in vivo single-unit recordings in rats that
were chronically stressed revealed hyperexcitability in
neurons within the lateral amygdala.97 These preclinical
findings may contribute to the understanding of the
hyper-responsivity of the amygdala that is observed in
PTSD patients in response to fearful stimuli.98,99

The overlap in stress and fear neurocircuitry facilitates
the use of fear behavioral paradigms to uncover neural
and psychophysiological signatures of PTSD, which pre-
sent symptoms related to both systems. In fact, one might
consider chronic stress part of the PTSD symptomatol-
ogy, as it is a typical byproduct of the nightmares, flash-
backs, and recurring intrusive thoughts or reminders of
the trauma common with the disorder. Investigating the
role of stress in PTSD has revealed that stress exposure
can enhance fear learning and impair fear extinction, with
associated structural and functional changes within the
amygdala and other nodes of the fear network.100,101 In
rodents, chronic injections of stress hormone cortico-
sterone enhanced fear memory and increased memory-
related activity within the amygdala.102 Rats that were
exposed to chronic restraint stress also exhibited
improved fear acquisition, but poor extinction memory
retrieval, which seemed to be associated with a stress-
induced reduction in IL firing.103 Three exposures to an
uncontrollable stressor before fear conditioning not only
induced dendritic retraction within the IL but they also
impaired extinction.104 The specificity of this effect of
stress to impact only the IL, and not the PL, morphology
is interesting to note given its critical role in extinction.
Chronic stress also appeared to increase generalization of
fear across contexts, disrupting fear extinction and
increasing neuronal activity within the amygdala and
hippocampus.105 These preclinical findings are consistent
with the impaired extinction recall and decreased vmPFC
(and increased amygdala) activation observed in people
with PTSD.5,6,57

There are relatively few human studies examining the
effects of stress exposure on extinction learning and
memory, and within these, there appear to be inconsis-
tencies. Some of these inconsistencies may be attributed
to the timing of exposure to stress and sex differ-
ences.69,106,107 Studies have reported an impairment in
extinction memory retrieval as measured by SCR follow-
ing stress exposure.108,109 However, some studies also
report stress-induced impairments in fear memory retrie-
val, which may actually enhance extinction processes.110

In one study using the cold pressor test, there was no
effect of stress exposure on fear extinction learning; how-
ever, fear memory retrieval was found to be impaired in
healthy men but not in women.111 Aside from the
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potential sex differences, this result may be attributed in
part to the timing of the stressor exposure; HPA activity
and stress hormone levels vary based on the time of day
and as a function of time since the onset of the stressor.112

Thus, the distinction between acute and chronic stress
effects necessary, as studies could yield opposing results
on fear extinction learning and memory simply due to
differences in this variable. Moreover, there is strong evi-
dence that fear memory is enhanced when the timing of
NE and cortisol release is synchronized but not when the
timing is off.69 The interaction between the NE and cor-
tisol systems has been shown to modify brain activations
within the fear network during encoding of neutral and
emotional stimuli, with deactivation within prefrontal
areas specifically noted.113

The mixed findings of stress effects on fear extinction
may also be due to sex differences and/or the potential
influence of gonadal hormones in stress and fear extinc-
tion.114–119 Indeed, there are reported interactions
between the stress and gonadal hormone systems that
can influence fear behaviors.120–124 Antov and
Stockhorst114 examined the interaction between men-
strual phase, stress, and fear in the effect of psychosocial
stressor exposure on fear conditioning and extinction. No
differences in the effects of stress on fear acquisition were
observed, but women stressed in the high estrogen phase
of their menstrual cycles exhibited enhanced extinction
recall. Women stressed in their low estrogen phase, how-
ever, exhibited impaired extinction memory. Therefore,
sex and gonadal hormones should be taken into consid-
eration when using neural and/or psychophysiological
fear responses as biomarkers of fear dysregulation in
PTSD as indicated in Glover et al.115 and Zeidan
et al.119 These and other factors potentially influencing
the effects of stress on the brain and fear memory have
been summarized in Figure 2.

