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Diminished antiviral innate immune gene expression in
the placenta following a maternal SARS-CoV-2 infection
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BACKGROUND: COVID-19 is caused by the SARS-CoV-2 virus and is
associated with critical illness requiring hospitalization, maternal mortality,
stillbirth, and preterm birth. SARS-CoV-2 has been shown to induce
placental pathology. However, substantial gaps exist in our understanding
of the pathophysiology of COVID-19 disease in pregnancy and the long-
term impact of SARS-CoV-2 on the placenta and fetus. To what extent
a SARS-CoV-2 infection of the placenta alters the placental antiviral innate
immune response is not well understood. A dysregulated innate immune
response in the setting of maternal COVID-19 disease may increase the
risk of inflammatory tissue injury or placental compromise and may
contribute to deleterious pregnancy outcomes.

OBJECTIVE: We sought to determine the impact of a maternal SARS-
CoV-2 infection on placental immune response by evaluating gene
expression of a panel of 6 antiviral innate immune mediators that act as
biomarkers of the antiviral and interferon cytokine response. Our hy-
pothesis was that a SARS-CoV-2 infection during pregnancy would result
in an up-regulated placental antiviral innate immune response.
STUDY DESIGN: We performed a case—control study on placental
tissues (chorionic villous tissues and chorioamniotic membrane) collected
from pregnant patients with (N=140) and without (N=24) COVID-19
disease. We performed real-time quantitative polymerase chain reaction
and immunohistochemistry, and the placental histopathology was evalu-
ated. Clinical data were abstracted. Fisher exact test, Pearson correlations,
and linear regression models were used to examine proportions and
continuous data between patients with active (<10 days since diagnosis)

vs recovered COVID-19 (>10 days since diagnosis) at the time of delivery.
Secondary regression models adjusted for labor status as a covariate and
evaluated potential correlation between placental innate immune gene
expression and other variables.

RESULTS: SARS-CoV-2 viral RNA was detected in placental tissues
from 5 women with COVID-19 and from no controls (0/24, 0%). Only 1 of 5
cases with detectable SARS-CoV-2 viral RNA in placental tissues was
confirmed to express SARS-CoV-2 nucleocapsid and spike proteins in
syncytiotrophoblast cells. We detected a considerably lower gene
expression of 5 critical innate immune mediators (IFNB, IFIT1, MXA, IL6,
IL1B) in the chorionic villi and chorioamniotic membranes from women
with active or recovered COVID-19 than controls, which remained sig-
nificant after adjustment for labor status. There were minimal correlations
between placental gene expression and other studied variables including
gestational age at diagnosis, time interval between COVID-19 diagnosis
and delivery, prepregnancy body mass index, COVID-19 disease severity,
or placental pathology.

CONCLUSION: A maternal SARS-CoV-2 infection was associated with
an impaired placental innate immune response in chorionic villous tissues
and chorioamniotic membranes that was not correlated with gestational
age at COVID-19 diagnosis, time interval from COVID-19 diagnosis to
delivery, maternal obesity, disease severity, or placental pathology.

Key words: chorioamniotic membrane, chorionic villous, COVID-19,
fetus, immune response, placenta, pregnancy, SARS-CoV-2

Introduction

mortality rates.' '’ The impact of a

significant  implications for  both

Pregnant women who become infected
with SARS-CoV-2 are more susceptible
to hospitalization, critical illness, and
numerous adverse perinatal complica-
tions (eg, stillbirth, preeclampsia, and
preterm birth). They are also associated
with a higher likelihood of requiring
intensive care unit admission and me-
chanical ventilation and show higher

Cite this article as: Coler B, Wu TY, Carlson L, et al.
Diminished antiviral innate immune gene expression in
the placenta following a maternal SARS-CoV-2 infection.
Am J Obstet Gynecol 2022;XX:x.ex—X.ex.

0002-9378/$36.00
© 2022 Elsevier Inc. All rights reserved.
https://doi.org/10.1016/j.ajog.2022.09.023

Click Video under article
title in Contents at ajog.org

SARS-CoV-2 infection at the maternal-
fetal interface and on the fetus, howev-
er, is not well understood.'"!?
SARS-CoV-2 tropism for placental tis-
sues is suggested to be low: the viral re-
ceptor necessary for cellular integration,
angiotensin 2- converting enzyme, and
its cofactor—transmembrane serine
protease 2—are minimally expressed in
healthy placental tissues."” ¥ Expres-
sion of these canonical receptors is
increased, however, in syncytiotropho-
blast cells from third trimester placentas
of pregnant women with severe COVID-
19 disease.'®'” "> Numerous case series
indicate that vertical transmission of
SARS-CoV-2 to the fetus is low.””"*’
How the placenta responds to a SARS-
CoV-2 infection in pregnancy is un-
clear; an antiviral immune response has

placental and fetal health.

Antiviral innate immunity primarily
relies on the synthesis and secretion of
type I interferons (IFN) such as IFN-«
and IFN-8, which further stimulate the
production of hundreds to thousands of
IFN-stimulated genes, cytokines, and
chemokines.”* SARS-CoV-2 is known to
evade antiviral innate immunity through
impairing placental innate immunity
and gene expression during an acute
infection. Viral nonstructural protein 1
(Nspl) and open reading frame 6
(ORF6) inhibit phosphorylation of
signal transducer and activator-of-
transcription (STAT)*” proteins and
impede messenger RNA (mRNA) pro-
duction or processing while promoting
host mRNA destruction.”” " Impaired
STAT protein phosphorylation by
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Why was this study conducted?

placental innate immune response.

Key findings

This study aimed to evaluate the impact of maternal SARS-CoV-2 infection on

We identified a marked reduction in gene expression of numerous innate im-
mune mediators critical for antiviral host defense in the placental tissues in a large
cohort of pregnant women diagnosed with COVID-19 during their pregnancy.
The placental innate immune defenses were negatively impacted, regardless of
COVID-19 disease severity, gestational age at COVID-19 diagnosis, and time
interval between diagnosis and delivery.

What does this add to what is known?

Even after having mild COVID-19 disease, the placenta may have a significantly
impaired immune response, which may increase the risk of other infections in
pregnancy or reflect a broader decline in placental function.

SARS-CoV-2 suppresses IFN expression
and signaling, broadly evading innate
immune responses.””** To what extent a
placental infection by SARS-CoV-2
modulates the placental antiviral innate
immune response is unclear.”” ** A
robust or dysregulated innate immune
response may increase the risk of in-
flammatory tissue injury or placental
compromise and contribute to delete-
rious fetal outcomes, including
stillbirth." "> """ A spectrum of placental
pathologic conditions has been linked to
a maternal SARS-CoV-2 infection,
including chronic histiocytic inter-
villositis, fibrin deposition, trophoblast
necrosis, and, in some cases, chronic
villitis or acute chorioamnionitis;
notably, stillbirth cases have been closely
associated with the triad of chronic his-
tiocytic intervillositis, fibrin deposition,
and trophoblast necrosis.”'”*'~** Pre-
vious reports of placental pathology
associated with COVID-19 have attrib-
uted these changes to maternal hypoxia
from underlying respiratory impair-
ment; whether an interferon and/or
cytokine response to SARS-CoV-2
infection may contribute to a placental
pathologic profile is unclear. Moreover,
whether maternal disease status impacts
the relationship between a SARS-CoV-2
infection, placental innate immune
response, and placental histopathology is
unknown.

