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Poznan University of Life Sciences,

Poland

*Correspondence:

Kamil Kuca

kamil.kuca@uhk.cz

Specialty section:

This article was submitted to

Predictive Toxicology,

a section of the journal

Frontiers in Pharmacology

Received: 11 August 2018

Accepted: 30 October 2018

Published: 20 November 2018

Citation:

Wu Q, Patocka J, Nepovimova E and

Kuca K (2018) A Review on the

Synthesis and Bioactivity Aspects of

Beauvericin, a Fusarium Mycotoxin.

Front. Pharmacol. 9:1338.

doi: 10.3389/fphar.2018.01338

A Review on the Synthesis and
Bioactivity Aspects of Beauvericin, a
Fusarium Mycotoxin
Qinghua Wu 1,2, Jiri Patocka 3,4, Eugenie Nepovimova 2 and Kamil Kuca 2*

1College of Life Science, Yangtze University, Jingzhou, China, 2Department of Chemistry, Faculty of Science, University of

Hradec Kralove, Hradec Kralove, Czechia, 3 Toxicology and Civil Protection, Faculty of Health and Social Studies, Institute of
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Beauvericin (BEA) is an emerging Fusarium mycotoxin that contaminates food and

feeds globally. BEA biosynthesis is rapidly catalyzed by BEA synthetase through a

nonribosomal, thiol-templated mechanism. This mycotoxin has cytotoxicity and is

capable of increasing oxidative stress to induce cell apoptosis. Recently, large evidence

further shows that this mycotoxin has a variety of biological activities and is being

considered a potential candidate for medicinal and pesticide research. It is noteworthy

that BEA is a potential anticancer agent since it can increase the intracellular Ca2+

levels and induce the cancer cell death through oxidative stress and apoptosis. BEA

has exhibited effective antibacterial activities against both pathogenic Gram-positive and

Gram-negative bacteria. Importantly, BEA exhibits an effective capacity to inhibit the

human immunodeficiency virus type-1 integrase. Moreover, BEA can simultaneously

target drug resistance and morphogenesis which provides a promising strategy to

combat life-threatening fungal infections. Thus, in this review, the synthesis and the

biological activities of BEA, as well as, the underlying mechanisms, are fully analyzed.

The risk assessment of BEA in food and feed are also discussed. We hope this review

will help to further understand the biological activities of BEA and cast some new light

on drug discovery.
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INTRODUCTION

Beauvericin (BEA) (Figure 1) is a cyclic hexadepsipeptide that is synthesized by various toxigenic
fungi, including several Fusarium species (Wang and Xu, 2012; Tao et al., 2015; Patocka, 2016). BEA
can be produced by different Fusarium species in different regions. For example, in the USA and
South Africa, F. circinatum is the main BEA producing fungi, whereas, in Europe, F. sambucinum
and F. subglutinans are the major ones (more details in Mallebrera et al., 2018). As a mycotoxin,
BEA is an important natural contaminant in many bowls of cereal and cereal based products (Shin
et al., 2009; Juan et al., 2013a,b). The contamination of BEA is a serious problem in Southern Europe
(Santini et al., 2012). Notably, BEA is toxic to human tissues and cells and shows cytotoxicity at a
concentration lower than that for aflatoxin B1 (Svingen et al., 2017). BEA induces the generation
of reactive oxygen species (ROS) and leads to an increase of oxidative stress, which causes cell
apoptosis (Ferrer et al., 2009). The channel forming ability of BEA selectively directs a flux of
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cations, particularly Ca2+, into the cells. The resulting increased
intracellular Ca2+ levels might be, at least in part, responsible for
their cytotoxicity (Lemmens-Gruber et al., 2000). BEA activates
apoptosis via the internal mitochondrial pathway and influences
several cellular signaling pathways and regulators including
MAPK, NF-κB, and p53 (Feudjio et al., 2010; Qadri et al., 2011).

Interestingly, this mycotoxin possesses a wide variety of
biological properties. It shows promising antibacterial and
antifungal activities and potentiates other antifungal agents
therapies (Zhang et al., 2007). Importantly, BEA can inhibit
cancer cell proliferation and induce cell apoptosis via activating
a Ca2+-mediated mechanism (Jow et al., 2004). Moreover, at
sub-cytotoxic concentrations, this mycotoxin can also inhibit
directional cancer cell motility (haptotaxis) (Zhan et al., 2007).
Haptotaxis is important for the development of new blood vessels
in tumors (angiogenesis) (Mizukami et al., 2018). The molecular
mechanism(s) of the biological action of BEA is related to
its ionophoric activity. BEA rapidly increases ion permeability
(especially Ca2+) in biological membranes (from extracellular
to intracellular) and acts as a cytotoxin. Up to date, BEA has
been reported to cause significant cytotoxicity in a variety of
cancer cell lines and oxidative stress seems to be one potential
mechanism in the induction of cancer cell death at the molecular
level (Tonshin et al., 2010). BEA is also genotoxic and induces
apoptosis due to the activation of mitochondrial-death pathway
(Celik et al., 2010). Recent studies further show that BEA is stable
enough to cross the blood-brain barrier, indicating neurotoxicity
(Taevernier et al., 2016a).

