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Abstract: The functional neural circuits are partially repaired after an ischemic stroke in the central
nervous system (CNS). In the CNS, neurovascular units, including neurons, endothelial cells, as-
trocytes, pericytes, microglia, and oligodendrocytes maintain homeostasis; however, these cellular
networks are damaged after an ischemic stroke. The present review discusses the repair potential
of stem cells (i.e., mesenchymal stem cells, endothelial precursor cells, and neural stem cells) and
gaseous molecules (i.e., nitric oxide and carbon monoxide) with respect to neuroprotection in the
acute phase and regeneration in the late phase after an ischemic stroke. Commonly shared molecular
mechanisms in the neurovascular unit are associated with the vascular endothelial growth factor
(VEGF) and its related factors. Stem cells and gaseous molecules may exert therapeutic effects by
diminishing VEGF-mediated vascular leakage and facilitating VEGF-mediated regenerative capacity.
This review presents an in-depth discussion of the regeneration ability by which endogenous neural
stem cells and endothelial cells produce neurons and vessels capable of replacing injured neurons
and vessels in the CNS.

Keywords: stroke; vascular endothelial growth factor (VEGF); blood–brain barrier (BBB); stem cell;
gaseous molecule; regeneration

1. Overview of Repair Mechanisms Following Brain Damage

Ischemic stroke, which accounts for 87% of all stroke cases, results from a sudden
cessation of adequate amounts of blood supply to parts of the brain. The vascular system
plays a critical role in supplying oxygen (O2) and nutrients to neuronal systems. An
ischemic stroke typically presents with a rapid onset of neurological deficit. Cell–cell
communication in the neurovascular unit contributes to a functional neurovascular system
through an orchestrated network of extracellular matrix, endothelial cells (ECs), pericytes,
astrocytes, oligodendrocytes, microglia, neural stem cells, and neurons. Thus, interruption
of blood flow through an intracranial artery leads to deprivation of O2 and nutrients to the
vascular territory, resulting in metabolic changes in the surrounding cells, such as abnormal
mitochondrial activity, inflammation, disruption of the blood–brain barrier (BBB), and cell
death. Functional recovery after an ischemic stroke may depend on the fate of the ischemic
penumbra if the circulation is re-established in time. If not, at the onset of a stroke, the
complex and dynamic association between the brain vasculature and neuronal system
delays functional recovery.

Elucidating the mechanism of neurovascular repair is important to develop therapeutic
strategies to attempt to reverse or minimize the effects and to prevent future infarcts.
Clinical trials aiming to develop strategies for neuroprotection with respect to ischemic
stroke have failed to demonstrate clinical efficacy, possibly due to limited regenerative
capacity in the central nervous system (CNS) [1]. In this review, we specifically discuss

Int. J. Mol. Sci. 2021, 22, 8543. https://doi.org/10.3390/ijms22168543 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4379-204X
https://orcid.org/0000-0003-0242-9612
https://doi.org/10.3390/ijms22168543
https://doi.org/10.3390/ijms22168543
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22168543
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22168543?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 8543 2 of 21

the repair mechanisms related to neurovascular protection and regeneration through stem
cell-mediated repair mechanisms and gaseous molecule-mediated regenerative signaling.
Additionally, strategies for overcoming a stroke are also discussed, with a specific focus on
cellular therapy and molecular mechanisms involving vascular endothelial growth factor
(VEGF). The VEGF family includes VEGF-A, -B, -C, -D, -E, and placental growth factor,
which bind in a distinct pattern to three structurally related receptor-type tyrosine kinases,
namely, VEGF receptor 1 (VEGFR1), VEGFR2, and VEGFR3. VEGF-A is a major growth
factor that binds to VEGFR1 and VEGFR2 but not to VEGFR3 [2]. In this review, we have
focused on VEGF-A and refer to it as VEGF because VEGF acts on entire neurovascular
cells such as endothelial cells, neurons, and glia [3–8]. All these mechanisms involving
stem cells and gaseous molecules partly share common molecular pathways and signaling
molecules such as VEGF and its related factors.

2. Mechanisms Associated with the Neurovascular Unit Underlying Acute and
Chronic Stroke
2.1. Neurovascular Damage Due to Acute and Chronic Stroke

Ischemic stroke can be divided into acute or chronic based on the time from onset.
Ischemic stroke is classified as hyperacute, acute, subacute, and chronic with an onset time
of 0–24 h, 1–7 days, and 1–3 weeks, and more than 3 weeks, respectively. ECs play key
roles in neuroprotection by maintaining the integrity of the BBB during a stroke [9]. ECs in
the CNS possess tight junctions (occludin, claudin, zonula occludens-1 (ZO-1), ZO-2, and
ZO-3) and adherence junctions (VE-cadherin), which are reliant on several interdependent
mechanisms (ionic dysregulation, inflammation, oxidative and nitrosative stress, enzymatic
activity, and angiogenesis) for their functions [10]. In the neurovascular unit, surrounding
cells, such as astrocytes and pericytes, contribute to the formation and maintenance of the
BBB [11,12] by downregulating the expression of vascular permeability factors such as
VEGF [13,14].