RDoC and PTSD

When diagnosing medical problems, physicians run
through a checklist of symptoms, but conditions can
still be misdiagnosed if the proper follow-up questions
are not asked. For example, chest pain is a shared symp-
tom of multiple medical problems, including angina,
aortic dissection, pneumonia, gastroesophageal reflux
disorder, and costochondritis, the inflammation of the
cartilage joining the upper rib with the breastbone. If a
patient arrives at a hospital complaining of this symptom,
the efficacy of their treatment hinges upon the medical
professional’s ability to properly identify its root cause.
Luckily, we have a strong understanding of how the heart
functions, and through physical exams and history
taking, physiological symptoms and genetics are taken
into account to arrive at a more specific and effective
treatment.125 Medical professionals treating mental

illness follow a similar checklist of symptoms to help
identify disorders. However, with the nature of the
DSM-5 yielding 636,120 ways to have a PTSD diagnosis,
as reported by Galatzer-Levy and Bryant,126 and the
diagnosis further dependent on subjective reports of
symptoms, effective diagnosis (and subsequent treatment)
can be a challenge. The RDoC framework may be a valu-
able tool in this regard, supplementing the DSM-5 and
enabling us to obtain more comprehensive and quantifi-
able diagnostic biomarkers that span across mental
disorders.

Diagnoses determined via the DSM alone can often
lead to the exclusion of individuals who experience symp-
toms of PTSD but are subsyndromal or subthreshold for
the criteria for PTSD nosology. These people may be
suffering from symptoms of mental illness but will not
receive proper treatment simply because they do not pre-
sent their condition in a way that aligns with the DSM-5.
On the other hand, it may also be possible for an indi-
vidual to present biomarkers (i.e., an aberrant functional
activation of the amygdala) for a PTSD diagnosis, despite
not having the symptoms/disorder. Identifying associ-
ations between RDoC’s specific units of analysis and
research domains (biological targets and functional con-
structs) will provide a more complete diagnosis/treatment
profile to improve detection and treatment.3,127,128

Moreover, as more data are collected, these constructs
and categorizations will become more refined, reliable,
and transdiagnostic.

Moving away from the restrictive nature of the DSM-
5’s distinct and somewhat limited classifications, we can
provide more accurate and targeted treatments for
individuals with various mental illnesses and comorbid-
ities.127 In fact, a recent study investigating the psycho-
physiological and neurobiological patterns during fear
conditioning and extinction across anxiety disorders
found no differences in SCR between the healthy and
anxiety groups but did find differences within the
vmPFC, rostral anterior cingulate cortex, and insula acti-
vations.129 In line with the RDoC initiative, Marin
et al.129 also reported a negative correlation between
trait anxiety levels and vmPFC activation within the anx-
iety group. This suggests a link between anxiety symp-
toms across different disorder diagnoses and a common
neural correlate of fear.

In a recent assessment of the domains and constructs
of the RDoC, fear conditioning paradigms were the rec-
ommended behavioral tasks to address the acute threat
construct within the negative valence system domain.130

A recommended behavioral task has not yet been defined
for the sustained threat construct (i.e., chronic stress or
distress construct) due to potential ethical violations asso-
ciated with prolonged stress exposure. Few human
studies have examined stress exposure effects on fear
extinction learning and memory. However, utilization
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of a fear conditioning and extinction task in combination
with measures of chronic stress using functional magnetic
resonance imaging, psychometric, and psychophysio-
logical methods can allow for multidimensional diag-
noses. Findings from these studies provide valuable
neural and behavioral data to aid in the development of
a new classification system enabling improved diagnosis
and treatment for individuals who share stress and anxi-
ety-related symptomatology.9

