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Abstract 
Galleria mellonella larvae are increasingly used to study the 
mechanisms of virulence of microbial pathogens and to assess the 
efficacy of antimicrobials.  The G. mellonella model can faithfully 
reproduce many aspects of microbial disease which are seen in 
mammals, and therefore allows a reduction in the use of mammals. 
The model is now being widely used by researchers in universities, 
research institutes and industry. An attraction of the model is the 
interaction between pathogen and host. Hemocytes are specialised 
phagocytic cells which resemble neutrophils in mammals and play a 
major role in the response of the larvae to infection. However, the 
detailed interactions of hemocytes with pathogens is poorly 
understood, and is complicated by the presence of different sub-
populations of cells. We report here a method for the isolation of 
hemocytes from Galleria mellonella.  A needle-stick injury of larvae, 
before harvesting, markedly increased the recovery of hemocytes in 
the hemolymph. The majority of the hemocytes recovered were 
granulocyte-like cells. The hemocytes survived for at least 7 days in 
culture at either 28°C or 37°C. Pre-treatment of larvae with antibiotics 
did not enhance the survival of the cultured hemocytes. Our studies 
highlight the importance of including sham injected, rather than un-
injected, controls when the G. mellonella model is used to test 
antimicrobial compounds. Our method will now allow investigations 
of the interactions of microbial pathogens with insect hemocytes 
enhancing the value of G. mellonella as an alternative model to replace 
the use of mammals, and for studies on hemocyte biology.
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Research highlights

Scientific benefits: 
•	 	Allows the interactions of microbial pathogens with 

host insect hemocytes to be investigated ex vivo.
•	 	Allows the biology of different types of hemocytes to 

be investigated ex vivo.
•	 	Allows comparative studies of the interaction 

of hemocytes and mammalian phagocytes with 
pathogens.

3Rs benefits: 
•	 	G. mellonella larvae are increasingly used as 

alternatives to mice and other mammals for studies 
on the mechanisms by which microbial pathogens 
cause disease and to test pre-treatments and 
therapies for disease.

Practical benefits: 
•	 	The protocol described allows the isolation of 

higher yields of hemocytes from G. mellonella for 
experimental studies using a simple technique.

•	 	The protocol described establishes the optimum 
time window for using isolated hemocytes in 
experimental studies.

Current applications: 
•	 	Infectious disease research to understand 

mechanism of virulence of microbial pathogens.
Potential applications: 

•	 	Testing the ability of isolated hemocytes to support 
the growth of intracellular pathogens including 
Burkholderia sp, Coxiella burnetii, Mycobacterium sp. 
Salmonella enterica.

•	 	Using the hemocyte model to assess the ability of 
drugs to target intracellular pathogens.

•	 	Using the hemocyte model to compare the virulence 
of different isolates and different mutants of 
microbial pathogens.

Introduction
Improving our understanding of infectious disease, developing  
new pre-treatments and therapies for diseases and testing the  
safety of biological and chemical materials often requires the use 
of regulated vertebrate animals. Typically, mammals are used 
for these studies. There is a need to replace, refine and reduce 
the use of regulated animal species in the UK and one approach 
is to develop alternative test systems and models for infectious  
disease.

A wide range of alternatives have been proposed and devel-
oped, and these have different benefits and drawbacks (Table 1).  

Larvae of the greater waxmoth Galleria mellonella are an attrac-
tive alternative because they can be injected with precise doses  
of pathogen or chemical compound, and incubated at 37°C to 
mimic conditions in a mammalian host1. The model is becom-
ing well developed and the late-stage larvae, which are used 
for research and testing, do not require food or water and are  
easy to maintain. Compared to regulated animals, the larvae are 
ethically more acceptable and more cost effective2, and their 
use can contribute to the target to reduce and replace the use of  
regulated animals. G. mellonella have been used to study viru-
lence of pathogens, as part of the drug discovery pipeline and in  
chemical and drug toxicity testing1–5. The model is now used 
widely in academia and increasingly used by pharmaceutical 
industries drug and contract research organisations. Although  
G. mellonella larvae can never replace mammalian models  
completely, the rise in usage over the past decade, with 275  
publications using G. mellonella in 2019, indicates how valuable 
the larvae have become to researchers. This work reported here is  
part of a project to develop the G. mellonella model to reduce 
the number of mammals used in research associated with  
insect-vectored viral pathogens. Regulated vertebrate models are 
frequently used to study viral disease, and to develop and evalu-
ate therapeutics. To assess the use of mammals for virus research 
in the UK we carried out a PubMed search using the key words 
“virus+UK+mice”. This returned 118 relevant publications in 
2018. We selected the first five publications for which we could 
obtain journal access at the University of Exeter, and found that 
the total number of mice used in these five publications was 
235. In addition eight rabbits and six marmosets had been used 
in these studies. Assuming that these numbers are representative  
for all publications in 2018, we calculate that in the UK at 
least 5546 mice were used for studies in viral diseases in 2018. 
In addition at least 189 rabbits and 141 non-human primates 
were used in 2018. The procedures are judged to be severe. For  
example, in one laboratory almost 1000 mice were used to study 
viral pathogenesis and to evaluate therapies. We envisage that 
up to 50% of these animals could be replaced by G. mellonella  
larvae if a suitable infection model was available. Although  
studies carried out in G. mellonella larvae will never completely 
replace studies in mammals, they will allow any subsequent  
work using regulated mammals to be better designed,  
providing refinement of experiments.

