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Abstract: This review is a curated discussion of the relationship between the gustatory system and
the perception of food beginning at the earliest stage of neural processing. A brief description of the
idea of taste qualities and mammalian anatomy of the taste system is presented first, followed by an
overview of theories of taste coding. The case is made that food is encoded by the several senses that
it stimulates beginning in the brainstem and extending throughout the entire gustatory neuraxis. In
addition, the feedback from food-related movements is seamlessly melded with sensory input to
create the representation of food objects in the brain.
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1. Introduction

Sensory systems serve and reflect the ecological niche of the organism by actively
curating those aspects of the environment promoting its survival and well-being. This
idea is not new, and its application to the study of sensory systems has historically borne
fruit, e.g., [1]. More recently, investigators in other sensory systems, including vision [2],
somatosensation [3] and olfaction [4], have focused their attention on more naturalistic
examples of sensation. In the study of the gustatory system, such an approach is relatively
infrequent. Few experiments have focused on stimuli that emulate what an animal might
encounter in its natural habitat, i.e., food. Instead, foods that are part of the subject’s diet
have been distilled to a few “basic” taste qualities, namely sweet, salty, sour, bitter and
umami. Decades of psychophysical data in both humans and animals have demonstrated
the unambiguous singularity of these taste qualities, and dozens of studies have docu-
mented the neural responses to prototypical taste stimuli. The overarching experimental
strategy has been the idea that, since the five basic taste qualities arguably span the sensory
domain of taste, assessment of the neural representation of these stimuli would provide a
nearly complete portrait of the landscape of the gustatory system. In contrast, our recent
studies of the brainstem using evolutionarily relevant, and more complex, taste stimuli in
awake, freely behaving animals have suggested that the response repertoire of the gustatory
system is far richer than once believed. This repertoire includes response types that reflect
the active process of acquiring information about food, including multimodal sensations
(taste, olfaction, somatosensation) as well as ingestive behaviors. As a result, the coding
strategies used by the brain to represent taste, and ultimately food, must be reimagined.

This review is a curated discussion of the relationship between the gustatory system
and the perception of food beginning at the earliest stage of neural processing. It is not
meant to be comprehensive. For example, the involvement of motivation and learning
in the perceptual process surrounding taste/food are not discussed. A brief discussion
of the idea of taste qualities and anatomy of the mammalian taste system is presented
first, followed by an overview of theories of taste coding. Although our focus is on the
gustatory system, we relate the multiple sensory modalities that are stimulated by food
as well as the neural concomitants of motor behavior that accompany ingestion to the
way that food is represented in the brain. We define a “taste stimulus” as a chemical that
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stimulates taste receptor proteins located on taste receptor cells in the taste buds. We define
“flavor” as the combination of sensations, including taste, smell, texture, temperature, etc.,
that is evoked by a food. Finally, we explore a view of taste/food coding as a brainwide
sensorimotor function.

2. Taste Qualities and Food—Defining the Landscape

A “taste quality” is defined as a group of chemical compounds that, first, evoke a
taste sensation and, second, taste alike to humans and presumably to other mammals. The
presumption that underlies the classification of a taste quality as “basic” is that they do
not elicit any other taste quality and cannot be reproduced by any combination of other
taste qualities [5]. There are five taste qualities that most researchers agree form the basis
of the human taste system and that of most mammals, as mentioned above. Among other
tests [6], the independence of these basic taste qualities has been evidenced by the absence
of cross-generalization of conditioned taste aversions [7–9] in rodents. However, these
studies did not rule out the possibility that other independent taste qualities exist. These
include fat, calcium, starch and even water (reviewed in [6]).

The relationship of the basic taste qualities to food is a complex one. One might first
consider how an animal, including a human, decides that any substance is edible. That
is where other senses, in addition to taste, come into play. Vision, somatosensation and
perhaps especially olfaction all serve critical roles in this function. Learning, no doubt, can
modify what is eligible for consumption, adding to the adaptability of the organism to
what is available, harmful or helpful as food. However, the metabolic state can modulate
and overrule the judgement of what qualifies as a food. For example, what might be
considered inedible to a sated animal would become eligible for consumption by a starving
one [10]. Studies of “pica”, the voluntary ingestion of non-food substances, have also
pointed to the metabolic state as a factor in the identification of edible substances [11–13].
However, as with the effects of learning, metabolic state may affect consumption, but the
neural representation of a food in its multisensory complexity would presumably remain
unaltered. That would preserve the ability to identify the substance being ingested. While
it has been argued that the ultimate arbiter of what constitutes a food, as well as what
determines intake, is its taste [14,15], the variety of sensations evoked by a food impact how
it is identified, its palatability and ultimately the amount ingested. Thus, in considering
how food is represented in the brain, the convergence of sensations must be in the mix.