As chronic stress is a major contributor to the devel-
opment and maintenance of symptoms related to PTSD
and other psychiatric disorders such as anxiety, examin-
ing potential biomarkers of chronic stress (or ‘‘sustained
threat’’) may be critical to this paradigm. With the known
biology of stress, we can measure stress hormones such as

corticosterone in rodents and cortisol (i.e., chronic stress
levels from hair samples) in humans; these measures have
been extensively studied in PTSD research80,84,86,131 and
may be valuable in improving diagnoses/treatment.
Moreover, chronic stress not only affects cortisol and cat-
echolamine release as reviewed above, but it can also
influence cytokine signaling, alter levels of inflammation
markers, and induce epigenetic modifications such as
DNA methylation; these alterations have also been
reported in PTSD.132,133 One study indicated that a spe-
cific glucocorticoid receptor gene polymorphism, the BcII
GG genotype, was associated with lower levels of corti-
sol, more persistent traumatic memories, and increased
PTSD symptoms,134 providing additional evidence of
stress hormone effects in PTSD at the genetic level.

Figure 2. The effects of stress and influencing factors on fear memory. Stress exposure (acute or chronic) induces stress responses that

include changes in cortisol, norepinephrine, and epigenetic mechanisms. These responses to stress can affect fear memory by either

increasing or decreasing it during retrieval, and the direction of the effect is dependent on various influencing factors such as individual

differences (accounting for personal experiences, coping styles, etc.), sex (or gonadal hormones), stress hormone levels at the time of

the stressor/learning/memory recall, brain responses to the stressor, type of stressor, and the presence of PTSD/anxiety symptoms

and severity. Disrupting retrieval of the fear memory may enhance extinction processes, suggesting that stress (or stress hormone)

administration may improve response to extinction-based treatments such as prolonged exposure therapy.
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Subjective measures of chronic stress, including chronic
stress scales and questionnaires such as the perceived
stress questionnaire, can elucidate the mechanisms that
underlie the psychological impacts of stress, subsequently
contribute to mental illness, and affect the neurobiol-
ogy.135–137 The relationships and correlations between
these psychological and biological markers of stress and
the psychological, physiological, and neural substrates of
fear can further aid classification of the symptoms and
profiles of individuals suffering from stress- and anxiety-
related disorders.

Psychiatric disorders such as PTSD and anxiety dis-
orders are often accompanied by disturbances in learning
and memory processes and altered function within the
brain regions modulating these processes. These brain
regions are involved in fear circuitry and are affected by
chronic stress as well.138,139 Fear conditioning and extinc-
tion protocols already contain a learning and memory
component that allows for evaluating the cognitive effects
of fear responding associated with PTSD and other psy-
chiatric disorders. Further evaluating cognitive perform-
ance by combining these protocols with an additional and
more general learning and/or memory task (i.e., working
memory task) that has been extensively studied and has
well-known neurocircuitry may provide more useful or
comprehensive insight that is not limited to the fear
network.45,140

PTSD Treatment

Current therapies for PTSD, such as exposure therapy,
are based on extinction processes, and as a result, having
a tool to evaluate how well an individual can learn safety
signals (or learn not to fear once the threat is no longer
present) is integral to the success of these treat-
ments.50,141–143 For individuals with PTSD, trauma is
continually re-experienced; living in a chronically stressed
condition is the nature of the illness. Interestingly, it is
commonly also the nature of their treatment in prolonged
exposure therapy with repeated sessions of re-
experiencing the trauma. If stress can modulate critical
extinction processes, understanding how, when, and
where this modulation occurs might offer insight into
why treatments for PTSD work for some people and
not for others. Among studies on the effect of stress
and cortisol on fear extinction that report impairments,
many findings also describe disrupted fear memory retrie-
val, which may enhance extinction memory.144 More
research is necessary to determine how these effects of
stress and stress hormones can modify fear extinction
and the relevant neurocircuitry. Interestingly, some
PTSD studies have used the fear memory-impairing
effects of stress hormones by administering NE or cortisol
during PTSD treatment to facilitate extinction by impair-
ing retrieval of the trauma memory.145–149 One study

examining military veterans with PTSD, who received
hydrocortisone or placebo, revealed a reduction in
PTSD symptoms with hydrocortisone treatment.149

This effect was particularly pronounced in those with
glucocorticoid sensitivity, supporting the rationale for
augmenting prolonged exposure therapy with gluco-
corticoids for combat-related PTSD.149 As mentioned
previously, sex and gonadal hormones can also affect
extinction processes critical for treatment of PTSD and
its symptoms and should therefore be considered as fac-
tors in classification and treatment. An example of this
can be seen in cortisol treatment after reactivation, which
demonstrates differential effects on reconsolidation in
healthy men and women, enhancing the reactivated fear
memory in men and having no effect in women.150,151

This is important as these differences in the effect of cor-
tisol on fear could subsequently produce differential
PTSD treatment responses between the sexes.