One of the advantages of G. mellonella is that they provide a  
whole animal model, rather than being cell culture-based. Addi-
tionally, G. mellonella possess an innate immune system, involv-
ing cellular and humoral responses6–8. The cellular response  
involves hemocytes that can engulf pathogens, and these cells 
share a high degree of structural and functional similarity with  
mammalian neutrophils9. The humoral response involves acti-
vation of Toll and Imd pathways, resulting in the production of 
antimicrobial peptides10, the production of prophenoloxidase and  
the generation of melanin10.

The similarities between insect hemocytes and mammalian  
neutrophils are well-documented8–10. Like neutrophils, hemo-
cytes use a respiratory burst to generate reactive oxygen species  
and kill pathogens11. This respiratory burst is triggered by the  

      Amendments from Version 1
In response to reviewers’ comments, we have highlighted a 
reference in which images of the different haemocyte  
sub-populations can be found.

Any further responses from the reviewers can be found at 
the end of the article
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translocation of p47phox and p67phox proteins in neutrophils, and  
by the translocation of 47 and 67 kDa proteins in hemocytes11. 
Like neutrophils, hemocytes possess Toll-like receptors,  
β-glucan and interleukin-1 receptors11 and signalling occurs 
via NFκB pathways11. The antimicrobial peptides produced 
by neutrophils and hemocytes, in response to signalling, are  
similar11 and include lysozyme, transferrin and defensins.  
Finally, hemocytes and neutrophils can produce extracellular  
traps (NETs) to immobilize and kill pathogens12,13.

In G. mellonella four types of hemocytes have previously  
been identified: plasmatocytes, granulocytes, spherulocytes and  
oenocytoids14. A fifth type, prohemocytes15 may be stem cells 
that differentiate into other hemocyte types16 In larval stage  
Lepidoptera, granulocytes and plasmatocytes are considered to 
be the main phagocytic hemocytes, and they are also the most  
numerous cells in circulation9.

Pathogens that have intracellular lifestyles in mammalian 
hosts, such as Coxiella burnetii, Burkholderia thailandensis,  
Francisella tularensis and Mycobacterium tuberculosis, have  
previously been shown to invade hemocytes and cause death in a 
dose-dependent manner17–19. However, the interactions of patho-
gens with hemocytes are poorly understood. This information  
is required to allow an understanding of the similarities and  
differences in the ways in which pathogens interact with hemo-
cytes from insects or phagocytes in mammals, and therefore to  
provide an understanding of the utility of the G. mellonella 
infection model. Here we report the development of a protocol  

for the isolation and culture of hemocytes from G. mellonella to 
allow the interactions of pathogens with hemocytes to be inves-
tigated. The method we have developed will be of interest to 
researchers using G. mellonella as a model to study infectious  
disease.

Methods
Methods	for	the	model	development
Experimental design. The experimental unit in this study was 
a single Galleria mellonella larva. The number of larvae per  
group was estimated using a Resource Equation method20; the 
assignation of 10 larvae per group across four groups gave  
an E value of 36, which is greater than the recommended figure 
of 10–20. Since the use of larvae does not breach ethical guide-
lines, this could be justified as we had no previous experience  
regarding the number of hemocytes that could be obtained from 
a single larva. Treatment was randomised: all treatments were 
started at the same time; the larvae were selected from a pool  
of healthy individuals within the weight parameters of  
0.18–0.35 g; they were assigned to treatment groups by taking 
larvae from the pool with no visual reference to compare them 
to other larvae. All experimental groups were equal in size.  
There was no blinding of samples for hemocyte counts.

G. mellonella larvae. TruLarv™ final (6th) instar larvae were  
purchased from BioSystems Technology, Exeter, UK. TruLarv 
are reared without antibiotics or hormones which are normally  
added to feedstuffs, and are 0.18 g–0.35 g final instar stage  
larvae. The larvae were stored at 15°C for up to one week before  

Table 1. Living systems which have been used as experimental alternatives to vertebrate 
animals.

Model Whole 
animal 
model

Model well 
developed?

Use at 
37ºC?

Precise 
dosing?

Cost of 
maintenance 

by user

Regulated in 
the UK?

Monolayer cell 
cultures

No Yes Yes Yes Medium No

3D cell cultures No Limited Yes Yes High No

Caenorhabditis 
elegans 

Yes Yes No No Low No

Panagrellus redivivus Yes No Limited No Low No

Danio rerio embryos Yes Limited No Yes High Not for early 
stage embryos

Drosophila 
melanogaster 

Yes Limited Yes No Low No

Galleria mellonella Yes Yes Yes Yes Low No

Manduca sexta Yes Yes Yes Yes Low Regulated by 
as a crop pest

Arabidopsis thaliana No No No No Low No

Allium cepa No No No No Low No
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using in the experiments reported. During storage the larvae  
do not require food or water.

Pre-treatment of larvae. Groups of ten larvae (TruLarv™)  
were used in these studies to allow the collection of sufficient 
hemolymph for the studies outlined below. Typically, we recov-
ered 20–30 µl of hemolymph from each larva. We tested whether  
pre-dosing with antibiotics would minimise the bacterial flora 
on the larvae and therefore minimise the possibility of bacterial  
infection of the isolated hemocyte cultures. Where indicated,  
the larvae were treated with a scaled human dose of the  
broad-spectrum antibiotic doxycycline or ciprofloxacin prior to 
the extraction of the hemolymph. Larvae were swabbed at the  
injection site with 70% ethanol and the antibiotic (10 µl) injected 
2–3mm deep into a proleg (Figure 1). In some studies the  
larvae were wounded by piercing the proleg with a 21- or  
22-gauge needle. These treatments were repeated daily for up 
to 7 days, using a different proleg at each time. Larvae were 
stored in Petri dishes lined with filter paper and kept in the  
dark at 15°C for the duration of the pre-treatment.