The in vitro cytotoxicity implies that BEA can be potentially
used for cancer therapeutics. This compound inhibits drug efflux
pumps, is non-mutagenic and inhibits bone resorption, which
suggests it as a potential drug candidate to fight disseminated
cancer (Feudjio et al., 2010). Thus, as reported, BEA has
many biological activities including antibacterial, antifungal,
anticancer, anti-inflammatory, insecticidal, nematicidal, platelet
activation, and anti-cholesterol activities (Figure 2). All these
characteristics are quite crucial for the development of medicine
and pesticides. However, up to date, these reports are scattered,
and there is rarely a recent review article available discussing
the various biological activities of BEA as well as their potential
mechanisms. Thus, in this review, we have updated and discussed
the biosynthesis and the major biological activities of BEA.

CHEMISTRY

BEA (CAS 26048-05-5. M.W. 783.957) is a cyclic
hexadepsipeptide that contains three D-hydroxy-isovaleryl
and three N-methyl-phenylalanyl residues in an alternating
sequence (Hamill et al., 1969) (Figure 1). BEA belongs to the
enniatins (ENNs) antibiotic family and it is structurally similar
to the ENNs, which are also produced by Fusarium species.
BEA differs from ENNs in the nature of the N-methylamino
acid. Their bioactivities are quite different due to the difference
between BEA and ENNs (Shin et al., 2009; Yoo et al., 2017)
(Figure 1). The absence of any chargeable groups in cyclic
hexapeptide explains the poor water solubility and the low

chemical reactivity of BEA, which also is characterized by a
three-fold axis of symmetry (Logrieco et al., 2002).

SYNTHESIS

BEA is produced by many fungi including Beaveria bassiana
(Hamill et al., 1969; Peczynska-Czoch et al., 1991) and Fusarium
spp. (Logrieco et al., 1998). The necessary components in
EBA biosynthesis are amino acid L-phenylalanine (L-Phe), the
hydroxy acid D-hydroxyisovaleric acid (D-HYIV), ATP/Mg2+,

and S-adenosyl-methionine (AdoMet), which is the source of the
methyl group for the L-phenylalanyl residues (Wang and Xu,
2012; Zobel et al., 2016). Basically, BEA biosynthesis is rapidly
catalyzed by BEA synthetase (BEAS) through a nonribosomal,
thiol-templated mechanism (Kopp and Marahiel, 2007; Xu et al.,
2008; Steiniger et al., 2017). BEAS consists of a single polypeptide
chain (molecular mass 250 kDa) and a calmodulin binding motif
(Peeters et al., 1988). B. bassiana BEAS (BbBEAS) can interact
with Ca2+ sensor calmodulin (CaM) in a Ca2+-dependent
manner (Kim and Sung, 2018). In vitro, CaM-binding assay
showed that the His-tagged BbBEAS binds to CaM in a Ca2+-
dependent manner. CaM binding to BbBEAS also induces the
conformational change of interacted proteins, which will further
affect its enzyme activity. Therefore, BbBEAS is a novel CaM-
binding protein in B. bassiana. The schematic representation of
the BEA biosynthesis is shown in Figure 3.

RISK ASSESSMENT OF BEAUVERICIN IN
FOOD AND FEED

There is a high occurrence of BEA in grains and wheat-
based products like pasta, infant formulas, breakfast cereals, and
biscuits, with incidences between 40 and 90% (Santini et al., 2012;
Stanciu et al., 2017). In recent years, BEA has frequently been
reported in different countries (South Africa, Norway, China,
Croatia, Poland, Spain,Morocco...) as contaminants of, especially
wheat, rye, oats, barley, and rice (Decleer et al., 2018). Seed-borne
infection of wheat with F. proliferatum leads to contamination
of wheat kernels with BEA (15–55 µg/kg) (Guo et al., 2016).
In the study of Quiles et al. (2016), around 3% of refrigerated
pizza dough were contaminated by BEA with level 22.39 µg/kg.
BEA (1.3 ng/L) is also detected in Swiss wastewater treatment
plant (Schenzel et al., 2012). Notably, BEA is a common
contaminant in Danish cereals and show high hepatoxicity
on a high-content imaging platform (Svingen et al., 2017).
Because this fungi often contaminate food, feedstock, and animal
feed, BEA is a risk factor for environmental health. Although
the cereal-based food and feed contamination of Fusaria is
huge, and although BEA is regularly found in these products
(Hietaniemi et al., 2016; Svingen et al., 2017; Beccari et al.,
2018; Carballo et al., 2018), the EFSA Panel on Contaminants
in the Food Chain (CONTAM Panel, 2014) concluded that acute
exposure to BEA and ENNs do not indicate concern for human
health.