This study aimed to evaluate the
profile of the placental antiviral innate
immune response following maternal
COVID-19 disease in a large placental
biobank that allowed for analysis of
factors that are typically not explored
owing to smaller sample sizes (viz, labor
status, placental pathology, time interval
between infection and delivery, and
COVID-19 disease severity). We hy-
pothesized that placental antiviral
response might be up-regulated by a
recent SARS-CoV-2 infection in preg-
nancy. However, a SARS-CoV-2 infec-
tion may also harm cytotrophoblast and
syncytiotrophoblast cells later in the
disease course to impair the placental
antiviral immune response. Thus, the
placental antiviral innate immune
response may clear SARS-CoV-2 at the
expense of placental cellular health and
immune defense.

Materials and Methods

Study design, sample collection

and medical record abstraction

We conducted a case—control study that
included placental tissues from pregnant
patients with (N=140) and without
(N=24) a positive laboratory test for
SARS-CoV-2 by polymerase chain reac-
tion of a nasopharyngeal swab during
their pregnancy between June 2020 and
July 2021. Placental tissues were
collected with approval through either
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the Intermountain Healthcare Research
Institutional Review Board (IRB #
1051448, waiver of consent) or the
University of Washington Human Sub-
jects Division (STUDY #00002410,
informed consent). Coded placental
samples and data from Intermountain
Healthcare were sent to the University of
Washington. As K.M.A.W. and her team
did not have access to any personal
identifiers linked to the Intermountain
Healthcare samples, this study was
deemed to not involve any human sub-
jects’ activity by the Human Subjects
Division of the University of Washington
(STUDY #00012244).

Placental tissues were collected by
medical providers at the time of de-
livery. Placental tissue samples (cho-
rioamniotic membranes [CAM] and
chorionic villous [CV] tissues) were
stored immediately in RNALater (Invi-
trogen, Waltham, MA) or in 10%
neutral buffered formalin (CAM, CV,
umbilical cord). The tissues in RNA-
Later were subsequently transferred
to —80°C. Tissues in formalin were
embedded in paraffin so that a cross-
section of each tissue could be
evaluated.

Clinical data including prepregnancy
body mass index (BMI, kg/m?), parity,
gestational age at COVID-19 diagnosis
and delivery, severity of COVID-19
infection, mode of delivery, pregnancy-
related complications, neonatal sex
(University of Washington patients
only), birthweight, and COVID-19
infection status of the neonate at 72
hours were abstracted from patient
charts. Active COVID-19 and recovered
COVID-19 were defined as delivery <
10 or >10 days, respectively, from
symptom onset or diagnosis; this cate-
gorization was independent of disease
severity. At the time of placental collec-
tion, 51 patients had active COVID-19,
and 89 had recovered COVID-19. We
employed the criteria for COVID-19
disease severity previously defined in
nonpregnant adults and adjusted them
to our pregnant cohort.*” Categories
for COVID-19 disease severity were
scored as (0) for asymptomatic disease,
(1) for mild disease, and (2) for moder-
ate or severe disease. COVID-19 disease
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E'Ioi‘r?ilt_:gﬂcharacteristics and COVID-19 disease and pregnancy and neonatal outcomes
Pregnant individuals
Characteristic/outcome All (N=164) Controls (N=24) COVID-19 (N=140) P value?
Pregnancy and medical history
Parity 2.6+1.6 2.5+1.3 2.6+1.6 793
Prepregnancy BMI (kg/m?) 28.6+6.6 27.6+6.7 28.7+6.6 .466
Obesity (BMI >30.0 kg/m?) 58 (35.4%) 6 (25.0%) 52 (37.1%) .356
Asthma 3 (1.8%) 0 (0%) 3(2.1%) 1.000
Diabetes mellitus 2 (1.2%) 1 (0.6%) 1 (0.6%) 1.000
Chronic hypertension 8 (4.9%) 3 (12.5%) 5 (3.6%) .094
Pregnancy and neonatal outcomes
Gestational age at delivery (wk, N=162) 37.942.2 38.5+1.2 37.8+24 .050
Preterm birth rate 22 (13.4%) 1 (4.2%) 21 (15.0%) 203
PPROM 8 (4.9%) 0 (0%) 8 (5.7%) .605
Preeclampsia and gestational hypertension 19 (11.6%) 2 (8.3%) 17 (12.1%) 743
Mode of delivery 107
Cesarean delivery 57 (34.8%) 12 (50.0%) 45 (32.1%)
Vaginal delivery 107 (65.2%) 12 (50.0%) 95 (67.9%)
Labor .004
Yes 124 (75.6%) 12 (50.0%) 112 (80.0%)
No 40 (24.4%) 12 (50.0%) 28 (20.0%)
Fetal birthweight (g) 3156.6+603.5 3421.0+496.3 3,111.3+610 .010
Apgar score at 1 min (N=154; 7.67+1.15 7.90+0.31 7.63+1.22 .037
20 control, 134 COVID-19)
Apgar score at 5 min (N=154; 8.754+0.85 8.704+0.57 8.76+0.89 .683
20 control, 134 COVID-19)
COVID-19 disease (N=140)
Gestational age at COVID-19 diagnosis — — 30.6+8.1 —
COVID-19 diagnosis to delivery (wk; N=138) — — 7.2+8.0 —
COVID-19 status at delivery —
Active COVID-19 — — 51 (36.4%)
Recovered COVID-19 — — 89 (63.6%)
COVID-19 symptoms/severity 34 (24.3%) —
None — — 71 (50.7%)
Mild — — 14 (10.0%)
Moderate or severe — — 21 (15.0%)
Unknown — —
Information about maternal age and fetal sex was not available for most of the cohort and is therefore not reported.
BMI, body mass index; NS, nonsignificant; PPROM, preterm premature rupture of membranes.
# Pvalues are considered significant if <.05.
Coler. Placental innate immune suppression after maternal COVID-19. Am ] Obstet Gynecol 2022.