Hemolymph extraction. The main cell population in insect  
hemolymph is circulating hemocytes, and few other cell types 
are present. Before hemolymph extraction, larvae were swabbed  
with 70% ethanol, then positioned over a 1 ml pipette tip. A  
proleg was pierced 2–3 mm deep with a 21- or 22-gauge needle, 
and the hemolymph that emerged was collected using a pipet-
tor set to 50 µl. Typically, the concentration of hemocytes in the  
pooled hemolymph was 2×106 to 4×106 cells per ml. Since we 
typically harvested 200–300 µl of hemolymph from 10 larvae,  
in total we isolated 4×105 to 1.6×106 cells. The hemolymph was 
transferred into a microcentrifuge tube containing 500 µl of  
insect physiological saline (IPS; 150 mM NaCl, 5 mM KCl,  
100 mM Tris/HCl, 10 mM EDTA, 30 mM sodium citrate, pH 6.9) 
on ice. The hemolymph from each group of larvae was pooled  
and centrifuged at 500 × g, 4°C, for 5 minutes. Pellets were 

washed twice in ice-cold IPS, then re-suspended in 1 ml ice-cold 
IPS. A total of 10 µl were withdrawn from suspended pellets and  
mixed with 10 µl of trypan blue to enable cell enumeration in a 
hemocytometer. The concentration of hemocytes was adjusted  
as required and the cells used immediately.

Maintenance of hemocytes. The required amount of cell suspen-
sion (at 2 × 105 cells/ml) was placed into the relevant number 
of wells in a 24-well plate, and made up to 1 ml with Grace’s  
Insect Medium supplemented with L-glutamine and sodium  
bicarbonate + 2% penicillin-streptomycin + 2.5 µg/ml amphoter-
icin B + 10% heat-inactivated foetal bovine serum (FBS) at room  
temperature. The plates were placed in a lidded vented box  
lined with damp blue roll to reduce evaporation and incubated 
at 28°C under normal atmospheric conditions. Overall, 50% 
of the medium was replaced every 3–5 days. The plates were 
observed under 10 × magnification on a microscope regularly for  
evidence that the cells were intact and remained attached to  
the bottom of the wells.

Methods	for	the	characterisation	of	the	ex	vivo	
hemocyte	model
Hemocyte quantification. Hemocytes were quantified after  
dissociating them from the wells as detailed below. The medium 
was removed and the cells washed twice in Dulbecco’s PBS.  
Next, 200 µl of trypsin + 0.25% EDTA, pre-warmed to 37°C, 
was added to each well; the plate was incubated at 37°C for  
3 minutes. The trypsin was inactivated by the addition of  
400 µl of the culture medium, which was pipetted slowly over 
the well surface at least twice. The base of each well was tapped  
sharply. If observations under the microscope suggested that 
the cells still had not dissociated, the base of the well was  
gently scraped with a 10 µl sterile disposable plastic inocula-
tion loop to release any cells attached to the well bottom. Ten  
microliters were withdrawn from the cell suspension and mixed 
with 10 µl of trypan blue to enable viable cell enumeration  
in a hemocytometer.

Differential hemocyte counts. Hemocytes were examined to 
ascertain the proportion of different cell types (granulocytes,  
spherulocytes, plasmatocytes, prohemocytes or oenocytoids). 
They were collected from larvae injected with doxycycline or 
sham injected by inserting a needle into a proleg 3 days before  
harvesting hemolymph. The hemolymph was pooled from  
10 larvae per treatment, and aliquots dispensed into three wells 
on each of two plates. One set of plates was observed for the  
presence of intact and attached cells under 20 × magnification 
with the cells unstained at T0. The other set of plates was incu-
bated at 28°C for seven days and then observed under the same  
conditions.

Hemocytes were also observed by staining in situ. Medium was 
removed from wells and the cells were washed with Dulbec-
co’s PBS. They were briefly allowed to air-dry and 200 µl of  
Giemsa Stain was added to the wells to visualise the hemo-
cytes and left for 2 minutes before being removed and replaced  
with 200 µl of deionized water for 3 minutes. Giemsa stain is 
a widely used histological stains, colouring nuclei dark blue  

Figure 1. View of a single G. mellonella larva from the 
underside, showing the six frontal prolegs (arrowed) which 
are the preferred sites for injection.
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and the cytoplasm blue or pink depending on the acidity of the  
cytoplasm. The wells were rinsed with deionized water; as  
much liquid as possible was removed using a pipette, and the 
wells were left to air-dry. The wells were observed under 20 ×  
magnification on a microscope and images taken using a camera.

Statistical analysis of data. Statistical analysis was carried  
out using the GraphPad Prism 8 program (GraphPad Software,  
LA Jolla California USA). The means and standard deviations  
were calculated for each set of results. 

Protocol	for	the	use	of	this	model
Here we describe the step by step procedure used to extract  
hemocytes and their use as an ex vivo model. Reagents are listed 
in Table 2.

Step 1: Preparation of antibiotic stocks (Day 1). We use  
doxycycline hyclate to make up a stock solution of doxycycline  
(8.5 mg in 1 ml) of sterile milliQ water. This is diluted to  
60 µg in 1 ml of sterile milliQ water to ensure a scaled human  
dose (on a weight for weight basis) will be given to larvae  
(equivalent to a dose of 0.6 µg in 10 µl), × 3. We use ciprofloxacin 
to prepare a stock solution (10 mg in 1 ml of 0.1N hydrochloric  
acid). This is diluted to 250 µg in 1 ml of sterile milliQ 
water (equivalent to a dose of 2.5 µg in 10 µl), × 3. The stock  
solutions are stored at -20°C and scaled human doses are used  
on the day of dilution and also frozen in aliquots.