Basically, BEA has less occurrence in grains from cooler
climates while a higher contamination level of BEA is usually

Frontiers in Pharmacology | www.frontiersin.org 2 November 2018 | Volume 9 | Article 1338

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Wu et al. Bioactivity Aspects of Beauvericin

FIGURE 1 | The chemical structure of beauvericin (BEA) and enniatins (ENNs).

FIGURE 2 | A summary of the different bioactivities of beauvericin.

reported in Southern Europe and Morocco (max 59 mg/kg
in maize) (Santini et al., 2012). The BEA levels in rice from
the local market of Morocco are varied between 3.8 and 26.3
mg/kg (Sifou et al., 2011; Fraeyman et al., 2017). The finding
of 10.6 mg/kg of BEA in a rice-based infant cereal sample
from Morocco should be highlighted (Mahnine et al., 2011).
Mycotoxins contamination in wheat-based products in Romania

for direct human consumption were evaluated and 32% of them
presented BEA (Stanciu et al., 2017). In corn grits from the
Japanese market, BEA was found in 34% of the samples. The
maximum concentration of BEA was 26.1 µg/kg (Yoshinari
et al., 2016). In China, BEA was detected in 96.9% of the
commercial pet food with levels ranging 0.2–153.4 µg/kg (Shao
et al., 2018). In Chinese medicinal herbs, BEA is the frequently
detectable toxin with a 20% incidence (Hu and Rychlik, 2014).
The contamination of BEA in Portuguese cereal-based foods was
evaluated by Blesa et al. (2012). The percentage of BEA was
1.6%. For the total samples, the mean contamination of BEA was
0.1 mg/kg BEA. The wheat-based samples showed higher levels
and greater prevalence than any other cereals monitored. The
occurrence of BEA in analyzed pasta and multi cereal baby food
samples from the Campania region (Italy) were below 68% (Juan
et al., 2013a). A high incidence (70.3%) and high contamination
levels (<1100 µg/kg) of BEA in multi cereal baby food and its
intakes could represent a risk for the infant population.

BEA (6.2–844 µg/kg) is one of the most predominant
mycotoxins in food and diet (wheat and maize-based products)
from Mediterranean area (Serrano et al., 2012). In the main
markets of Abidjan, Bouake, and Korhogo, France, 91% of
the rice, maize and peanut samples were contaminated with
more than one mycotoxin including BEA (79% of the samples)
(Manizan et al., 2018). The peanut paste samples represented
the highest risk to consumer health followed by maize and rice
samples. BEA (2 µg/kg) were detected in wheat ears randomly
collected during year 2014 and 2015 from various localities in the
Czech Republic (Sumikova et al., 2017). Besides these countries,
BEA was also monitored in different Italian organic cereals and
cereal products. Around 80% of analyzed samples contained with
BEA (6.7–41 µg/kg) (Juan et al., 2013b).
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FIGURE 3 | Beauvericin biosynthesis scheme.

The levels of BEA were analyzed in feed ingredients and
compound feeds that were distributed throughout Korea during
2006 and 2007 (Lee et al., 2010). Twenty seven percentage of
feed ingredients were contaminated with BEA at levels of 0.01–
1.80µg/g. The mean concentration of BEA was highest in bran
feeds (0.76µg/g). In compound feeds, 33% of samples were
contaminated with BEA at levels of 0.01–4.66µg/g. The mean
BEA concentration was higher in swine (0.74µg/g) and dairy
cattle (0.72µg/g) feeds than in beef cattle (0.43µg/g) and chicken
(0.37µg/g) feeds. BEA is also detected in Irish farm silages (21.8
µg/kg) (McElhinney et al., 2015) and corn-dried distiller’s grains
in Thailand (350 µg/kg) (Tansakul et al., 2013).

Currently, the occurrence data for BEA is still limited and
only available from certain parts of the world. Quantitative
skin permeability data showed that BEA penetrates through the
human skin and cross blood brain barrier to exert toxic effects
on human (Taevernier et al., 2016b). However, as an emerging
toxin, the toxicokinetic data and the risk assessment of BEA on
humans are rarely reported (Bertero et al., 2018). Therefore, it is
still difficult to conduct a full risk assessment for BEA. The BEA
occurrence in grains and grain-based foodstuffs in recent years
are summarized in Table 1.

BIOACTIVITY

BEA shows cytotoxic, apoptotic, anticancer, anti-inflammatory,
antimicrobial, insecticidal, and nematicidal activities. BEA is also
an ionophoric cyclodepsipeptide which forms complexes with
cations and increases the permeability of biological membranes
(Massini and Näf, 1980; Toman et al., 2011; Wätjen et al.,
2014; Lu et al., 2016). Because BEA has very efficient effects
in the anticancer, antimicrobial, and insecticidal activities, this
mycotoxin is considered to have the potential to be developed

as a medicine or a pesticide. The various kinds of bioactivities of
BEA are due to some unique active mechanisms, including the
ions transport, oxidative stress, and autophagy (Wang and Xu,
2012).