severity was defined as asymptomatic sore throat, and muscle pain without minute, percutaneous oxygen saturation
disease (no reported symptoms), mild shortness of breath), moderate (dys- <93% on room air at rest, arterial oxy-
(pneumonia symptoms of fever, cough, pnea, respiratory rate >30 breaths per gen tension over inspiratory oxygen
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TABLE 2
Cases and controls with SARS-CoV-2-associated placental pathology
SARS-CoV-2 viral
Case Group Placental pathology notes RNA detected
1 COVID-19 Borderline increase in perivillous fibrin deposition without histiocytes encasing No
anchoring villi and adjacent villi
2 CoviD-19 Multiple small foci of perivillous fibrin deposition with histiocytic intervillous No
inflammation, 1 focus with active villous inflammation
3 COvID-19 Multiple small foci of perivillous fibrin deposition with histiocytic intervillous No
inflammation
4 COVID-19 Small group of villi with chronic villitis No
5 COVID-19 Multiple foci of perivillous fibrin deposition and probable villitis without histiocytic Yes
intervillous inflammation
6 COVID-19 Single tiny focus of perivillous fibrin deposition with histiocytic intervillous No
inflammation
7 CoviD-19 Fetal side of disc with single focus of perivillous fibrin deposition and histiocytic No
intervillous inflammation
8 COVID-19 Single tiny focus of chronic villitis No
9 COVID-19 Focal chronic villitis No
10 CoviD-19 Diffuse perivillous fibrin deposition with histiocytic intervillous inflammation. Yes
11 CoviD-19 Basal zone of perivillous fibrin deposition with histiocytic intervillous No
inflammation
12 COVID-19 Widespread placental basal infarcts, trophoblast necrosis, chronic villitis, and No
diffuse perivillous fibrin deposition with histiocytic intervillous inflammation
13 COVID-19 Single minute focus of chronic villitis No
14 CoviD-19 Borderline increase in perivillous fibrin deposition without histiocytes encasing No
anchoring villi and adjacent villi
15 CoviD-19 Basal zone lymphohistiocytic villitis and fibrin deposition just along the decidual No
interface
16 Control Patchy perivillous fibrin deposition No
17 Control Patchy perivillous fibrin deposition; 1 focus of chronic villitis No
18 Control 2 tiny foci of chronic villitis No
This table reflects notes from the placental pathologist (R.P.K.) for each case that was considered to have chronic villitis or 1 or more features of SARS-CoV-2-associated placental pathology (chronic
histiocytic villitis, perivillous fibrin deposition, and/or trophoblast necrosis). Cases were included even if they had a tiny focus of pathology, as it was unclear whether these small foci might reflect
similar pathology in other regions of the placenta, which were not sampled. SARS-CoV-2 vVRNA was detected in 2 of the 15 COVID-19 cases with placental pathology and is shown here to allow for
correlation with pathologic findings.
Coler. Placental innate immune suppression after maternal COVID-19. Am ] Obstet Gynecol 2022.

fraction of <300 mm Hg, and/or lung
infiltrates >50% within 24—48 hours),
and severe (severe respiratory distress,
respiratory failure requiring mechanical
ventilation, shock, and/or multiple or-
gan dysfunction or failure). All labora-
tory assays, histopathology analysis, and
statistical analysis were performed at
the University of Washington. Coded
placental samples and associated clinical
metadata abstracted from Intermoun-
tain Healthcare were sent to the Uni-
versity of Washington.

Quantitative real-time polymerase
chain reaction

We performed quantitative real-time
polymerase chain reaction (qQPCR) for
SARS-CoV-2 viral RNA (VRNA) and a
panel of innate immune genes from 164
placentas (N=140 with COVID-19;
N=24 uninfected controls). First, the
placental samples were homogenized in
TRIzol, and then VRNA was extracted
using the RNeasy Mini Kit (QIAGEN,
Hilden, Germany) according to the
manufacturer’s protocol. The RNA
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concentrations were measured by
nanodrop, which reported A260/A280
ratios that confirmed acceptable purity
without considerable DNA or protein
contamination. Next, reverse transcrip-
tion and complementary DNA synthesis
was performed for gPCR detection of
SARS-CoV-2 using the absolute quanti-
fication (standard curve) method and
the 2019-nCoV RUO kit (Integrated
DNA Technologies, Inc, Coralville, IA).
These reactions were run in duplex with
the housekeeping gene TBP (TATA box
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FIGURE 1
Placental histopathology and SARS-CoV-2 immunostaining

Representative fields of hematoxylin and eosin-stained sections of placental chorionic villi are shown in the upper row from a healthy uninfected control
patient (A) and 3 pregnant individuals with a history of COVID-19 during the pregnancy (B—D). Placental pathology included perivillous fibrin deposition
and intervillous histiocytes (arrows) with (D) or without (B, C) trophoblast necrosis. In the middle and lower rows, we show immunohistochemistry with
antibodies specific for the SARS-CoV-2 nucleocapsid (middle row) and spike proteins (lower row). A positive control is shown in Figure (E) and (I) from a
SARS-CoV-2 polymerase chain reaction-positive pregnant patient who delivered a stillborn infant that was not included in this study. Negative controls
included omission of the primary antibody nucleocapsid or spike protein from the positive control (H for nucleocapsid) and SARS-CoV-2 immunostaining
of tissues from a healthy, uninfected control (F and J). SARS-CoV-2 antigen staining was demonstrated in the placental syncytiotrophoblast of 1 of 5
pregnant patients from our study that had SARS-CoV-2 PCR-positive placental tissues (G, K, L). No immunostaining was observed when either primary
antibody for nucleocapsid or spike proteins was omitted (H, nucleocapsid shown) or when the placenta of a healthy, uninfected control was stained for
SARS-CoV-2 nucleocapsid or spike proteins (F, J). The pattern of labeling in the placenta from a subject with COVID-19in our study (G, K, L) was identical
to that observed in the positive control (E, I). Scale bars shown in panel ‘A’ reflect the magnification of panels A—D and the bar in panel ‘E’ applies to
E—K.

Coler. Placental innate immune suppression after maternal COVID-19. Am ] Obstet Gynecol 2022.
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binding protein). Reaction mixtures
were made using the Tagman Fast
Advance Master Mix (cat# 4444964;
Thermo Fisher Scientific Inc, Waltham,
MA), SARS-CoV-2 N2 primers and
probes from the 2019-nCoV RUO kit
(10006713; Integrated DNA Technolo-
gies MNC, XX) with an added quencher,
TBP primers and probes, and nuclease-
free water. Viral load standards, positive
control, no treatment control, and 400
ng of supernatant RNA samples were
pipetted into a 96-well plate in triplicate

and mixed with master mix. Plates were
then read by a QuantStudio 3 (Thermo
Fisher Scientific Inc). Run conditions
were 2 minutes at 50°C, 2 minutes at
95°C, then cycled 40 times at 1 second at
95°C and 20 seconds at 60°C. An inter-
nal ZEN quencher was added to the
2019-nCoV_N2 probe to improve
sensitivity. The sequence of this probe
was 5-FAM-ACAATTTGC/ZEN/CCC
CAGCGCTTCAG-3IABKF-3. The N2
forward primer sequence was 5-TTA-
CAAACATTGGCCGCAAA-3. The N2

reverse primer sequence was 5-GCG
CGACATTCCGAAGAA-3. The TBP
probe sequence was: 5’- Quasar670-CA
CAGGAGCCAAGAGTGAAGAACAGT-
BHQ-2-3. The TBP Primer/Probe was
obtained from Thermo Fisher (catalog#
Hs00427620_m1; Thermo Fisher Scien-
tific, Inc). TBP amplification was per-
formed in duplex with SARS-CoV-2 N2
for 2 reasons: (1) TBP amplification
served as a quality control for the SARS-
CoV-2 gPCR to ensure that each well
with a negative result contained RNA;
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FIGURE 2