Step 2: Pre-treatment of larvae (Day 1). We use TruLarv™  
(BioSystems Technology, Exeter, UK), weight 0.18–0.35 g,  
10 larvae per treatment. These are maintained in an incubator  

Table 2. Reagents and small laboratory equipment used in this protocol.

Reagent Supplier Supplier #

Doxycycline hyclate Sigma Aldrich D9891-5G

Ciprofloxacin Sigma Aldrich 17850-5G-F

Hydrochloric acid Fisher Scientific 11393777

Sodium chloride Fisher Scientific 10553515

Potassium chloride Sigma Aldrich P3911-500G

Tris Fisher Scientific 10376743

EDTA Fisher Scientific 10203570

Sodium citrate Sigma Aldrich S4641-25G

Trypan blue Sigma Aldrich T8154-20ML

Grace’s insect medium supplemented with 
L-glutamine and sodium bicarbonate

Sigma Aldrich G8142-500ML

Penicillin-streptomycin solution Sigma Aldrich P4333-20ML

amphotericin B solution Sigma Aldrich A2942-20ML

Foetal bovine serum Pan Biotech P40-37500HI

Trypsin + 0.25% EDTA Fisher Scientific 10693313

Dulbecco’s phosphate-buffered saline (PBS) Sigma Aldrich D8537-500ML

Giemsa stain Sigma Aldrich 48900-100ML-F

Small laboratory equipment Supplier Supplier #

22-gauge cemented-needle Hamilton 
syringe

Cole-Palmer WZ-07939-01

21-gauge sterile syringe needles Becton 
Dickinson

305145

24-well cell culture plates 
(Corning™ Costar™ Flat Bottom Cell Culture 
Plates)

Fisher Scientific 10380932

Hemocytometer Sigma Aldrich Z359629-1EA

Hemocytometer cover slips Sigma Aldrich Z375357-1EA
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at 15°C before and during treatment. An infection station is  
set up comprising a 90 mm filter paper taped to the bench with 
a 1-ml pipette tip taped across it (Figure 2). Larva are held  
over the pipette tip, underside uppermost, and swabbed with  
70% ethanol. Next, 10 µl of the doxycycline dilution is drawn 
into a 22-gauge cemented-needle Hamilton syringe; this is  
injected into one of the larval prolegs. The syringe is lifted 
with the larvae still attached and held over a Petri dish lid lined  
with a 90-mm filter paper; the larva is allowed to free itself  
into the lid. This is repeated for the other nine larvae, and the 
base of the petri dish used as the lid. The ciprofloxacin solution is  
injected into another 10 larvae. Another 10 larvae are wounded 
by piercing a proleg with the syringe needle, but without  
corresponding injection, and these are held in a third Petri 
dish. A further 10 larvae are put into a fourth Petri dish as the 
untreated controls. All dishes are then stored in the incubator at  
15°C for 24 hours.

Step 3: Pre-treatment of larvae (Day 2). Aliquots of diluted  
antibiotic are removed from -20°C storage and thawed. The  
larvae from the previous day are removed from the incubator, and 
an infection station is prepared as detailed above. The larvae are  
swabbed with 70% ethanol before their respective treatments, 
which are injected into a different proleg to that used on the  
previous day. The larvae are returned to the 15°C incubator for  
24 hours.

Step 4: Pre-treatment of larvae (Day 3). An aliquot of diluted  
antibiotic is removed from -20°C and thawed. The larvae in  
dishes are removed from the incubator, and an infection  
station is prepared. The larvae are again swabbed with 70%  
ethanol prior to their respective treatments, which are injected 
into a third proleg. The larvae are returned to the 15°C incubator  
for at least 1 hour.

Step 5: Extraction of hemolymph (Day 3). The larvae are removed 
from the 15°C incubator. Next, 500 µl of insect physiological  
saline (IPS; 150 mM NaCl, 5 mM KCl, 100 mM Tris/HCl, 

10 mM EDTA, 30 mM sodium citrate, pH 6.9) is added into  
each of four microcentrifuge tubes that are placed on ice. A 1-ml  
pipette tip is placed into the lid of a Petri dish. In turn, each 
larva from the doxycycline set is swabbed with 70% ethanol and  
held backwards over the pipette tip. A different proleg is pierced 
with a 21-gauge needle, and the hemolymph that emerges is 
drawn into a pipette tip on a 200 µl pipettor set to 50 µl. The  
hemolymph is pooled into the microcentrifuge tube containing 
ice-cold IPS. In the same way, the hemolymph extracted from 
the ciprofloxacin, wounded and untreated sets are pooled into 
separate microcentrifuge tubes on ice. The pools are centrifuged  
at 500 × g, 4°C, for 5 minutes, then supernatants are discarded.  
Pellets are washed in 1 ml ice-cold IPS and re-centrifuged 
under the same conditions. There is a second wash step, after 
which the pelleted hemocytes are re-suspended in 500 µl of  
ice-cold IPS.