Cytotoxic Activity
The cytotoxic effects of BEA have been studied by several authors.
BEA (10µM) can induce significant toxicity in TM-Luc 102
and Caco-2 cells (Fernández-Blanco et al., 2016). BEA shows
toxicity in oocytes and cumulus cells at concentrations exceeding
0.5µM (Schoevers et al., 2016). BEA significantly inhibits bovine
granulosa cell proliferation at 3, 6, and 10µM (Albonico et al.,
2017). At 30µM, BEA shows inhibitory effects on IGF1-induced
CYP1 and CYP1 mRNA abundance (Albonico et al., 2017).

The mechanism of the BEA cytotoxicity is not fully
understood. Researchers showed that BEA reduces cell viability
correlating with the ROS generation and malondialdehyde
formation (Ferrer et al., 2009). Similarly, in the study of Jow
et al. (2004), BEA induces human leukemia cell death and this
process has underwent an apoptotic pathway. In their study,
CCRF-CEM cells were treated with BEA (1–10µM) for 24 h,
BEA-induced cell death exhibited a dose and time-dependent
manner. This incidence of nuclear fragmentation and apoptotic
body formation were significantly increased. Cytosolic caspase-
3 activity and the release of Cyt c from mitochondria were
also observed. The cellular toxicity targets of BEA are the
mitochondrion and the homeostasis of potassium ions (Tonshin
et al., 2010). In isolated rat liver mitochondria, exposure to BEA
depleted the mitochondrial transmembrane potential, uncoupled
oxidative phosphorylation, induced mitochondrial swelling and
decreased Ca2+ retention capacity of the mitochondria (Tonshin
et al., 2010). BEA can alter the mitochondrial membrane
potential and produces DNA strand breakage (Mallebrera et al.,
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TABLE 1 | Beauvericin occurrence in grains and grain-based foodstuffs from different countries.

Commodity Incidence (%) Concentrations (µg/kg) Country References

Wheat 36 7.1 (max 144.8) Belgium Decleer et al., 2018

Wheat 82 5.2 (max 13.5) Belgium Decleer et al., 2018

Wheat 2 0.07 Romania Stanciu et al., 2017

Wheat flour 1 0.3 Japan Yoshinari et al., 2016

Corn grits 34.1 3.8 Japan Yoshinari et al., 2016

Oats 73 31 (max 110) Denmark Svingen et al., 2017

Barley 7 10 (max 130) Denmark Svingen et al., 2017

Durum wheat 87 3.8 (max 56.4) Italy Covarelli et al., 2015

Soft wheat 100 26.8 (max 52.8) Italy Covarelli et al., 2015

Wheat-based baby foods 9.09 1.18 (max 21.3) Italy Juan et al., 2014

Multicereal baby foods 17 5.7 Italy Juan et al., 2013a

Wheat 26.32 12.8 (max 35) Italy Juan et al., 2013b

Rye 45.45 2.72 (max 16.5) Italy Juan et al., 2013b

Ginger 20 19 China Hu and Rychlik, 2014

Feed 27 0.48 (max 1.8) Korea Lee et al., 2010

Rice 3 54.7 Mediterranean region (Italy, Morocco, Tunisia, Spain) Serrano et al., 2012

Wheat based products 18.46 Max 844 Mediterranean region Serrano et al., 2012

Maize 36.36 Max 8,200 Slovakia Srobarova et al., 2002

Whole-grain dry pasta 10 10.14 Spain Serrano et al., 2013

Wheat 42.9 0.17–3.5 Spain Meca et al., 2010

Maize 19.4 0.17–59 Spain Meca et al., 2010

Cereal 1.6 0.1 Portugal Blesa et al., 2012

Rice 75.5 3.8–26.3 mg/kg Morocco Sifou et al., 2011

Rice 4.28 210–19,600 Morocco Sifou et al., 2011

Wheat 3.22 Max 2,000 Morocco Zinedine et al., 2011

Wheat 61.62 4.1 (max 68.8) The Netherlands Van der Fels-Klerx, 2009

Barley 7.14 19 (max 19) Finland Jestoi et al., 2004

Oats 10 (max 220) Finland Uhlig et al., 2007

Winter wheat 77.41 3.2 (max 13.0) Sweden Lindblad et al., 2013

Oats 19 (max 120) Norway Uhlig et al., 2006

Maize 75 Max 45 USA Wu and Smith, 2007

Maize 75 Max 40 South Africa Sewram et al., 1999

Maize 9.10 10–1,864 Croatia Jurjevic et al., 2002

Maize 100 1,800–3,6890 Poland Kostecki et al., 1995

Maize 75 Max 45 USA Wu and Smith, 2007

2016). Moreover, Mallebrera et al. (2016) showed that, BEA
exposure for 24 h arrested the G0/G1 phase of CHO-K1 cell cycle
and produces apoptosis. It seems that BEA-induced apoptosis is
controlled by a balanced expression between apoptotic (Bax, Bad)
and antipoptotic (Bcl-2) proteins (Mallebrera et al., 2018).