The collection of varied sensations evoked by food is collectively defined as its “flavor”.
Conventional wisdom points to convergence of food-related sensations at high levels of
the central nervous system, that is, in the cortex [16]. There are reports, however, both
early and more recent, showing that brainstem nuclei that are traditionally thought to
respond exclusively to taste stimuli also respond to touch [17,18], temperature [19,20] and
odor [21,22]. Collectively, these results beg the question of how food-related signals from
these non-gustatory senses interact with food-evoked taste signals at the earliest stages of
central processing. Put another way, these observations point to the idea that the flavor of
food, produced by the convergence of several modalities of sensation, may be represented
at multiple levels of the central gustatory system.

3. Brief Description of the Anatomy of the Taste System in Mammals

Gustation in mammals begins with the taste receptor cells on the tongue. These cells
are arranged like the sections of an orange in organs called “taste buds”. Taste buds are
located in specialized papillae on the tongue’s surface. There are three types of papillae
that contain taste buds: fungiform, which are round bumps located on the tip and sides of
the rostral tongue; foliate, which are gill-like folds located on the sides of the tongue; and
circumvallate, which are mushroom-shaped bumps located in an inverted V-shape at the
back of the tongue. Rodents have only a single circumvallate papilla located at the back
of the tongue. Sapid fluids interact with taste receptor proteins located on the apical villi
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of the taste receptor cells. The process of taste transduction has been recently reviewed in
detail elsewhere [23].

Taste buds are innervated by three cranial nerves (CN) [24]. The chorda tympani (CT)
branch of the facial nerve (CNVII) innervates taste buds on the rostral one-third of the
tongue; the glossopharyngeal nerve (CNIX) innervates taste buds in the caudal one-third
of the tongue and the vagus nerve (CNX) innervates the taste buds on the soft palate and
epiglottis. Each of these nerves have their cell bodies in peripheral ganglia. The geniculate
ganglia house cell bodies of the VIIth nerve. The IXth and Xth nerves are associated with
the petrosal and nodose ganglia, respectively. In close association with the nerves that
innervate the taste buds are fibers from the mandibular branch of the trigeminal nerve
(CN5) [25,26]. This nerve conveys information about mechanical, thermal and irritating
chemical sensations such as those evoked by capsaicin, the active ingredient in chili peppers.
Cell bodies associated with the trigeminal nerve are located in the trigeminal ganglion.
Interestingly, olfactory receptors in the taste buds have been described recently [27]. These
data imply that the taste bud may convey more information about food than just taste.
Thus, even at the level of the tongue, food is encoded by more than gustation alone.

Centrally, the three cranial nerves that innervate taste buds in the oropharyngeal area
project in a roughly topographic pattern to the nucleus of the solitary tract (NTS). The
projections of the VIIth nerve are at the most rostral tip with the projections of the IXth
nerve, just caudal, with some overlap [24]. The most caudal projection field comes from
the Xth nerve. Taste-responsive cells are located in the rostral central and medial portions
of the NTS, while downstream projections to the reticular formation originate in the rostral
ventral NTS [28].

In non-primate mammals, the NTS sends a major projection to the parabrachial nu-
cleus of the pons (PbN). From the PbN, there are two pathways that carry information
about taste upstream. The dorsal pathway travels to the parvicellular region of the ven-
troposteromedial thalamus (VPMpc) and to the primary gustatory cortex (GC) located in
the agranular and dysgranular insula. The limbic pathway travels to the central nucleus
of the amygdala, the lateral hypothalamus, the bed nucleus of the stria terminalis and the
substantia innominata [29]. In primates, including humans, the central gustatory pathway
bypasses the PbN and projects directly to the VPMpc and on to the GC [30]. As with all
sensory systems, there is considerable centrifugal input to downstream structures [29],
making the central gustatory system more like a collection of interacting loops rather than
a feed forward linear pathway ending in the GC.