Step 6: Quantification of hemocytes (Day 3). We mix 10 µl of  
suspended hemocytes with 10 µl of 0.4% trypan blue dye, 
then load 10 µl of the mixture beneath the cover slip of a  
hemocytometer cleaned with 70% ethanol. Live cells do not  
stain with trypan blue dye. The hemocytometer is observed  
under 10 × magnification on a microscope. Cell counts are made 
in the four outer squares, and the average of the four is calcu-
lated, then doubled to account for the dilution with trypan blue  
strain. This value is used to adjust the concentration of the  
hemocytes to 2 × 105 cells/ml in the culture plate.

Step 7: Seeding of hemocytes (Day 3). We use 24-well plastic  
cell culture plates. The required volume of hemocyte suspen-
sion is added to three wells in a row, one row per treatment. The  
suspension is made up to 1 ml using Grace’s Insect Medium 
supplemented with L-glutamine and sodium bicarbonate + 2%  
penicillin-streptomycin solution + 2.5 µg/ml amphotericin B + 10%  
heat-inactivated foetal bovine serum at room temperature.  
Separate plates are made up for different time points as testing 
is generally destructive. The plates are placed in a vented lid-
ded box containing damp blue roll, and incubated in a non-CO

2
  

incubator at the appropriate temperature – either 28°C (the 
usual temperature for the culture of insect cells) or 37°C (the  
mammalian body temperature).

Step 8: Viability counts (Day 3). Once seeded, the T0 plate is  
used for viability counts. A total of 10 µl of suspension are  
withdrawn from each well and mixed with 10 µl of 0.4% trypan 
blue stain, then 10 µl of the mixture is loaded beneath the cover 
slip on a 70% ethanol-cleaned hemocytometer. Cells in the  
four outer corners are counted after trypan blue staining and 
approximately 95% of the cells should exclude trypan blue  
strain indicating they are viable.

Step 9: Maintenance of hemocytes (Day 5–7). We check the  
hemocytes under 10 × magnification on the microscope to  
make sure that they are intact and attached to the bottom of 
the plate. We carry out a 50% media change using Grace’s 
Insect Medium supplemented with L-glutamine and sodium  
bicarbonate + 2% penicillin-streptomycin solution + 2.5 µg/ml 
amphotericin B + 10% heat-inactivated foetal bovine serum at  
room temperature as before.

Figure 2. Technique for immobilisation of larvae for the 
injection or withdrawal of fluids.
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Step 10: Viability counts (Day 10). We pre-warm trypsin  
+ 0.25% EDTA in a 37°C water bath. The plate is removed 
from the incubator and the medium withdrawn from each well.  
We use 1 ml of Dulbecco’s PBS to wash each well, × 2. We add 
200 µl of the warmed trypsin + 0.25% EDTA to each well, and  
incubate the plate in an incubator at 37°C for 3 minutes. We 
inactivate the trypsin by addition of 400 µl of room temperature  
Grace’s Insect Medium supplemented with L-glutamine and  
sodium bicarbonate + 2% penicillin-streptomycin solution + 
2.5 µg/ml amphotericin B + 10% heat-inactivated foetal bovine 
serum, pipetting the mixture slowly across the base of each  
well at least twice. The bases of the wells are also tapped 
sharply. The plate is observed at 10 × magnification under the  
microscope to ascertain whether the hemocytes are detach-
ing from the surface of the well; if not, they are gently scraped 
with a 10 µl plastic loop. Once hemocytes are sufficiently 
detached, 10 µl from each well is mixed with 10 µl of trypan blue 
stain, and viability counts are undertaken as before. Typically,  
94–97% of the cells are viable at this stage.

Step 11: Differential hemocyte counts (Days 3 – 10). Seeded  
wells are examined under 20 × magnification on the microscope, 
and counts are made across five views of the three wells per  
treatment of granulocytes, spherulocytes, plasmatocytes, prohe-
mocytes or oenocytoids according to their morphology. Giemsa 
staining facilitates the identification of the different types of 
hemocytes because the cell and nuclei shape are more easily  
observed.

Step 12: Giemsa staining (Days 3 – 10). If we are undertaking  
Giemsa staining, we set up extra wells in the 24-well plate as this 
is a destructive process. The medium is removed and the wells 
are washed with 1 ml of room temperature Dulbecco’s PBS.  
Once this is removed, they are allowed to air dry briefly.  
We add 200 µl of undiluted Giemsa stain to each well and leave 
the plate for 2 minutes at room temperature. The stain is removed 
as thoroughly as possible. We add 200 µl of room temperature  
sterile deionized water and leave the plate for 3 minutes before 
removing as much water as possible. The wells are rinsed with 
a further 200 µl of deionized water, which is pipetted off as  
thoroughly as possible; the plate is then left to air dry before  
being examined at 20 × magnification on the microscope.

Results
Characterisation	studies
Injection promotes the mobilisation of hemocytes. We initially 
investigated whether dosing larvae with an antibiotic affected 
the recovery of hemocytes compared to sham injected, PBS  
dosed or untreated control larvae. Pre-treating larvae with  
doxycycline, ciprofloxacin or PBS increased by 2–3-fold the 
number of hemocytes we recovered in hemolymph, compared 
to untreated controls (Figure 3). However, sham injection by the  
insertion of a needle without any injection also increased the 
numbers of hemocytes recovered. The significance of these  
results could not be tested as hemolymph from each experimental  

unit was pooled into treatment sets and we thus do not have  
separate results for each larva.