Placental innate immune gene expression in patients with and without COVID-19 in pregnancy stratified by disease
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The boxplots illustrate the relative innate immune gene expression in placental tissues compared with expression of the TATA Box Binding Protein (7BP,
housekeeping gene). Gene expression is shown in uninfected control pregnant women (blug) compared with pregnant patients with either active COVID-
19 (red, PCR diagnosis 10 days before delivery) or recovered COVID-19 (green, PCR diagnosis >10 days before delivery). Triangles indicate tissues
positive for SARS-CoV-2 viral RNA. Within each box plot, the horizontal line denotes the median and the top and bottom box borders reflect the 75th and

25th percentiles, respectively. Single asterisk represents P<.05, double asterisks represent P<.01, triple asterisks represent P<.001.

IFN, interferon; IL, interleukin; PCR, polymerase chain reaction.

Coler. Placental innate immune suppression after maternal COVID-19. Am J Obstet Gynecol 2022.

and (2) TBP is a housekeeping gene
against which we performed comparative
p44cer gPCR to quantify antiviral IFN,
IFN-stimulated gene (ISG), and cytokine
gene expression. We used the Tagman
assay platform to quantify a panel of type I
IEN (IENA2, IFNB), ISG (MXA, IFIT1)
and cytokines (IL6, IL1B). Primer assay
IDs were: IFNA2, Hs00265051_s1; IFNB,
Hs01077958_s1; MXA, Hs00895609_m1;
ifitl, Hs01675197_ml; IL6, Hs001741
31_ml; and ILIB, Hs01555410_ml
(Applied Biosystems, Waltham, MA).
After  reverse  transcription  was

completed, qPCR was carried out on a
QuantStudio 3 Real-Time PCR system
(Thermo Fisher Scientific Inc).

Placental histopathology

Formalin-fixed placental samples were
available and evaluated from 148 of 164
subjects. For each placenta, a
hematoxylin-and-eosin-stained section
was evaluated for chorioamnionitis,
villous or intervillous inflammation,
intervillous fibrin deposition, necrosis,
or other lesions by a board-certified pe-
diatric pathologist (R.P.K.), who was

1.6 American Journal of Obstetrics & Gynecology MONTH 2022

blinded to the patient’s COVID-19 sta-
tus. We focused analysis of placental
pathology on the following key features
linked to SARS-CoV-2 infection: chronic
histiocytic  intervillositis, perivillous
fibrin deposition, and trophoblast ne-
crosis. Villitis and other forms of CV
pathology were staged as focal (a solitary
group of involved contiguous villi) or
multifocal.

Immunohistochemistry
SARS-CoV2  immunohistochemistry
was performed on 5 um-thick paraffin
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TABLE 3
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Est

Stat P

SE
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Stat P
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Stat P

SE

Predictors

<.0012

—4.69
—2.01
-0.71
—1.26

0.49
0.56
0.51
0.42

—2.30
-1.13
—0.36
—0.52

<.001?
146

—5.84
—2.31
—1.02

0.44
0.55
0.50

—2.58
—1.28
—0.51

<.0012

—4.08
—0.34
—0.49
—2.70

0.64
0.72
0.68
0.51

—2.62
—0.25
-0.33
-1.38

<.0012
127

—5.49
—0.83
—1.06

0.60
0.72
0.68

-3.31
—0.60
—0.72

CTL (Intercept)

ACT

.047¢
477

211

.022°

0.311

731

624

407
.291

RECOV

.008%

Labored (Yes)
Observations

146

127

0.051/0.031

0.041/0.027

0.065/0.042

0.009/-0.007

R2/R? adjusted

s controls.

We report coefficient, coefficient standard errors, t-statistic, and Pvalues for each analysis of fold change in gene expression for active and recovered COVID-19 groups. Model 1 contrasts the active and recovered COVID-19 positive cohorts with the study

Model 2 adds labor as a covariate without any interaction terms.

ACT, active COVID-19; CAM, chorioamniotic membranes; Coeff, coefficient; CTL, controls without a history of COVID-19; CV, chorionic villus tissue; RECOV, recovered COVID-19; SE, standard error.

2 Significant P values.
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sections from formalin-fixed placental
samples using a Ventana Benchmark II
automated immunostainer and 2
different rabbit polyclonal antibodies
specific for the nucleocapsid (Sino Bio-
logical, cat# 40143-R001) and spike
(Sino Biological, cat# 40150-T62-CoV2-
Spike) proteins, respectively. The nucle-
ocapsid antibody was used at a 1:800
dilution with 68 min of citrate-based
heat-induced enzyme retrieval (pH
~6), 20 min incubation time at 37°C,
and avidin-biotin blocking. The spike
protein antibody was used at 1:500
dilution with mild CCI conditioning,
32-minute incubation time at 37°C, and
avidin-biotin blocking. A positive im-
munostaining control was a SARS-CoV-
2 PCR-positive pregnant patient; this
patient delivered a stillborn infant that
was not included in this study. Two
negative immunostaining controls were
performed. The first negative control
represented omission of the primary
nucleocapsid or spike protein antibody
from the positive control. Another
negative immunostaining control came
from a healthy, uninfected pregnancy.

Statistical analysis

Demographic and SARS-CoV-2 infec-
tion characteristics in pregnancy were
summarized by proportions and means.
All analyses were conducted in the “R”
software (R Core Team, 2022).°' To
examine relationships between discrete
variables, we used the Fisher exact test,
and for relationships between contin-
uous variables, we used Pearson corre-
lations. Comparisons were made
between distinct placental tissue samples
taken at delivery; there was no analysis of
repeated measures. Differences in gene
expression were examined using linear
regression models with binary indicator
variables for the active and recovered
COVID-19 groups, which implicitly
compare each with the control group.
This results in 2 independent predictors
in the model with no need to adjust
P values for multiple tests among the
diagnostic groups. A second regression
model was run in which labored status
(labored vs nonlabored) was added as a
covariate. A P value <.05 was considered
statistically significant. The data sets
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generated and/or analyzed during the
current study are available from the
corresponding author on reasonable
request.