4. Neural Coding of Taste—The Raw Data

To place the various theories and perspectives of taste and/or food coding in con-
text, it may be useful to consider what “raw material” the experimenter can use to con-
struct models of brain processing and representation of a food. Figure 1A (spikes) and
B (peristimulus–time histogram; PSTH) shows the firing pattern of two cells in the NTS
in a urethane-anesthetized rat in response to a taste stimulus. For decades, researchers
have measured such responses as the firing rate and/or number of spikes within some
predetermined response interval. Several aspects of the response are immediately apparent:
first, the response has a distinct time course with an initial phasic burst of firing followed
by a more sustained, tonic elevation in firing rate. Simple response measures of spike
count/rate ignore these response dynamics. Second, the response in these cells is long,
lasting well past the taste stimulus presentation and in some cases well past the measured
response interval used to determine response magnitude. Thus, response measures that
rely on predetermined response intervals ignore the potential for variability in response
length. Third, the response ends with the initiation of the water rinse. While most NTS
cells in anesthetized animals show no response to water, some cells do [31], potentially
confounding the measurement of response length. Figure 1C shows the response to a taste
stimulus over ten trials of five licks each followed by water licks presented on a variable
ratio 5 schedule (each water lick is followed and preceded by four to six unreinforced
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dry licks). Many of the same characteristics of the taste responses resemble those in anes-
thetized animals. However, the presentation of multiple stimulus trials illustrates the fact
that taste responses can vary trial-by-trial.

Figure 1. Examples of taste responses recorded from the nucleus of the solitary tract (NTS) in an
anesthetized (A) and (B) and an awake, freely licking rat (C). (A) Firing pattern of a single NTS
cell during the presentation of a taste stimulus for 5 s followed, after 5 s, by a water rinse in a
urethane-anesthetized rat. (B) Peristimulus–time histogram (PSTH) showing the response during the
presentation of a taste stimulus for 5 s (line under histogram) followed after 5 s by the presentation
of a water rise for 20 s (arrow under histogram) in a urethane-anesthetized rat. (C) Raster (top) and
PSTH (bottom) showing a taste response in an awake, freely licking rat. Colored triangles indicate
licks: blue triangles show water licks; purple triangles show taste stimulus licks. Unreinforced licks
between water licks are not shown. The taste stimulus trial consists of 5 consecutive stimulus licks.
Ten trials are shown.

In spite of these caveats, taste-evoked spike counts recorded from anesthetized animals
have allowed comparisons of sensitivity across taste qualities and intensities in several
species. In general, taste-responsive neurons respond to more than one of the basic taste
qualities. Historically, using the same data, two different, but not mutually exclusive,
theories of taste coding emerged and have dominated the literature. Both of these theories
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arose from studies of peripheral nerve responses to taste. These are the labeled line and
across fiber or unit pattern theories. Proponents of both theories have been debating the
merits and flaws of each approach for many decades.

The labeled line theory emphasizes the observation that taste-responsive neural el-
ements fire most vigorously and consistently to a single taste quality when tastants are
presented at midrange concentrations [32]. Most importantly, the identity of that “best
stimulus” enables the reliable prediction of the “second best”, “third best” and so on. Thus,
the idea emerged that there are fiber or neuron “types” associated with each of the basic
taste qualities. The idea is that each group of fibers/neurons is solely responsible for
encoding information about the best stimulus of that group. Responses to non-best, often
called “sideband”, stimuli are considered noise, i.e., irrelevant. More recently, proponents
of the labeled line theory have classified fibers/neurons as “specialists” or “generalists”
based on the degree to which a fiber/neuron was narrowly tuned to a single taste qual-
ity [33]. Specialists are presumed to participate in taste quality labeled line coding, while
generalists are thought to signal aversive tastes [33]. Early on, experimental manipulations
such as conditioned taste aversion [34] and sodium deprivation [35,36] were shown to
specifically affect the appropriate groups of best stimulus neuron types. More recently,
genetic manipulations of receptor subtypes underlying sweet, bitter, salty and sour tastes
have provided data supporting the labeled line theory in the peripheral [37] as well as
the central nervous system [38]. In apparent contradiction of these results are data from
Roper’s group [39] showing that taste cells in the geniculate ganglion (housing the cell
bodies of the VIIth nerve) can change their best stimulus as well as their breadth of tuning,
depending on the concentration of tastants tested.