Survival of recovered hemocytes. We collected the hemocytes 
from hemolymph by centrifugation, and suspended them in  
Grace’s Insect Medium supplemented with L-glutamine, sodium 
bicarbonate, penicillin, streptomycin, amphotericin and FBS. 
The hemocytes were plated at a density of 2 × 105 cells/ml into  
24 well cell culture plates at 28°C. We found (Figure 4) that 
the proportion of cells which excluded trypan blue dye (i.e. live 
cells) immediately after plating (93–98%) was similar to the  
proportion of cells which excluded trypan blue dye 7 days after 
plating (94–97% of T0 cells), indicating that we could main-
tain the cells for 7 days without loss of viability. Pre-treatment  
of the larvae with doxycycline or ciprofloxacin, before  
harvesting the hemocytes, did not affect the 7-day survival of  
hemocytes. When we cultured the hemocytes for 14 days after 
plating, we found a reduction in the proportion of cells which  
excluded trypan blue dye (33–38%).

The total number of hemocytes, observed by microscopy, was  
similar at T0 and T7 (Figure 5) with mean cell counts of 68 
(standard deviation ±32) and 62 (standard deviation ±13),  
respectively. This suggests that we did not see replication of 
the hemocytes. However, it is also possible that there was 
balanced growth and division and corresponding death of  
hemocytes.

Hemocyte survival at 37°C. We next repeated the study  
outlined above, but incubated the hemocytes at 37°C (Figure 6).  
We found that 71%–81% of the hemocytes excluded trypan blue 

Figure 3. Hemocytes recovered from larvae pre-dosed with the 
antibiotic indicated, PBS or wounded with a syringe needle 
for three days prior to hemocyte recovery. The results shown 
are the average of four counts made on hemolymph extracted from 
groups of 10 larvae per treatment. Error bars = SD.
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Figure 4. Viability of hemocytes incubated at 28ºC at T0 (A) or T7 (B). Average across three replicate wells per treatment, derived from 
the pooled hemolymph from 10 larvae, and seeded at 2 x 105 cells/ml. Hemocytes dissociated with trypsin and stained with trypan blue. 
Error bars = SD. Mean percentage (and SD) of hemocytes live at T0: doxycycline treated, 93% (±3.2%); ciprofloxacin treated, 98% (±2.5%); 
wounded, 96% (±3.5%); untreated, 93% (±3.6%). Mean percentage (and SD) of hemocytes live at T7: doxycycline treated, 95% (±4.7%); 
ciprofloxacin treated, 95% (±2.5%); wounded, 96% (±2.1%); wounded, 94% (±3.5%).

Figure 5. Total hemocyte count of cells in 10 µl from sham 
injected larvae incubated at 28°C at T0 and T7. Average 
across  three replicate wells, derived  from the pooled hemolymph 
from 10 larvae and seeded at 2 x 105 cells/ml. Hemocytes stained 
with  trypan  blue  and  dissociated  with  trypsin  at  T7  only.  Errors  
bars = SD. Mean (and SD) cell counts of hemocytes at T0; 68 (±32) 
or at T7; 62 (±12.5).

day 7 days after isolation from larvae compared to 85%–95%  
at T0. The dosing of larvae with doxycycline or ciprofloxacin 
before harvesting the hemocytes did not affect their subsequent  
survival at T7, compared to the survival of hemocytes isolated 
from larvae dosed with PBS or sham injected. Overall, our results 
indicate reduced survival of hemocytes maintained at 37°C  
compared to 28°C. However, the numbers of cells that survive 
for 7 days at 37°C were sufficient to allow experimental studies  
during this time.

Differential hemocyte counts. Unstained hemocytes isolated  
from larvae that were sham injected were assigned into differ-
ent groups depending on their appearance by microscopy. We 
identified five forms of cells which we termed granulocyte-like,  
spherulocyte-like, plasmatocyte-like, prohemocyte-like or oenocy-
toid-like (Table 3). After staining with Giemsa, we were able to 
visualise the differences between the hemocyte sub-populations as 
imaged in the report by Arteaga Blanco et al15. The representation 
of the different hemocyte types was broadly similar at the time of  
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Figure 6. Viability of ex vivo hemocytes incubated at 37°C at T0 (A) and T7 (B). Average across 3 replicate wells per treatment, derived from 
the pooled hemolymph from 10 larvae and seeded at 2 x 105 cells/ml. Hemocytes were dissociated with trypsin and stained with trypan blue. 
Error bars = SD. Mean percentage (and SD) of hemocytes live at T0: doxycycline treated 93% (±3); ciprofloxacin treated, 85% (±6.9); wounded, 
95% (±6.2); untreated, 93% (±2.1). Mean percentage (and SD) of hemocytes live at T7: doxycycline treated 71% (±2.5); ciprofloxacin treated, 
81% (±4.2); wounded, 79% (±4.4); untreated, 77% (±6.7).

Table 3. Percentages of different hemocyte cell types at T0 or T7, isolated from sham 
injected larvae. Differential hemocyte counts were based on morphological differences of 
unstained cells under 20 × magnification. Percentages shown are the averages across five views per 
well from triplicate wells of hemolymph pooled from 10 larvae.

Timepoint Granulocyte-
like cells

Spherulocyte-
like cells

Plasmatocyte-
like cells

Prohemocyte-
like cells

Oenocytoid-
like cells

T0 56.5% 25.1% 5.3% 11% 2.1%

T7 56.7% 11.9% 2.5% 27% 1.7%

isolation (T0) or after culture for 7 days (T7). However, there 
was a small reduction in the total number of hemocytes recorded 
(Figure 6) and there was a reduction in the proportion of  
spherulocyte-like cells and an increase in the proportion of  
prohemocyte-like cells. Cell counts for all experiments, in addition  
to the raw image files used to generate figures, are available as 
Underlying data21.