Results

A total of 164 pregnant individuals were
studied, consisting of 24 uninfected
healthy controls and 140 individuals
with COVID-19 disease. The clinical
characteristics and COVID-19 disease
and maternal-neonatal outcomes for
these subjects are shown in Table 1.
Pregnant individuals with or without
COVID-19 were typically healthy with
few comorbidities, were multiparous,
and were overweight before pregnancy
(Table 1). The mean gestational age at
delivery was similar between pregnant
women with COVID-19 and healthy
controls (COVID-19: 37.84+2.4 vs con-
trols: 38.5+1.2; t=-—2.00; P=05). A
greater proportion of individuals with
COVID-19 labored before delivery than
healthy controls (80.0% vs 50.0%,
P=004). Preterm birth (<37 weeks)
occurred in 21 of 140 pregnant women
with COVID-19 (15.0%; P=.2) and in 1
of 24 controls (4.2%; P=.203). Fetal
birthweight was significantly lower in
the COVID-19 group (3111.3+610.0 vs
3421.04496.3; t=—2.73; P=010). Apgar
scores at 1 minute were significantly
lower in the COVID-19 group (COVID-
19: 7.63+1.22 vs control: 7.940.31;
P=037), but Apgar scores at 5 minutes
were similar for both groups. The mean
gestational age at COVID-19 diagnosis
was 30.6£8.1 weeks, and the diagnosis to
delivery interval was 7.24+8.0 (range,
0—33 weeks). Out of 140 individuals
with a history of COVID-19 diagnosed
in pregnancy, 36% (N=51) had active
COVID-19, and 64% (N=89) had
recovered COVID-19 at delivery. Among
the pregnant women diagnosed with
COVID-19, disease severity was re-
ported as asymptomatic in 24% (N=34),
mild in 51% (N=71), moderate or severe
in 10% (N=14), and unknown in 15%
(N=21); no patients died.

Pathologic findings from cases and
controls with SARS-CoV-2-associated
pathology are shown in Table 2. We
next quantified SARS-CoV-2 viral load
in placental tissues to determine whether
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TABLE 5

Linear regression models of /FIT1 gene expression in CAM and CV by GOVID-19 disease status with and without adjustment for labor status

83)

CV (CTL: N=23; ACT: N=40; RECOV: N=

Model 1
Est

68)

=18; ACT: N=41; RECOV: N=

CAM (CTL: N
Model 1
Est

Model 2
Est

Model 2
Est

Stat P

SE

Stat P

SE

Stat P

SE

Stat P

SE

Predictors

151

.078

1.44
—1.77
-3.20
—1.73

0.41
0.47
0.44
0.35

0.60
—0.84
—1.40
—0.61

152

441

0.77
—2.21
—3.69

0.38
0.46
0.43

0.29
—1.03
—1.58

<.0012

4.97
—2.75
—4.25
—3.68

0.42
0.48
0.45
0.37

2.10
-1.31
-1.91
-1.35

<.0012
152

3.60
—3.55
-5.12

0.40
0.48
0.45

1.43
-1.72
—2.33

CTL (Intercept)

ACT

.029°
<.001?

.007%

<.001?

.001%
<.001?

.002°
.085

RECOV

<.0012

Labored (Yes)
Observations

152

152

0.104/0.086

0.086/0.073

0.221/0.206

0.150/0.139

R2/R? adjusted

We report coefficient, coefficient standard errors, t-statistic, and Pvalues for each analysis of fold change in gene expression for active and recovered COVID-19 groups. Model 1 contrasts the active and recovered COVID-19 positive cohorts with the study’s controls.

Model 2 adds labor as a covariate without any interaction terms.

CAM, chorioamniotic membranes; CTL, controls without a history of COVID-19; CV, chorionic villus tissue; ACT, active COVID-19; RECQV, recovered COVID-19; Coeff, coefficient; SE, standard error.

2 Significant P values.

Coler. Placental innate immune suppression after maternal COVID-19. Am ] Obstet Gynecol 2022.

viral load was associated with placental
pathology: SARS-CoV-2 vRNA was
detected in placental tissues from 5
women with a history of COVID-19 in
pregnancy (5/140, 3.6%) and in no
controls (0/24, 0%). SARS-CoV-2 vRNA
was detected in either CV (N=2) or
CAM (N=2) tissues or both CV and
CAM (N=1). We performed immuno-
histochemistry for SARS-CoV-2 nucle-
ocapsid and spike proteins to determine
whether SARS-CoV-2 antigens could be
detected within these 5 tissues with
detectable SARS-CoV-2 vRNA by qPCR
and from other VRNA-negative tissues
from patients with COVID-19 (N=7)
and uninfected healthy controls (N=5)
(Figure 1). We found that only 1 of 5
cases with detectable SARS-CoV-2
VRNA in the placental tissues was
confirmed to express SARS-CoV-2
nucleocapsid (Figure 1, E—G) and
spike (Figure 1, I=L) proteins in syncy-
tiotrophoblast cells. In this case of active
COVID-19, the viral load in CV tissues
was high (1.2 x 10" copies/mg) and was
associated with widespread placental
basal infarcts, trophoblast necrosis,
chronic villitis, and diffuse perivillous
fibrin deposition with histiocytic inter-
villous inflammation (Figure 1, B—1D).
Of significance, this patient experienced
preterm premature rupture of mem-
branes and delivered a preterm infant at
33 weeks gestation 6 days after COVID-
19 diagnosis. Overall, histiocytic chori-
onic villitis and/or perivillous fibrin
deposition was more frequent in
placental tissues with detectable SARS-
CoV-2 vRNA (2/5, 40%) than in the
COVID-19 group without detectable
SARS-CoV-2 VRNA (13/128, 10%) and
in uninfected controls (3/20, 15%).
However, these differences in proportion
across groups were not significant
(P=09).

Next, we evaluated the placental
expression of a panel of antiviral innate
immune genes representative of the type
I IFN (IFNA2, IFNB), ISG (IFIT1, MXA)
and the NF-kB cytokine (IL6) and
Interleukin-18 (IL1B) cytokine response
(Figure 2). These genes represent key
modulators of antiviral innate immu-
nity: IFN-, IL1§, and IFN-a2 coordi-
nate inflammatory and antiviral

MONTH 2022 American Journal of Obstetrics & Gynecology 1.9
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immune actions, MxA and IFIT1 inhibit
viral replication, and IL-6 coordinates
broad inflammatory and immune re-
sponses.”””” Pregnant women with
recovered COVID-19 in CAM (Figure 2)
and CV (Figure 2) tissues had signifi-
cantly diminished expression of IFNB,
IFIT1, MXA, IL6, and ILIB (all, P<.05).
Interestingly, the case with detectable
SARS-CoV-2 vRNA in CAM tissues 17
weeks after COVID-19 diagnosis had a
very high IL6 gene expression compared
with the housekeeping gene (8.3-fold)
(Figure 2, triangle in recovered COVID-
19 group). Pregnant individuals with
active COVID-19 had a similar profile of
significantly diminished innate immune
gene expression in the placental tissues
(CAM: [FITI, MXA, IL6, ILIB; CV:
IFNB, IFIT1, MXA, IL6, ILIB; all,
P<.05). In contrast, gene expression of
IFNA2 was similar between the healthy
controls and COVID-19 groups except
for significantly diminished gene
expression in the CV active COVID-19
group (P<.05). Notably, we tested the
gene expression distributions for sto-
chastic ordering in each target gene
among all instances in which the active
or recovered COVID-19 group showed a
significant mean difference relative to
controls (P<.05). In each case, there was
evidence for significant stochastic
ordering (P values <.01), providing
further support for altered placental
innate immune gene expression in
pregnant women with COVID-19. In
summary, both active and recovered
maternal SARS-CoV-2 infection was
associated with  diminished gene
expression for a range of antiviral innate
immune signaling proteins. To deter-
mine if the inflammatory process of la-
bor affected placental gene expression
between the COVID-19 and uninfected
control groups, we added labor status
(whether a patient did or did not expe-
rience labor before delivery) as a covar-
iate to analyses of gene expression
(Tables 3—8). Labored tissues had
consistently lower expression of IFNB,
IFIT1, MXA, and ILIB but greater IL6
expression. On adjusting for labor sta-
tus, multiple linear regression analyses
determined that the patterns of
gene expression across controls and
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TABLE 7