Importantly, a pre-treatment of the Ca2+ chelator can
significantly increase the survival rate of the cells. Thus,
intracellular Ca2+ plays an important function, perhaps as a
mediator in the induced cell death signaling (Jow et al., 2004).
A very recent study (Manyes et al., 2018) further showed
that the cytotoxicity of BEA involves mitochondrial alterations,
apoptosis, and cell cycle disturbances, since they observed amuch
higher percentage of apoptotic rate. Caspase-3 and 7 were highly
activated and BEA arrested the S phase of the cell proliferation.
Moreover, we further suspect that the BEA-induced cytoxicity has

a relationship with autophagy, although the study of autophagy
in BEA has rarely been reported. Since autophagy has a complex
function in cell proliferation (Wu et al., 2018), therefore, it is
quite interesting if some studies of autophagy in the cytotoxicity
of BEA are conducted in the future.

On the other hand, BEA can increase ion permeability in
biological membranes by forming a complex with essential
cations (Ca2+, Na+, K+), which may affect the ionic homeostasis
(Jow et al., 2004). Zhan et al. (2007) further showed that BEA
is capable of inhibiting the metastatic prostate cancer and breast
cancer cells and has antiangiogenic activity in HUVEC-2 cells.

The results of the studies suggest that BEA could be
neurotoxic, but almost nothing is known about the mechanism
of its neurotoxic effect (Zuzek et al., 2016). In the paper of Zuzek
et al. (2016), BEA was shown to disrupt neurotransmission at the
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motor endplate. BEA reduced the release of acetylcholine from
the presynaptic terminal. BEA formed cation-selective channels
thus could depolarize and inactivate voltage-dependent sodium
Nav1.4 type channels (Kouri et al., 2003).

Anticancer Activity
Currently, the anticancer potential of BEA is a hot topic (Zhan
et al., 2007; Lu et al., 2016). BEA inhibits migration of the
metastatic prostate cancer ((PC-3M)), breast cancer (MDA-
MB-231) cells and exhibits antiangiogenic activity in HUVEC-
2 cells (Zhan et al., 2007). BEA was also reported to induce
the apoptosis of human non-small cell lung cancer (NSCLC)
A549 cells (Lin et al., 2005), KB, and KBv200 cells (Tao et al.,
2015). The anticancer activities of BEA are mainly studied by the
working group of Jow [see Jow et al., 2004; Lin et al., 2005; Tang
et al., 2005; Chen et al., 2006)]. BEA induced apoptosis through
mitochondrial pathways, including decrease of ROS generation,
loss of mitochondrial membrane potential, release of cytochrome
c, and activation of Caspase-9 and−3 (Tao et al., 2015).

As discussed, the mechanism of BEA-induced cancer cell
apoptosis involves multiple cellular/molecular pathways and
pro- and anti-apoptotic Bcl-2 family proteins (Lu et al., 2016).
Moreover, the BEA-induced cell death is mainly due to the
increase of intracellular Ca2+ concentration (Lu et al., 2016).
However, it should be further to identify whether the increase
of intracellular Ca2+ (from extracellular or intracellular stores)
is an important factor with the apoptotic pathway to conduct
EA-induced cancer cell death. In a subsequent study (Chen et al.,
2006), the effect of BEA on Ca2+ concentration [[Ca2+]i] and the
underlying mechanisms responsible for the changes of [Ca2+]i in
CCRF-CEM cells were further investigated. Indeed, BEA caused
a rapid and sustained [Ca2+]i rise. Excess extracellular Ca2+

facilitated a BEA-induced [Ca2+]i rise in the bathing medium. It
is noteworthy that the voltage-dependent Ca2+ channel blocker
or intracellular Ca2+ depletion does not affect the BEA-induced
[Ca2+]i rise. Thus, BEA should act as a potent Ca2+ mobilizer
by stimulating an extracellular Ca2+ influx and inducing the
cancer cell apoptosis (Figure 4). Similarly, BEA can activate
Ca2+-activated Cl− currents and induces cell death in Xenopus
oocytes via the influx of extracellular Ca2+ (Tang et al., 2005).

As mentioned, BEA induces apoptosis in a variety of
cancer cell lines, but the underlying mechanism(s) is still not
fully understood. Lin et al. (2005) showed that BEA-induced
human NSCLC A549 cell apoptosis through the up-regulation
of cytokines Bax and p-Bad and down-regulation of p-Bcl-2.
Also, the reduction of mitochondrial membrane potential, the
activation of caspase 3 and cytochrome c release were observed
and should be involved in the mechanism of BEA-induced cancer
cell death (Jow et al., 2004; Lin et al., 2005). However, in the study
of Tao et al. (2015), the decrease of protein level Bcl-2 and Bax
after treatment with BEA (3–12µM) for 48 h was not observed
in KB cells and KBv200 cells. This different effect on pro and
anti-apoptotic Bcl-2 family proteins induced by BEA might be
relevant to various characteristics of the cell lines.