Discussion
We report here a method for the reliable isolation of hemocytes  
for further studies on the biology of these cells. The method 

is easily transferred to other laboratories and requires no  
specialist techniques or equipment. Since the hemocytes survive 
for at least 7 days as primary cultures, even at 37°C, it should be  
possible to study the uptake, growth and survival of a range of 
pathogens within these phagocytes. This will allow the behaviour 
or pathogens in insect hemocytes to be compared with the  
behaviour of pathogens in mammalian phagocytes. In the 
longer term, an increased understanding of the behaviour of 
G. mellonella hemocytes will increase our understanding of 
the limitations of using insects to model infectious diseases of  
mammals.
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Previously it has been reported that dosing with a sub-lethal  
dose of pathogen or a microbial component can evoke immune 
priming in G. mellonella larvae, where hemocytes which are  
normally bound to the inner surface of the cuticle become  
activated and mobilised into the hemolymph22. A similar response  
can be elicited by some antimicrobials and by physical 
stresses such as physical agitation of the larvae or temperature  
changes22. Our findings show that injury is another stress that 
can cause hemocyte mobilisation. Our findings highlight the  
importance of including a sham-injected control group in  
infection studies.

We did not see evidence of growth and replication of hemocytes  
in our study. It is likely that hemocytes require the presence  
of additional factors in order to replicate23. Yamashita  
and Iwabuchi16 reported that prohemocytes from Bombyx 
mori were more likely to divide if larval hemolymph was  
included in the culture medium. Further work should inves-
tigate how the replication of hemocytes can be encouraged  
ex vivo.

The hemocyte types that we found are similar to the types  
previously reported by Arteaga Blanco et al.15 and Gwokyalya 
and Altuntaş24 though other workers have reported different  
sub-populations of hemocytes25–27. Granulocytes are considered 
to be the most abundant type of hemocyte and one of the main  
types of phagocytic cell14. They would be expected to be  
mobilised following injection or wounding. Plasmatocytes are 
the other main type of phagocyte14. Whilst our findings broadly 
reflect those of Arteaga Blanco et al.15 and Gwokyalya and  
Altuntaş24, there are some differences in the proportions of  
different hemocyte types. These previous studies concluded that 
granulocytes and plasmatocytes together formed the majority of 
hemocytes (81.6–87.8% and 93.8–96%, respectively), whereas 
our predominant sub-populations at T0 were granulocyte-like  
and spherulocyte-like cells (81.6%). The method we have reported 
here will allow further work to investigate whether pathogens 
interact in different ways with the different sub-populations  
of hemocytes and to study whether some sub-populations are 
more able to eliminate pathogens than others. This informa-
tion might provide new insight into the different roles of the 
hemocyte sub-populations. One important goal of any future  
research should therefore be to develop methods for the 
selective enrichment of the individual sub-populations of  
hemocytes.

In summary, we have optimised a protocol for the extraction 
of hemocytes from G. mellonella and the maintenance of these  
hemocytes ex vivo for a period of at least 7 days. The method  
we report here will now allow other investigators to isolate  
hemocytes and study the interactions of different types of  
hemocytes with pathogens. Our work also raises the possibility 
that protection against infection seen after the administration 
of drugs may be a consequence of the mobilisation of  
hemocytes as a consequence of the traumatic injury suffered.

Data availability
Underlying	data
Open Science Framework: Isolation and primary culture of  
Galleria mellonella hemocytes for infection studies. https://doi.
org/10.17605/OSF.IO/C97DT21.

This project contains the following underlying data:

•  Hemocyte_counts_treated_untreated_larvae_sets (num-
bers of hemocytes recovered from pooled hemolymph 
drawn from treated and untreated larvae sets)

•  T0_hemocyte_viability_28C (numbers of live and 
dead hemocytes recovered from pooled hemolymph,  
incubated at 28°C and assessed at T0)

•  T0_hemocyte_viability_37°C (numbers of live and dead  
hemocytes recovered from pooled hemolymph,  
incubated at 37°C andassessed at T0)

•  T7_hemocyte_viability_28C (numbers of live and dead  
hemocytes recovered from pooled hemolymph,  
incubated at 28°C and assessed at T7)

•  T7_hemocyte_viability_37°C (numbers of live and dead  
hemocytes recovered from pooled hemolymph,  
incubated at 37°C and assessed at T7)

•  Total_hemocyte_count_wounded (total number of  
hemocytes in 10 µl of cell suspension from sham injected 
larvae, incubated at 28°C, assessed at T0 and T7)

•  Figure_3_hemocyte_counts_treated_untreated (bar 
chart of numbers of hemocytes recovered from pooled 
hemolymph drawn from treated and untreated larvae  
sets)

•  Figure_4A_T0_hemocyte_viability_28C (bar chart of 
percentage of live and dead hemocytes recovered from 
pooled hemolymph, incubated at 28°C and assessed at 
T0)

•  Figure_4B_T7_hemocytes_viability_28C (bar chart of 
percentage of live and dead hemocytes recovered from 
pooled hemolymph, incubated at 28°C and assessed at 
T7)

•  Figure_5_total_hemocyte_count_wounded (bar chart of  
total number of hemocytes in 10 µl of cell suspension  
from sham injected larvae, incubated at 28°C,  
assessed at T0 and T7)

•  Figure_6A_T0_hemocyte_viability_37C (bar chart of 
percentage of live and dead hemocytes recovered from 
pooled hemolymph, incubated at 37°C and assessed  
at T0)

•  Figure_6B_T7_hemocyte_viability_37C (bar chart of 
percentage of live and dead hemocytes recovered from 
pooled hemolymph, incubated at 37°C and assessed  
at T7)

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).