Strbian D. et al. demonstrated monophasic BBB leakage, starting as early as 25 min
(acute phase) after post-ischemic reperfusion, and lasting for 3 weeks (chronic phase)
detected by Evans blue staining [15]. In stroke patients, VEGF levels are increased in the
neurons, astrocytes, and ECs of the ischemic penumbra [16]. In the acute phase of a stroke,
excessive VEGF acts as a potent permeability factor [17,18]; however, in the chronic phase
of ischemic injuries, administration of VEGF may strongly induce regenerative signaling,
thereby mediating angiogenesis, neurogenesis, and synaptic function [4–6,19–22]. Thus,
we discuss the neurovascular functions after a stroke focusing on cellular and molecular
mechanisms associated with VEGF-mediated dual functions during the acute and chronic
phases of a stroke.

2.1.1. Neurovascular Damage within Hours

A stroke directly damages the neural tissue and induces tissue ischemia attributed to
vascular occlusion. During an acute stroke, ischemia/reperfusion leads to the disruption
of BBB, loss of pericytes, activation of glia, macrophage infiltration, immune activation, in-
flammation, and neuronal cell death [10,23]. Pericyte constriction due to oxidative–nitrative
stress has been observed 2 h after ischemia–reperfusion in the mouse brain [24]. Pericyte
contraction entraps erythrocytes at the capillary constriction sites during a stroke, thereby
obstructing microcirculation [24,25]. Occlusion of the cerebral artery leads to focal ischemia
and upregulation of VEGF expression as early as 2–6 h after vessel occlusion [26,27]. VEGF
levels are normalized within 12 h, are increased again following 3–7 days after reperfusion,
and subsequently restored to baseline levels after 2 weeks [28]. Excessive VEGF levels
demonstrate deleterious consequences such as BBB breakdown, vascular leakage, and
brain edema [14,18]. Activation of VEGF/VEGFR2 signaling throughout stroke progres-
sion results in harmful effects during the acute phase of ischemia–reperfusion. The binding
of VEGF to VEGFR2 stimulates vascular leakage through downstream signaling pathways,
including the phosphoinositol-3-kinase (PI3K)-protein kinase B (PKB; Akt)-endothelial
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nitric oxide synthase (eNOS) axis in ECs [29]. Hypoxic astrocyte-derived VEGF binds to
VEGFR2 expressed on human retina microvascular ECs, leading to HIF-1α gene expression
and consequent VEGF upregulation [30]. Inhibition of VEGFR2 signaling in ischemic stroke
has been linked to a reduction in edema and infarct volume [31,32].