Oxidative stress is one important effect involved in BEA
anticancer activity (Prosperini et al., 2013). BEA can increase
the ROS level at an early stage. BEA induced cancer cell death

via an apoptotic process with reduced G0/G1 phase and with
an arrest in G2/M. Moreover, BEA caused DNA damage after
12.0µM concentration. Also, BEA exposure produces DNA
strand breakage and induces CHO-K1 cell apoptosis (Mallebrera
et al., 2016). In a very recent study (Escrivá et al., 2018), BEA
was further shown to induce mitochondrial damage to affect the
respiratory chain through the caspase cascade in Jurkat cells.
However, on the contrary, one research group Dornetshuber
et al. (2009) demonstrated that the oxidative stress and DNA
interactions were not involved in BEA-mediated apoptosis. The
reasons are not clear but are possibly due to the different cell lines,
BEA concentrations, and functioning times used in their specific
studies.

Some signaling pathways are involved in the anticancer
mechanisms of BEA (Wätjen et al., 2014; Lu et al., 2016). For
example, in cancer cell lines HepG2 and H4IIE, BEA reduced
the ERK and NF-κB protein expression and promoted JNK
phosphorylation (Wätjen et al., 2014). As known, deregulated
NF-κB activity contributes to many human diseases, including
tumors. Since NF-κB is a transcription factor which is responsible
for cell survival, this inhibition may also contribute to the toxic
effects of BEA. BEA induces an increased JNK phosphorylation,
which is generally associated with cell death. Additionally,
numerous protein kinase in the signaling transduction pathway
showed a selective inhibition of Src kinase by BEA (Wätjen
et al., 2014). MEK1/2-ERK42/44-90RSK pathway plays an
important role in the mechanism of BEA-induced NSCLC
A549 cancer cell apoptosis (Lu et al., 2016). Further, BEA can
decrease the ERK and NF-κB phosphorylation but increase
JNK phosphorylation in H4IIE cells. During a screening of 21
protein kinases, BEA shows selective inhibition of Src kinase
in signal transduction pathways (IC50 = 9.8µg/ml) (Wätjen
et al., 2014). Recently, Lu et al. (2016) reported that BEA
induces NSCLC A549 cancer cell apoptosis through the mitogen-
activated protein kinase pathway (MAPK), BEA can also activate
MEK1/2-ERK42/44-90RSK crosstalk signaling pathway which
can induce A549 cell cycle arrest in the S phase and apoptosis
(Lu et al., 2016). In vivo, BEA reduces the levels of TNF-
α and IFN-γ in mice serum. BEA suppresses IFN-γ-STAT1-
T-bet signaling and leads to T cell apoptosis (Massini and
Näf, 1980). Compared with other mycotxins, for example,
trichothecenes (Wu et al., 2017), the study of the signaling
pathway of BEA in anicancer mechanisms is relatively limited.
More studies on the signaling pathways in the BEA cytotoxicity
are warranted.

It should be noted that most of the above studies are
performed in vitro using cancer cell lines and the in vivo studies
are urgently needed to identify the anticancer capacity of BEA.
Recently, Heilos et al. (2017) have tested the in vivo anticancer
effects of BEA by treating mice bearing murine CT-26 or human
KB-3-1-grafted tumors, respectively. Decreased tumor volumes
and weights in BEA-treatedmice without any adverse effects were
observed. BEA accumulation was also detected in tumor tissues.
Moreover, a significant increase of necrotic areas within whole
tumor sections of BEA-treated mice was observed, confirming
its promising role as a novel natural compound for anticancer
therapy.
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FIGURE 4 | The mechanism of Ca2+ in the beauvericin-induced cancer cell death. (A) At normal status, there is a much higher extracellular Ca2+ content, and

cancer cells keep surviving. (B) After the exposure of beauvericin, the extracellular Ca2+ are motivated to transfer into the intracellular through the calcium channel

and induce the cancer cell apoptosis and death. Beauvericin can activate Ca2+-activated Cl− currents and induce cell death as well.

Thus, BEA shows promising anticancer potential through
investigation of different cancer cell lines. Normally, BEA induces
extracellular Ca2+ translocated into the cytosol, which leads to
an increase intracellular Ca2+ level. The increased Ca2+ may
activate a series of signaling pathways, for example, MAPK, NF-
κB, and decreases the mitochondrial transmembrane potential,
release of Cyt c, and activates caspase, therefore further promotes
the cancer cell apoptosis. However, up to date, we have rarely
seen the in vivo data of anticancer of BEA. The in vivo data is
very important since we need to know that whether BEA is stable
and active in the body. Moreover, the toxicity of this product is
an important issue for consider. Thus, the information of the in
vivo anticancer activity of BEA are urgently needed. In addition,
in the future, the study of the BEA-monoclonal antibodies (mAb)
should be a promising strategy in anticancer therapies.