Linear regression models of /L6 gene expression in GAM and GV by COVID-19 disease status with and without adjustment for labor status

83)

CV (CTL: N=23; ACT: N=40; RECOV: N=

Model 1
Est

68)

=18; ACT: N=41; RECOV: N=

CAM (CTL: N
Model 1
Est

Model 2
Est

Model 2
Est

Stat P

SE

Stat P

SE

Stat P

SE

Stat P

SE

Predictors

<.0012

4.25
—5.00
—4.81
—0.85

0.39
0.45
0.42
0.33

1.67
—2.25
—2.00
—0.28

<.001?
156

4.30
—5.34
—5.15

0.36
0.44
0.40

1.53
—2.34
—2.08

.032°

217
—-3.25
—3.67

0.54
0.60
0.57
0.46

1.16
—1.96
—2.09

<.0012

3.99
—2.38
—2.74

0.50
0.61
0.57

2.00
—1.45
—1.57

CTL (Intercept)

ACT

<.001?

<.001?

.001%

<.001?

.019°

<.001?

<.001?

.007¢

RECOV

.399

<.0012

3.65

1.69

152

Labored (Yes)
Observations

156

152

0.177/0.161

0.174/0.163

0.128/0.111

0.050/0.037

R2/R? adjusted

We report coefficient, coefficient standard errors, t-statistic, and Pvalues for each analysis of fold change in gene expression for active and recovered COVID-19 groups. Model 1 contrasts the active and recovered COVID-19 positive cohorts with the study’s controls.

Model 2 adds labor as a covariate without any interaction terms.

ACT, active COVID-19; CAM, chorioamniotic membranes; Coeff, coefficient; CTL, controls without a history of COVID-19; RECOV, recovered COVID-19; SE, standard error.

2 Significant P values.

Coler. Placental innate immune suppression after maternal COVID-19. Am ] Obstet Gynecol 2022.

COVID-19 groups did not change
substantially in either CAM or CV tis-
sues (Tables 3—8). Across 24 compari-
sons involving 2 tissues (CV and CAM),
2 groups (active and recovered), and 6
genes (IFNA2, IFNB, IFIT1, MXA, IL6,
and ILIB), there were 20 significant
differences between either active or
recovered COVID-19 and the corre-
sponding control group (P<.05). After
adjustment for labor, 18 significant
differences (P<.05) remained with the
loss of IFITI (active COVID-19 vs
controls in CV; P=08) (Table 5) and
ILIB (active COVID-19 vs controls in
CAM; P=08) (Table 8). In summary,
labor status did not substantially impact
the gene expression profile in placental
tissues or alter the findings of dimin-
ished innate immune gene expression.
We also correlated placental immune
gene expression with gestational age at
COVID-19 diagnosis (Figure 3), COVID-
19 disease severity (Figure 4), maternal
prepregnancy BMI (Figure 5), time in-
terval between COVID-19 diagnosis and
delivery (Figure 6), and detection of
SARS-CoV-2-associated placental pa-
thology (Figure 6). With few exceptions,
the line of best fit was flat for both CVand
CAM tissues with no consistent correla-
tions between innate immune gene
expression and either gestational age at
COVID-19 diagnosis, COVID-19 disease
severity, maternal BMI, time interval be-
tween diagnosis and delivery, or
placental pathology. Gene expression of
IFNA2 in unlabored CAM tissues was
significantly negatively correlated with
time interval from COVID-19 diagnosis
such that a longer interval was associ-
ated with lower expression (P=04)
(Figure 7). A significant positive corre-
lation was identified between SARS-
CoV-2-associated placental pathology
and IL6 and ILIB gene expression in
unlabored CAM tissues, indicating that
higher IL6 and ILIB expression was
more likely when pathology was
observed (IL6: P=004, ILIB: P=02)
(Figure 6). Overall, placental antiviral
innate immune gene expression did not
correlate  with COVID-19  disease
severity or gestational age at infection. In
summary, there were very few signifi-
cant  correlations  between  gene

MONTH 2022 American Journal of Obstetrics & Gynecology 1.e11
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expression, placental pathology, and
time interval between infection and de-
livery (P<.05).

Comment

Principal findings

Our data indicate that a maternal SARS-
CoV-2 infection leaves the placenta with
a diminished innate immune response in
both the CV tissues in the placental disc
and the CAM (Video 1). Consistent with
other studies, detection of SARS-CoV-2
VRNA in placental tissues was infre-
quent, and the presence of SARS-CoV-2
antigens could only be confirmed in a
single case. Despite rare detection of
SARS-CoV-2 proteins within  the
placenta, there was a consistently lower
expression of critical type I IFN, ISG,
and cytokines that direct the antiviral
immune response in placental tissues
from pregnant women with recovered
and active COVID-19 disease. Notably,
our findings remained significant
(P<.05) after controlling for labor status,
a known confounder owing to inflam-
matory processes occurring during labor
and delivery.”””” Interestingly, there
were very few (or no) correlations be-
tween placental gene expression and
other studied variables including gesta-
tional age at diagnosis, time interval
between COVID-19 diagnosis and de-
livery, prepregnancy BMI, COVID-19
disease severity, or placental pathology.
This finding is important, because it
means that pregnant people with even a
mild COVID-19 disease course at any
time in pregnancy and of any body
habitus are equally susceptible to SARS-
CoV-2 placental innate immune sup-
pression. Whether an impaired placental
immune response correlates with other
vital functions and might underlie the
increased stillbirth risk associated with
maternal COVID-19 is unknown.