Impaired NO-mediated vascular functions are observed when NO reacts with reactive
oxygen species (ROS) in the core region of the damaged brain. These effects can be
mitigated by superoxide dismutase [33]. NADPH oxidase 2 (Nox2) may be the source
of ROS since Nox2-deficient mice fail to demonstrate vascular tone after ischemia [33].
Reactive nitrogen species (RNS)-mediated structural alterations of vascular endothelial
cadherin (VE-cadherin), attributed to nitrosylation of serine residues on VE-cadherin in
ECs, are regarded as the mechanisms underlying early leakage in BBB [34]. In addition,
the Src–Rac1–PAK (p21-activated kinase) pathway phosphorylates VE-cadherin, followed
by its dissociation [35]. Furthermore, ischemic neurons facilitate astrocyte-derived VEGF
production, leading to BBB breakdown via a reduction in the levels of tight junction proteins
(occludin and claudin-5) [22] (Figure 1).
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Figure 1. Following an acute ischemic stroke, VEGF, whose expression is enhanced, binds with
VEGFR2 and triggers various signaling pathways in endothelial cells. For instance, the VEGFR2–PKC
pathway may activate the transcription factor of VEGF and HIF-1α. Next, the PI3K–Akt pathway
phosphorylates eNOS and activates eNOS enzymatic functions leading to NO production. Oxidative
stress mediates ROS production. ROS reacts with NO to synthesize peroxynitrite (ONOO−). ROS
signaling inhibits PHD2 activity, leading to HIF-1a protein stabilization and activation of NF-κB
protein, consequently upregulating expression of downstream genes related to NF-κB, such as IL-
1β, TNF-α, IL-6, ICAM-1, and VCAM-1. ONOO− modifies VE-cadherin protein by nitrosylation
of serine residues, resulting in the detachment of VE-cadherin from endothelial cells. Finally, the
VEGFR2-mediated Src–Rac1–PAK pathway phosphorylates VE-cadherin, resulting in dissociation
with the adherence junction between endothelial cells. Oxidative stress-mediated reduction in the
expression of tight junction proteins also initiates BBB breakdown and monocyte infiltration. HIF-1α-
and NF-κB-mediated gene expression facilitates BBB breakdown, inflammatory responses, and glial
scarring. Abbreviations: VEGF, vascular endothelial growth factor; VEGFR, VEGF receptor; PI3K,
phosphatidylinositol 3-kinase; PKC, protein kinase C; NO, nitric oxide; eNOS, endothelial nitric
oxide synthase; HIF-1α, hypoxia-induced factor-1α; NF-κB, nuclear factor κ-light-chain-enhancer
of activated B cells; PAK, p21-activated kinase; IL, interleukin; TNF-α, tumor necrosis factor α; VE-
cadherin, vascular endothelial cadherin; ICAM, intercellular adhesion molecule; VCAM, vascular cell
adhesion molecule; ZO, zonula occludens; ROS, reactive oxygen species; PHD, prolyl-4-hydroxylase
domain; BBB, blood–brain barrier.
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Additionally, astrocyte and microglial activation may occur immediately after a stroke,
amplified by multiple inflammatory factors, including tumor necrosis factor-α (TNF-α),
interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-6, and adenosine triphosphate (ATP) [36,37].
These molecules act on a variety of recognition receptors expressed by microglia, astrocytes,
oligodendrocytes, and oligodendrocyte precursor cells (OPCs) and trigger the activation
of these cells [38,39]. Morphological changes in glial cells have been detected at varying
distances and depths from the ischemic lesions in the ischemic brain [37,40].

2.1.2. Neurovascular Damage within Days

Following 1–2 days after injury, weakened tight junctions attract the infiltration of
immune cells into ischemic brain tissues. Peripheral monocytes attach to the damaged brain
ECs expressing intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion
molecule-1 (VCAM-1), which are the downstream factors of the kappa-light-chain-enhancer
of activated B cells (NF-κB) observed during acute CNS inflammation [41] (Figure 1).

Inflammatory conditions lead to the downregulation of eNOS expression in ECs [42].
eNOS-derived NO possesses vasodilatory and anti-inflammatory properties as well as
stroke-protective properties [43]. Neutrophils and other monocytes rapidly infiltrate the
brain tissue and release additional pro-inflammatory cytokines that elicit a more robust
reactive glial response and reinforce local inflammation [44]. In the ischemic core, round
and amoeboid microglia can be observed at 1–3 days after a stroke. This effect stems from
the changes in the morphology and polarization of microglia [40]. Some reactive astrocytes
rapidly proliferate and densely populate the area around the lesion core within the 7–10-day
period of glial scar formation [45,46]. Glial scars inhibit excessive inflammatory responses
and restrict cellular degeneration [47].

The beneficial effects of VEGF in the subchronic phase of ischemia–reperfusion include
tissue oxygenation via promotion of vasodilation, arteriogenesis in the penumbra area,
angiogenesis, mitochondrial biogenesis, and neurogenesis [19,20,26,48]. VEGF improves
neurological recovery after 48 h but not 1 h after ischemia [18]. In a rat model of transient
focal ischemia induced by middle cerebral artery occlusion (MCAO), VEGF (1–3 days after
ischemia) exerts multiple effects, such as neuroprotection, neurogenesis in the dentate
gyrus and the subventricular zone, and angiogenesis in the striatal ischemic penumbra [48].
The in vivo ischemic brain injury model exhibited enhanced HIF-1α immunoreactivity
in the peri-infarct region of the wild-type mice, which was abolished in heme oxygenase
(HO)-1+/− heterozygote knockout (KO) mice [49]. HO-1-derived carbon monoxide (CO)
stabilized HIF-1α via inactivation of prolyl-4-hydroxylase domain 2 (PHD2) due to O2 de-
pletion, and HIF-1α induced ERRα expression [49]. PHD2 deficiency in neurons stabilizes
HIF-1α protein and consequent VEGF mRNA levels not only in the neurons but also in
astrocytes, demonstrating neuron-to-astrocyte signaling and pro-angiogenic responses [50].
Neural stem cells (NSCs) are self-renewing cells that can generate neurons, astrocytes,
and oligodendrocytes. VEGF-overexpressing transgenic mice exhibited enhanced NSC
proliferation, migration, and survival in the MCAO model [21]. As VEGF does not cross
the BBB, circulating VEGF may activate neurogenesis indirectly in the CNS by upregulating
the expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF)
in ECs [51,52].