Fear conditioning and extinction protocols also facili-
tate the ability to track neural changes and physiological
responses with treatment progress in parallel.152 Helpman
et al.152 examined a cohort of subjects with PTSD
and trauma-exposed individuals without PTSD who
underwent a two-day fear conditioning and extinction
protocol before and after a 10-week long prolonged
exposure treatment. It was found that from pre- to
post-treatment, brain activations differed within specific
brain regions, i.e., rostral anterior cingulate cortex and
subgenual anterior cingulate cortex; reduced subgenual
anterior cingulate cortex and parahippocampal activa-
tions were associated with reductions in PTSD symptom
severity.

Similar to these post-treatment brain changes and
improvements in PTSD symptoms in humans, there is
also evidence in rodents that demonstrates rescued func-
tion of stress-affected brain areas, such as the mPFC and
hippocampus, following rest after chronic stress.153,154

Moreover, Fucich et al.155 report therapeutic effects of
extinction training in rats that were fear conditioned
and then exposed to chronic unpredictable stress; extinc-
tion training improved performance on cognitive flexibil-
ity and coping behavior tasks, an improvement that was
associated with molecular mechanisms that involved pro-
tein synthesis within the mPFC. These findings maybe
translatable to humans as they indicate that allowing
time for recovery may mitigate some of the negative
effects of stress, such as exaggerated fear response in
the brain. These changes may again be detected and
assessed by examining fear learning and extinction
during functional magnetic resonance imaging. These
clinical and pre-clinical results support the idea that
examining the processes that underlie extinction learning,
and memory will enable us to understand how treatments
can modify brain circuits and neurobiological mechan-
isms to improve mental health.
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Conclusion

Identifying more specific diagnostic biomarkers of PTSD
and other stress-related disorders is critical to the
improvement of current diagnostic tools and treatment
options. It is evident that there is no single biological
marker for PTSD vulnerability, and there is a strong
rationale for moving away from DSM diagnosis-centric
research to focus more on biological underpinnings of
the symptoms individuals present.78,128 Stress, whether
in the acute or chronic sense, is a persistent catalyst for
the development and exacerbation of not only PTSD
symptoms but also depression and anxiety.107,156–159 As
such, measurements of stress (i.e., subjective reports/rat-
ings, stress hormone levels, genetics, epigenetics) should
be included in the study of symptoms across fear-related
disorders. Given that the inherent interactions between
the fear and stress systems expand the ability to study
both networks and their influences in PTSD symptom-
atology, the fear conditioning and extinction paradigms
discussed here provide a transdiagnostic tool to examine
both mechanisms in psychiatric disorders. This examin-
ation is not limited to PTSD research but rather intended
to obtain measures of critical biological markers that cor-
relate with stress- and anxiety-related symptoms for
broad applications. In some studies, it has been useful
to integrate DSM criteria and RDoC analyses (across
several domains/constructs) to gain multidimensional
perspectives in identifying biomarkers. Schmidt and
Vermetten160 assessed the value of RDoC in PTSD
research and found it useful (i.e., identification of amyg-
dalar hyperactivity across domains) but still lacking in
interpretation of findings and linking cellular and
molecular mechanisms with symptomatology. As
reviewed here, incorporating measures of chronic stress
at both the psychological and biological levels within fear
conditioning and extinction paradigms may help improve
diagnostic efficacy and push forward the development of
increasingly targeted treatments for stress- and fear-based
disorders.
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88. López JF, Akil H, Watson SJ. Neural circuits mediating

stress. Biol Psychiatry. 1999; 46: 1461–1471.
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