Anti-inflammatory Activity
BEA has anti-inflammatory activities and it inhibits
inflammatory responses by inhibiting the NF-κB pathway.
In a recent study by Yoo et al. (2017), BEA blocked the
production of nitric oxide (NO) in lipopolysaccharide-treated
RAW264.7 cells without inducing cell cytotoxicity. Moreover,
BEA inhibited the nuclear translocation of the NF-κB subunits
p65 and p50. Luciferase reporter gene assays demonstrated
that BEA suppressed MyD88-dependent NF-κB activation.
By analyzing upstream signaling events for NF-κB activation,
overexpression of Src and Syk were observed and these two
enzymes were the potential targets of BEA. Thus, BEA is a strong
anti-inflammatory agent that attenuates NF-κB-dependent

FIGURE 5 | The proposed anti-inflammatory pathway of beauvericin (BEA) in

macrophages (adapted from Yoo et al., 2017).

inflammatory responses by suppressing enzymes Src and Syk
(Figure 5) (Yoo et al., 2017).

The current therapeutic goals of colitis are aimed at
reducing the occurrence of the main symptoms and preventing
further development of the disease. BEA has a therapeutic
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role in the colitis. Inflammatory bowel disease is usually
accompanied by abnormal secretion of inflammatory cytokines.
These abnormally secreted cytokines also promote inflammation
and play an important role in the occurrence and development
of inflammatory bowel disease. BEA can inhibit the expression
of L-12, IL-1β, and IFN-γ in enteritis colon tissue with enteritis
(Wu et al., 2013). Because of the anti-inflammatory effect,
BEA shows a promising capacity for the treatment of colonic
inflammation by targeting the PI3K/Akt pathway (Wu et al.,
2013). BEA decreased serum levels of TNF-α and interferon
IFN-γ and suppressed T-cell proliferation. BEA further reduced
the activation of IFN-γ-STAT1-T-bet signaling and led to T
cell apoptosis by suppressing Bcl-2 and increasing cleavage
of caspases and PARP (Wu et al., 2013). Therefore, targeting
PI3K/Akt in the activated T cells by BEA maybe a novel therapy
for Crohn’s disease.

Antimicrobial Activity
BEA has a strong antibacterial activity against Gram-positive
and Gram-negative pathogenic bacteria (Nilanonta et al., 2000,
2002; Meca et al., 2010). Also, numerous bacterial strains
without distinction between Gram-positive and Gram-negative
bacteria, are inhibited by BEA as well, for example, Bacillus
spp., Bifidobacterium adolescentis, Clostridium perfringens,
Paenibacillus spp., and Peptostreptococcus spp. (Castlebury
et al., 1999; Xu et al., 2010). BEA exhibits minimum inhibitory
concentration (MIC) values of 0.8–1.6 mg/mL against M.
tuberculosis, and IC50 values of 1.3–2.4 mg/mL against P.
falciparum (Nilanonta et al., 2002). BEA showed remarkable
activity against two Gram-negative strains (B. cereus and S.
typhimurium) with respective MIC values of 3.12 and 6.25µg/ml
(Dzoyema et al., 2017). As described by Xu et al. (2010), the
median effective inhibitory concentration values of BEA against
6 test bacteria (B. subtilis, S. haemolyticus, P. lachrymans, A.
tumefaciens, E. coli, and X. vesicatoria) were between 18.4 and
70.7µg/mL. In another study (Zhang et al., 2016), BEA showed
an inhibitory effect on three human pathogenic microbes, C.
albicans, E. coli, and S. aureus. In particular, BEA exhibited
the strongest antimicrobial activity against S. aureus with MIC
values of 3.91µM.

Regarding its antibacterial mechanism of BEA, the
antibacterial effect of BEA is different from other antibiotics.
Unlike most antibiotics, the bacterial cell wall is not the
antibacterial mode of BEA activation. Cell organelles or enzyme
systems are the targets of BEA (Prince et al., 1974; Wang and Xu,
2012). Based on the antibacterial activity against plant pathogens
(Xu et al., 2010), BEA could be utilized in the control of non-food
crop diseases and to solve the problems of drug resistance (Tong
et al., 2016).

BEA also has a very effective antifungal activity. An
administration of BEA with ketoconazole shows an antifungal
effect with more than 100-fold higher than that by a single
application (Zhang et al., 2007). The mechanism of antifungal
activity of BEA has been studies by numerous studies (Mei
et al., 2009; Shekhar-Guturja et al., 2016a; Tong et al., 2016).
The synergetic effect is not due to their pharmacokinetic
interactions (Mei et al., 2009). Tong et al. (2016) further

reported that BEA can counteract multidrug resistant Candida
albicans by blocking ABC transporters. As a drug efflux pump
modulator, BEA reverses the multi-drug resistant phenotype of
C. albicans by blocking the ATP-binding cassette transporters.
BEA shows fungicidal activity by elevating intracellular Ca2+