In contrast to the labeled line theory, the across unit pattern theory eschews the idea
of cell types to argue that taste stimuli are represented by the distributed arrangement of
responsive cells in a given structure [40]. This theory takes advantage of the fact that the
great majority of taste-responsive cells respond to more than one taste quality. Evidence in
support of this theory is the high correlation of response magnitudes to similar tastants as
well as low correlations of response magnitudes to dissimilar tastants. Interestingly, there is
no need to propose a set of basic taste qualities with this theory. In fact, it has been argued
that the taste world is characterized by a loose organization of taste stimuli, some of which
are not easily categorized into groups representing the five basic taste qualities [40]. For
example, Di Lorenzo et al. [41] showed that a conditioned taste aversion to ethanol did not
generalize to any of the basic taste qualities, but instead generalized to a mixture of sweet
and bitter tastants. Consistent with the across unit pattern theory, the existence of widely
distributed broadly tuned neurons in the gustatory cortex has recently been described in
alert mice using wide-field calcium imaging [42].

5. Taste as an Active, Sensorimotor Function

The application of taste coding theories based on data from the peripheral taste
structures to data from central taste-related structures is problematical for two reasons.
First, the labeled line and across unit pattern theories both ignore the response dynamics
that occur in the central nervous system. Second, these theories limit their consideration to
taste responses in taste-responsive cells. This may seem like an obvious point. However,
there are a substantial number of cells located in so-called “taste relays” in the brain that
do not respond to taste as well as cells that respond best to sensory modalities other than
and perhaps in addition to taste, all of which may collaborate to convey information about
taste/food.

To address taste response dynamics, a third coding strategy, called “temporal coding”,
has been proposed. In one form, the temporal dynamics of firing in a taste response is
thought to convey information about taste quality (reviewed in [43]). Results of several
studies in anesthetized rats showed that when two tastants evoke similar firing rates, such
that they cannot be discriminated from each other, temporal coding enables them to be
disambiguated [44,45]. Evidence for a role for temporal coding in discrimination of the



Nutrients 2021, 13, 398 6 of 10

basic taste qualities [46], of different exemplars of the same taste qualities [47], different
stimulus concentrations [48] and among taste mixtures [46] in brainstem neurons has been
reported. Data from the NTS [49] and PbN [50] in awake, freely licking rats also show a
contribution of spike timing to discrimination of taste quality.

Another form of temporal coding, most often applied to cortical taste responses,
consists of a predictable sequence of “states”, defined as an alignment of firing patterns
across neurons, which signals taste quality [51]. The taste quality-specific sequence of
states is stable across trials but the dwell time in each state varies trial to trial. This type
of code can indicate taste quality [51] and can predict the occurrence of taste-evoked
behaviors [52,53].

In addition to “traditional” taste-responsive cells, our lab has shown that there are
multiple cell types in the brainstem of awake, freely licking rats that likely participate in
taste coding. These include so-called “anti-lick” cells that reduce their firing rate while
the animal is licking and “lick bout” cells that increase their firing rate when an animal
initiates a lick bout. There are also numerous lick-related cells whose firing rate is “lick
coherent,” i.e., it waxes and wanes along with licking, with peak firing rates occurring at
different parts of the lick cycle. Despite the fact that lick-related cells do not overtly appear
to respond to taste stimuli, their firing patterns nevertheless contribute information about
taste quality [54]. Many taste-responsive cells also vary their firing rates according to the
lick pattern, and some show lick coherence without any overt or obvious pairing to the
lick pattern [50,54]. Moreover, both brainstem [54] and cortical [55] taste-related neural
structures contain cells that track ingestive behavior, i.e., licking. Collectively, these data
point to a fundamental connection between sensation and behavior in the taste system,
making the characterization of taste coding sensorimotor rather than strictly sensory.

The concept that sensory coding incorporates both sensory and motor-related compo-
nents underscores the idea that acquisition of sensory stimuli is an active process [56]. A
critical link between behavior and the activation of sensory neurons has been shown in
studies of somatosensation [57–59], vision [60] and olfaction [4,61]. In olfaction, for exam-
ple, the dynamics of responses to odorants are shaped by the sniffing cycle in ways that can
only be fully appreciated in awakened animals [61]. In gustation, the lick is thought to be
the reference for encoding information about taste stimuli [62]. Moreover, in both olfaction
and gustation, learning modifies both the motor and, consequently, sensory responses to
a stimulus. For example, Gutierrez et al. [62] have shown that as learning a Go-no-Go
task progresses, large networks of cells across structures are recruited to synchronize with
the lick rhythm. Thus, the study of sensory coding in general and in the taste system in
particular is best viewed in the context of motor behavior, that is, as an active, sensorimotor
function. This view differs from previous conceptualizations of taste coding, including
labeled line, across unit pattern and temporal coding theories in that it incorporates a
contribution of the activity generated by active sensory acquisition as a key component of
the code.