Author	roles
Titball R: Conceptualization, Data Curation, Formal Analysis, 
Investigation, Methodology, Project Administration, Resources, 
Validation, Visualization, Writing – Review & Editing; Senior, N: 
Experimental work, Data Curation, Formal Analysis, Investiga-
tion, Methodology, Writing – Original Draft Preparation, Writing 
– Review & Editing
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The manuscript by Senior and Titball describes a novel method for isolation and culture of 
hemocytes from Galleria mellonella larvae. These larvae are, as the authors point out, increasingly 
used as a cheap, reliable and more ethically acceptable alternative to mammalian species, for the 
study of infection and in therapeutic development. Despite this, methodologies for working with 
G. mellonella are not standardised and many aspects of the larvae's biology are not well described. 
This paper sets out to address some of these knowledge gaps, and makes several important 
contributions to the field. 
 
Firstly, a method for reliable isolation of hemocytes is described. Sufficient detail is given for 
others to be able to adopt the method and we expect that it will be widely used. The authors 
highlight a number of potential applications in the fields of immunology, infection and 
therapeutics and there is clear potential for exploitation of the model in all these areas. 
 
Secondly, the authors describe the effect of needle injury on hemocyte recovery and highlight the 
implications this has for experiments performed with G. mellonella. We agree with the authors that 
the increased recovery of immune cells following needle injury (in the absence of substance 
administration) demonstrates the importance of including sham injected controls in experiments. 
 
The manuscript is clear and well-written throughout and represents an important step forward for 
the field, with obvious 3Rs implications. We have a few minor comments that might help readers 
better understand and utilise the model:

One use of this model would be to look at hemocyte responses in infected larvae. Such 
experiments would likely be performed at 37C. The authors provide nice data on hemocyte 
survival ex vivo at 37C but can they comment on how recovery differs when the larvae are 
maintained at 37C, rather than 15C, prior to harvesting the hemocytes? 
 

1. 
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To the uninitiated, the terms used for the hemocyte sub-types will likely mean little. 
Microscopy images would be useful to enable users to distinguish between subtypes in 
their cultures. 
 

2. 

The authors state that using pooled hemocyte cultures prevents statistical analysis when 
the individual larvae is treated as the experimental unit, which is fine, but this doesn't seem 
practical for most users, who will want to statistically compare cultures. Can the authors 
comment on sample size determination for future studies that treat individual culture wells 
as the experimental unit? The mean and S.D. of recovery and viability per larvae is given, but 
are there other factors that need to be considered, such as the rate of bacterial 
contamination of recovered cells? 

3. 

 
Are a suitable application and appropriate end-users identified?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are the 3Rs implications of the work described accurately?
Yes

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Infection models and host-pathogen interactions. Referee suggested by the 
NC3Rs for their scientific expertise and experience in assessing 3Rs impact.

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard.
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Author Response 10 Feb 2021
Nicola Senior, University of Exeter, Exeter, UK 

We thank the reviewers for the time they have invested in improving our manuscript. 
Response to point 1. This is an interesting point raised by the reviewers. For infection 
studies using G. mellonella larvae we normally maintain them at 15C, and then transfer 
them to a higher temperature after challenge. This is a protocol used by most other 
researchers. We have used this protocol in the studies reported here, where hemocytes are 
harvested from larvae at 15C, but then incubated at 37C (or 28C where indicated). We do 
not have any data on the yield or properties of hemocytes taken from larvae which had 
been held at 37C before harvesting the cells. This is certainly a study that other 
investigators might want to undertake. 
Response to point 2. We agree that images would be useful. We do not have publication 
quality images to hand but will now aim to collect these images. 
Response to point 3. It would be feasible to include 3 or 4 groups of 10 larvae in each 
experimental unit, allowing statistical analysis to be undertaken. We did not observe any 
bacterial contamination in the studies we undertook, over the time period we reported, and 
we would not expect this to be a problem.  
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This research paper details a novel method for the extraction and culture of hemocytes from the 
wax moth larva, Galleria mellonella. This invertebrate host has become routinely used for studying 
the virulence of microbial pathogens and antimicrobial drug efficacy. However, current G. 
mellonella infection models are mostly limited to measuring larval survival as the main data 
output. In this study, the authors found that hemocytes can be extracted from G. mellonella larvae 
and maintained ex vivo for seven days post isolation with high viability. These findings are 
important because they broaden the G. mellonella infection model toolbox to include the study of 
pathogen-immune cell interactions. The authors also note increased hemocyte recovery from 
needle stick injured larvae, highlighting the importance of including relevant controls in routine G. 
mellonella survival experiments. 
 
The method in this paper is described with high attention to detail and the results are clearly 
presented. Conclusions drawn are strongly supported by data from carefully thought-out 
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experiments. The work contributes to the development of invertebrate infection models which is 
vital for reducing the use of mammalian hosts. My only suggestion is that a figure showing 
representative images of the hemocyte subpopulations identified could be useful to a researcher 
using this method for the first time.
 
Are a suitable application and appropriate end-users identified?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are the 3Rs implications of the work described accurately?
Yes

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Medical mycology, invertebrate models of fungal infection, yeast genetics, 
antifungal drugs.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 10 Feb 2021
Nicola Senior, University of Exeter, Exeter, UK 

We thank the reviewer for the time they have invested in improving our manuscript.  We 
agree that images would be useful.  We do not have publication quality images to hand but 
will now aim to collect these images.  
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