and ROS (Tong et al., 2016). Recently, a powerful strategy to
enhance antifungal efficacy against human fungal pathogens was
investigated by using BEA (Shekhar-Guturja et al., 2016a,b).
BEA potentiated the activity of azole antifungals against azole-
resistant Candida isolates via blocking multidrug efflux and
inhibition of global regulator TORC1 kinase; thereby activating
protein kinase CK2 and inhibiting the molecular chaperone
Hsp90. Pdr5 substitutions enable BEA efflux (Shekhar-Guturja
et al., 2016a). BEA itself was effluxed via Yor1. Zcf29 bound
to and regulated the expression of multidrug transporter genes
(Shekhar-Guturja et al., 2016b). Beyond drug resistance, BEA
blocked the C. albicans morphogenetic transition from yeast to
filamentous growth in response to diverse cues. BEA repressed
the expression of many filament-specific genes, including the
transcription factor BRG1 (Shekhar-Guturja et al., 2016b). Thus,
BEA simultaneously targets drug resistance and morphogenesis
provides a promising strategy to combat life-threatening fungal
infections. The antifungal activity of BEA alone is very weak
but can be greatly increased in combination with ketoconazole
or miconazole (Fukuda et al., 2004; Zhang et al., 2007). The
structure-activity relationship (SAR) of BEA should be further
studied to explore its antimicrobial activity.

Insecticidal and Nematicidal Activity
BEA shows a very promising insecticidal potential. In 1969,
the working group of Hamill et al., firstly discovered the
insecticidal activity of BEA against a model organism Artina
salina (Hamill et al., 1969). Similarly, other authors investigated
the insecticidal effect of BEA on Aedes aegypti (Grove and Pople,
1980), Calliphora erythrocephala (Daniel et al., 2017), Spodoptera
frugiperda (Fornelli et al., 2004), and Lygus spp. (Leland et al.,
2005). Although BEA was claimed to have insecticidal properties
(Hamill et al., 1969), it is a pity that little detailed information
has been published. Currently, BEAwas confirmed against model
organism to study insecticidal activity, Artemia salina (Hamill
et al., 1969), against C. erythrocephala (Grove and Pople, 1980),
A. aegypti (Wang and Xu, 2012), Lygus spp. (Leland et al., 2005),
S. frugiperda (Fornelli et al., 2004), and Schizaphis graminum
(Ganessi et al., 2002).

Up to date, there are very few reports about the insecticidal
mechanism of BEA. Although BEA has similar chemical
structures with other cyclic hexadepsipeptide mycotoxins, this
mycotoxin is more effective against A. aegypti and suggesting a
unique mechanism of action exists (Grove and Pople, 1980). The
methanolic and ethyl acetate-methanolic extracts of B. bassiana
showed larvicidal activity against 3rd instar of A. aegypti (Daniel
et al., 2017). Cyclodepsipeptides are the active principles for the
larvicidal action. BEA is a potential insecticidal component in the
formulations for the Dengue and Zika vector.

BEA shows a promising nematicidal activity. Culture
filtrates of B. bassiana were evaluated for nematicidal
activity against the northern root-knot nematode (Meloidogyne
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hapla) (Liu et al., 2008). The nematode population densities and
subsequent gall formation and egg-mass production byM. hapla
were thoroughly decreased by the filtrates (Liu et al., 2008). Zhao
et al. (2013) further demonstrated that the culture filtrate of
different isolates of B. bassiana had different levels of activities
against the same nematode, and the same culture filtrate had
selective toxicity against different nematodes (Kepenekci et al.,
2017). In addition, BEA shows nematicidal activities against the
pine wood nematode B. xylophilus and the free-living nematode
C. elegans (Shimada et al., 2010). Very recently, a new-to-nature
octa-BEA showed up to very effective antiparasitic activity
against Leishmania donovani and Trypanosoma cruzi (Steiniger
et al., 2017). However, its antiparasitic mechanism is poorly
understood and needs more investigations.

CONCLUDING REMARKS

BEA as a mycotoxin has different kinds of biological activities.
It has a therapeutic potential for cancer, and viral or bacterial
infections, as well as, other deadly diseases. Regarding these
appealing pharmacological properties, BEA and its metabolites
fulfill the requirements to be considered for further pre-clinical
development as the treatment option for cancers. However, this
mycotoxin is a common part of food and food ingredients as the
contaminant, and there is still no clear answer of the question on

whether long-term consumption of the low-dose of mycotoxin
BEA can cause harm to humans and animal health. Detailed
studies on the consequences of chronic and bolus BEA exposure
are eagerly needed. Furthermore, occurrence data for BEA is still
quite limited and only available from certain parts of the world.
Therefore, currently, it is not possible to carry out a full risk
assessment for BEA. In the future, it is necessary to evaluate the
effectiveness of BEA as a substance that can be used in agriculture
or medicine. The investigation on the BEA-mAb in anticancer
therapies should be encouraged.
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