6. Multisensory Integration in the Gustatory System Is Fundamental to Encoding
Information about Food

The intimate association between sensation and behavior and their simultaneous
representation in areas traditionally thought to be solely sensory suggests that a laser focus
on taste responsiveness in any taste-related brain region is missing half the picture. Both
movements, or perhaps somatosensory feedback from the movements, and the sensations
that result interact with each other to enhance and complete the perceptual experience.
Movements associated with acquiring information about food would engender signals
from a number of sensory modalities, not just taste. Thus, it is not surprising that all of
the central nuclei in the taste system contain neurons that respond to sensory modali-
ties other than taste, underscoring the well-known multisensory integration occurring in
response to food. For example, there are neurons in the gustatory cortex that respond
to olfactory [63–66], somatosensory, auditory and visual sensitivity [67] as well as gus-
tatory stimuli. The gustatory portion of the thalamus contains neurons that respond to
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thermal [68], tactile [68,69], olfactory [70] and gustatory stimuli [68,69]. Likewise, in the
gustatory brainstem, there are neurons that respond to thermal [19], tactile [71–73] and
olfactory [21,22] stimuli. In every area, a portion of the taste cells also respond to one or
more non-taste modalities. Other cells are specific to a single sensory modality.

Multimodal sensitivity across the gustatory neuraxis suggests that the gustatory
system may be optimally tuned to naturally complex stimuli such as actual foods that
engage a number of senses simultaneously rather than the prototypical exemplars of the
basic taste qualities. We tested this idea by comparing the responses to traditional taste
stimuli (sucrose for sweet, NaCl for salty, citric acid for sour and caffeine for bitter) to
responses to their naturalistic counterparts (grape juice for sweet, clam juice for salty, lemon
juice for sour and coffee for bitter). As we had hypothesized, we found that responses to
naturalistic stimuli were more easily distinguishable from each other than responses to
the standard array of tastants [74]. Another study showed that brainstem neurons convey
more information about taste stimuli when they are paired with odors than when they
are presented alone [21]. These studies support the idea that taste-responsive cells in
general may respond best to stimuli that stimulate multiple food-related senses. However,
they also show that this sort of multisensory convergence occurs at the very earliest
stages of central processing of food, in the brainstem. Information about taste, texture and
temperature is most likely derived directly from the oropharynx, but olfactory input almost
certainly originates from top–down input. Figure 2 shows a summary of the structures and
connections of the central taste and olfactory circuits. Although there are no known direct
projections from the olfactory bulb or piriform cortex to the brainstem taste-related nuclei,
olfactory input may be conveyed via the gustatory cortex [64], amygdala [75,76] or lateral
hypothalamus [77]. This sort of convergence of information at an early stage enables rapid
identification and ingestion/rejection decisions to be made.

Figure 2. Diagram of the brain areas associated with gustation and olfaction showing their intersec-
tion. Abbreviations are as follows: VII, facial nerve; IX, glossopharyngeal nerve; X, vagus nerve; NTS,
nucleus of the solitary tract; PbN, parabrachial nucleus of the pons; VPMpc, parvicellular region of
the ventroposterolateral thalamus; GC, gustatory cortex; AMG, amygdala; BNST, bed nucleus of the
stria terminalis; LH, lateral hypothalamus; RF, reticular formation; ORN, olfactory receptor neuron;
OB, olfactory bulb; PC, piriform cortex. Arrows highlight known interconnections among structures.

7. Conclusions

For humans and animals, the perception of food begins before it enters the mouth.
The sight and smell of food entice the eater toward ingestive movements. Once in the
mouth, the taste, texture and retronasal smell of the food deliver sensations that fulfill the
promise of the prescient signals. Feedback from food-related movements compliments
and buttresses the other sensory inputs. In animal models, the most common approach to
studying the neural representation of food has been to dissect its components and study
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each as an autonomous and independent contributor. However, a close examination of
the response repertoires of the gustatory circuitry shows that the sensory components of
food itself and the sensory feedback from movements associated with its consumption
are processed simultaneously, both in parallel and as convergent input at all levels of the
gustatory neuraxis, making the whole larger than the sum of its parts.

Funding: NIDCD grant RO1 DC006914.

Institutional Review Board Statement: Not applicable.
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