Results in the context of what is
known

Interestingly, our findings parallel that of
other studies in mice indicating “viral
priming”, by which an initial viral
infection impairs placental and cervical
immunity, thereby increasing the risk
of subsequent infection. In murine
models of murine gammaherpesvirus-
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FIGURE 3

Relationship between gestational age at COVID-19 diagnosis and placental innate immune gene expression at delivery
in pregnant women with and without COVID-19 in pregnancy
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68 (MHV-68) infection, a subclinical
viral infection sensitized maternal im-
mune responses to coinfection or
subsequent infection by other microor-
ganisms.”>”” Viral infections in these
models compromised innate immune
responses in cervical tissues, predispos-
ing patients to intrauterine bacterial
infections. MHV-68 diminished in-
flammatory and immune responses
through decreased toll-like receptor gene
expression and subsequent down-

regulation of cytokine and chemokine
gene expression that altered proin-
flammatory responses against bacterial
pathogens.”®”’

Research implications

Our results present several important
research questions and generate new hy-
potheses. First, we hypothesize that
impaired innate immunity is only 1 aspect
of placental function that is impaired
following a SARS-CoV-2 infection, likely

owing to the placental host response to
control the infection. Certainly, histo-
pathologic evidence of placental injury is
well documented to occur in some cases
of COVID-19 that manifest as SARS-
CoV-2 placentitis, chronic histiocytic
villitis, intervillous fibrin deposition,
trophoblast necrosis, maternal vascular
malperfusion, and deposition of inter-
villous thrombi.*>”**” As the canonical
receptors for SARS-CoV-2 are not typi-
cally coexpressed in the placenta and viral
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FIGURE 4

Relationship between COVID-19 symptom severity and placental innate immune gene expression at delivery in

pregnant women with and without COVID-19 in pregnancy
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infection of syncytiotrophoblast cells ap-
pears rare, it is more probable that innate
immune mediators released during an
acute infection are the source of placental
injury than a primary viral infection it-
self.””"" Regardless of the mechanism of
placental injury, an impairment of
placental immune functioning is likely to
parallel other defects in metabolic and
biological pathways that should be
defined to wunderstand SARS-CoV-2
pathogenesis in the  placenta.

Interestingly, several reports have high-
lighted a reduction in SARS-CoV-2 anti-
body transfer after a natural SARS-CoV-2
infection, which may be due to an
impairment in placental function.””*"%*
Whether the placental and decidual
immune response to SARS-CoV-2 is
activated or impaired likely depends on
the tissue and cell-type studied and also
the time course. Two studies employing
single-cell RNA-Seq analysis of pregnant
individuals with mild (N=9) and severe
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(N=2) COVID-19 identified a broad
activation of myeloid cells in the decidua
of pregnancies with COVID-19.'° In
pregnant individuals with mild COVID-
19, there was also evidence for enrich-
ment of decidual IL-18-producing
macrophages and an attenuation of
interferon signaling in the decidua.®’ As
we focused investigation on the CV and
CAM tissues and not the maternal
decidua, it is unclear if immune activa-
tion is spatially restricted to certain
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FIGURE 5

Correlation between maternal BMI and placental innate immune gene expression
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Dot plots are shown to assess the potential correlation between the maternal prepregnancy BMI and relative gene expression of IFNAZ, IFNB, IFIT1, MXA,
IL6, and IL7Bto TBP (TATA Box Binding Protein), a housekeeping gene, in placental tissues from women with COVID-19 during pregnancy. The line of
best fit is either gray to indicate the line of best fit for labored placentas or blue to indicate nonlabored placentas.

BMI, body mass index; IFN, interferon; /L, interleukin.
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decidual subsets whereas innate immu-
nity becomes quickly attenuated in the
CV and CAM following infection.
Finally, the temporal course of the SARS-
CoV-2 innate immune response in
maternal decidua and human placentas
is not well-defined, as most samples have
been collected at birth days to weeks and
not hours after the initial diagnosis,
including the ones in our cohort.

Our findings also underscore that a
positive SARS-CoV-2 PCR in the
placenta may not correlate with antigen

positivity by immunohistochemistry.
This may occur for several reasons. Viral
antigen positivity can be patchy,
depending on where the viral infection
occurred in the placenta. A placental
biopsy for PCR studies might have
sampled an infected area, but a second
biopsy preserved in formalin for
immunohistochemistry  could have
missed a virally-infected area. Stereo-
tactic biopsies of the placenta are not
always possible in clinical research,
especially because of COVID-19

pandemic restrictions on the entry of
laboratory personnel into clinical areas.
Clearance of viral antigens also tends to
precede the clearance of viral RNA.
Finally, SARS-CoV-2 genomic RNA re-
mains for days to weeks after viral entry
and avoids degradation by cellular nu-
cleases.”* Infection is highly variable
between cells and only small cell pop-
ulations will have a high burden of
SARS-CoV-2 RNA. It is possible that
adjacent placental biopsies from a pa-
tient with a SARS-CoV-2 infection may
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FIGURE 6

Correlation between placental pathology and placental innate immune gene expression

IFNA2

r=-0.05; p=0.622; n=90
10= r=-0.27;, p=0.150; n =29

IFNB

r=0.04; p=0.681; =103
r>-0.01; p=0.973;n=33

IFIT1

r=0.02; p=0.836; n=109
r=017,p=0344;,n=32

MXA

r=20.03; p=0.743: n=111
r=0.20; p=0.258; n=33

IL6

r=0.16;p=0.103; n=109
r=050; p=10.004;, n=32

IL1B

r=20.12; p=0.250; n =99
r=042p=0016n=32 ¢

L °

r=-015p=0.129;n=108
r=0.10; p=0.585;, n=33

r=-0.09; p=0.346; n=111
r=0.09; p=0.595; n=34

i

.ED
o
®
P

° ol o e

°
I S t
O '0

5-
@
° ‘ ¢
.
: e C o8 Ol -
0- o -
’ —_—
Py a
i 8%;.3 : e
2 8
(o)) e O
& : s !
3 .
¢ -101
T
|_|°_ r=-0.17; p=0.086; n =104 r=-012; p=0.223; n=107
ey 10- r<0.01;p=0.985n=31 r=0.12; p=0.494; n=34
|
5-
° o ®
' :
J [ )
0 g %
e o g
" {i &l
-5- s
° 8
|
°
-10- o
No Yes No Yes

H
i o
o~ L ]
i H
811> e
l\fo Yés N'o Yés

Placental Pathology

= Labored == Not Labored

g =

[}

o0 o0 L]
(N}

oe

saueIqUB d1I3OIUWEOIIOYD

r=-010;p=0.311; n=111
r=026;,p=0.133; n=34

r=-0.08p=0.408, n=108
r=023,p=0.193; n=33

> 00

(11 X3

o o e @
[ ]
- ]
[ N J ‘e
& 00 P P
O Ueey O N O e
.« aye [ ]
[ ] ®
anssi] ShojJIA 21UoLIoYyD

No Yes No Yes

Dot plots are shown to assess the potential correlation between placental pathology associated with SARS-CoV-2 infection (histiocytic chorionic villitis
with or without perivillous fibrin deposition; Table S1) and the relative gene expression of IFNA2, IFNB, IFIT1, MXA, IL6, and IL1Bto TBP (TATA Box binding
protein), a housekeeping gene, in placental tissues from women with COVID-19 during pregnancy. The gray line of best fit connects the black dots
(Ilabored placentas) with and without placental pathology; a biue line connects the blue dots (unlabored placentas) with and without placental pathology.
A significant positive correlation was identified in the unlabored chorioamniotic membranes tissues for /L6 (P=.004) and /L 1B (P=.016), indicating that
SARS-CoV-2-associated placental pathology correlated with higher /L6 and /L 7B gene expression.

IFN, interferon; /L, interleukin.

Coler. Placental innate immune suppression after maternal COVID-19. Am J Obstet Gynecol 2022.

not be concordant in their expression of
viral RNA and protein.

Clinical implications

These data have several implications for
clinical care. First, our observations that
the placental innate immune response
was impaired regardless of disease
severity suggest that even a mild
COVID-19 disease course can impair
innate immunity in the CAM and CV.
Whether an impaired placental innate

immune response increases a pregnant
individual’s ~ susceptibility to cho-
rioamnionitis is unknown. A meta-
analysis of approximately 1,500
pregnancies with COVID-19 revealed a
higher-than-expected rate of cho-
ricamnionitis (26%) compared with
historic published studies from unex-
posed placentas (4%—20%)."” Large
studies evaluating rates of cho-
rioamnionitis after a natural COVID-19
infection are needed to determine if the
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rates are higher than expected in an
uninfected population.

Although there are many studies of
the impact of COVID-19 on obstetrical
and neonatal outcomes,*”’7*10777
the impact on long-term neuro-
developmental and neuropsychiatric
health among children born to mothers
with a SARS-CoV-2 infection during
pregnancy is unclear. The “maternal
immune activation” hypothesis proposes
that fetal exposure to inflammation can
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FIGURE 7

Correlation between time interval from COVID-19 diagnosis to delivery and placental innate immune gene expression
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Dot plots are shown to assess the potential correlation between time interval from COVID-19 diagnosis to delivery and relative gene expression of
IFNA2, IFNB, IFIT1, MXA, IL6, and IL1B to TBP (TATA Box binding protein), a housekeeping gene, in placental tissues. The line of best fit is either
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interval from infection to delivery.
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adversely  impact  fetal  neuro-
development and increase the risk of
neuropsychiatric and developmental
disorders.”” A large body of literature
supports a link between diverse maternal
infections and  abnormal  fetal
neurodevelopment.”””' " *"  Even a
maternal fever has been associated with
an increased risk of autism spectrum
disorder in the child in the Norwegian
Mother and Child Cohort Study
(114,500 pregnant people).®* Although

the pathogenesis linking maternal im-
mune activation to aberrant fetal neu-
rodevelopment is not well-defined,
many of the possible links involve
placental injury or inflammation.”’
There is early evidence that exposure
to a maternal SARS-CoV-2 infection in
utero might be associated with a higher
rate of neurodevelopmental diagnoses. A
retrospective cohort study of infants
born to pregnant individuals with SARS-
CoV-2 infections during pregnancy

found that there were greater odds of
having a neurodevelopmental diagnosis
in infants exposed to a maternal SARS-
CoV-2 infection (14/222; 6.3%) vs a
healthy pregnant control group (227/
7550; 3.0%) in the first 12 months of life.
This study was limited by cohort size, 1
year follow-up, and a broad inclusion of
developmental diagnoses; nevertheless,
this is important early evidence that the
motor and cognitive development of
these children should be followed
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closely. Longitudinal studies of children
exposed to COVID-19 in utero should
continue over a period of 30 years to
determine if there is a higher rate of
neurodevelopmental or neuropsychi-
atric diagnoses than children from un-
infected pregnancies. Based on our
previous study wusing the Swedish
population-based birth registry, we pre-
dict that at least 7 years of follow-up of a
large population will be needed to
determine differences in the rates of
autism spectrum disorder, and 25 to 30
years of follow-up will be needed to
evaluate differences in the rates of psy-
chosis and schizophrenia.’

We recognize the enormity of the
public health challenge to survey the
neurodevelopment of all children
exposed to SARS-CoV-2 in utero. As the
COVID-19 pandemic continues to
evolve and transition into an endemic
phase, it is likely that hundreds of
thousands of infants would need to be
followed over a period of at least 7 years.
The public health surveillance of preg-
nancy and neonatal outcomes in the
United States is simply inadequate for
this task. Many European countries that
have a more robust public health infra-
structure are better prepared for such a
challenge. Nevertheless, standardized
assessments of neurodevelopment could
be performed for children exposed to
SARS-CoV-2 at regular intervals,
matching the well-child visit schedule.
The infrastructure and methods devel-
oped during and following the Zika virus
(ZIKV) epidemic in 2014 to 2016 may
provide a useful toolkit for investigators
to follow the neurodevelopment of
children exposed to SARS-CoV-2 in
utero.”” % Importantly, the adverse
impact of fetal exposure to infectious
diseases can impact neurodevelopment
and mental health through adolescence
and into adulthood.”””" We predict that
the sequelae of COVID-19 disease in
pregnancy will continue for decades,
manifested in higher risks of neuropsy-
chiatric disease in the exposed children.

Strengths and limitations

There are several reports highlighting
placental injury and inflammation
following a SARS-CoV-2 infection in

pregnancy, but the relationships between
placental immunity, histopathology, la-
bor status, COVID-19 disease severity,
duration of infection, and gestational
age at  diagnosis  were  not
addressed, 17323312 44,47,48,87-89 (3 .
study is one of the earliest to employ a
large placental biobank to correlate these
variables with markers of innate immu-
nity and evaluate how the placental
antiviral immune response is impacted
by a maternal COVID-19 infection.”””!
Our study assessed the expression of a
broad range of placental innate immune
genes, including the type I IFN, ISG, and
cytokine response, providing insight
into placental innate immunity not
previously described.

The study limitations include the lack
of specimens collected within the first
day or hours of a SARS-CoV-2 infection,
which is also typical in other studies.
This limits our ability to assess whether
an acute infection might up-regulate the
innate immune response before a
decrease in innate immune mediators.
Secondly, we likely underestimated
SARS-CoV-2 placental pathology, as we
only collected and evaluated a single CV
biopsy or CAM roll per placenta.
Placental pathology can also be “patchy,”
and it is possible that we missed pa-
thology that was present in unsampled
areas of the placenta. We also note that 1
subject delivered twins; our clinical data
do not reveal whether 1 or 2 placentas
were sampled from this unique patient.

Conclusions
We determined that a maternal SARS-
CoV-2 infection can substantially

impair the antiviral innate immune
response in placental tissues with sus-
tained immune suppression for weeks to
months regardless of disease severity or
gestational age at infection. We are
particularly concerned that this impact
on the placenta was observed regardless
of the severity of the COVID-19 disease
course, the time point in pregnancy at
which SARS-CoV-2 was contracted, and
the maternal body habitus. Our results
highlight the need for further study of
immune regulation following SARS-
CoV-2 infection in placental tissue and
susceptibility to infection. Evaluating the
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placental capacity for immune response
and metabolic function after COVID-19
will be imperative to understanding the
risks of stillbirth, chorioamnionitis, and
other adverse health outcomes for the
child.
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