2.1.3. Neurovascular Damage within Weeks

Immune-mediated inflammatory responses gradually cease within weeks after the
injury, followed by endogenous repair. Upon endogenous angiogenesis and neurogenesis,
increased cerebral blood flow (CBF) and maturation of ECs (tight junction integrity and
interaction with pericytes) contribute, in part, to functional neural circuits.

In this phase, the glial scar matures completely partly via the signal transducer and
activator of the transcription 3 (STAT3)-dependent mechanism [45]. In the STAT3-KO
mice, the elongated processes of scar-forming astrocytes remain perpendicular to the lesion
core and do not turn parallel to form a dense astrocytic scar border after CNS injury [45].
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Astrocytes within the glial scar produce molecules that inhibit axonal growth. Semaphorin
3A, several ephrins, slits, and matrix components inhibit axon growth within the glial
scar [46]. However, recent studies suggest that glial scarring stimulates regeneration [53].
STAT3 binds to the VEGF promoter, improves VEGF mRNA and protein expression,
and enhances angiogenesis after a stroke [54]. In ischemic white matter injury, STAT3
is also involved in inducing morphological changes in the microglia (demonstrating an
anti-inflammatory phenotype) mediated by the immune modulator, fingolimod [55].

In the next section, we will discuss regeneration mechanisms in the neurovascular
unit after a stroke, specifically with respect to angiogenesis, gliogenesis, neurogenesis, and
synaptogenesis.

2.2. Regeneration

In humans, functional repair following a severe stroke is very difficult [56]. Re-
searchers have attempted to decipher the precise cellular and molecular mechanisms to
overcome the limited ability of neurovascular recovery leading to normal brain functions
after a stroke [1,57]. One critical aspect associated with the poor regeneration of central
axons and glia is the inability of the environment to support axonal growth and myelina-
tion [57]. The neurovascular network may amplify the repair signals, and then support
axonal regrowth by enhancing endogenous angiogenesis, gliogenesis, neurogenesis, and
new synapse connections [58]. In this section, we discuss VEGF-mediated signaling path-
ways with respect to neurovascular components, such as neurons, NSCs, ECs, pericytes,
astrocytes, microglia, and oligodendrocytes.

2.2.1. Neurons/NSCs

Accumulating evidence indicates that the VEGF–VEGFR2 axis mediates key neurobi-
ological processes involved in neurogenesis, hippocampal plasticity, learning, and mem-
ory [3,20]. Co-activation of the NMDA receptor (NMDAR) and VEGFR2 in hippocampal
pyramidal neurons triggers synaptogenesis and promotes synaptic targeting of NMDAR
and VEGFR2 [4]. Overexpression of VEGF in vivo by intracerebral administration, gene
transfer, or in conditional transgenic animal models demonstrates a VEGFR2-mediated
increase in adult neurogenesis and improves hippocampal-dependent cognition [59]. More-
over, VEGFR2 is required for the beneficial effects of anti-depressant therapies on fear-
related behavior [4]. In contrast, the depletion of endogenous VEGF via small hairpin RNA
silencing or inducible expression of a VEGF trap leads to altered hippocampal neurogenesis
in response to an enriched environment [3,6] or selective deficits in memory [59]. Both
VEGF and VEGFR2 are expressed in the pyramidal cell layer and proximal apical dendrites
in the cornu ammonis 1 (CA1) and CA3 regions of the hippocampi in postnatal day 15
mice [4], indicating that hippocampal pyramidal cells can respond to endogenous VEGF.
Treatment with an inhibitor that specifically inhibits the tyrosine kinase activity of VEGFR2
diminishes the amplifying effect of VEGF [4]. NSCs, genetically modified by deleting the
VEGFR2 gene, inhibits synaptogenesis, which is identified by detecting the expression of
the presynaptic vesicle marker synapsin-1 and/or the postsynaptic density protein-95 [4].
Conditional KO of VEGFR2 via the Nestin-Cre system triggers selective VEGFR2 deletion
in neural cells. Hippocampal neurons exhibit increased NMDA-type glutamate receptor
(GluNRs)-mediated synaptic responses when VEGF is administered, whereas VEGF fails
to induce any significant change in GluNR excitatory postsynaptic currents in VEGFR2
conditional KO slices [4]. Therefore, NSC-derived VEGFR2–VEGF signaling may trigger
regeneration processes such as neurogenesis and synaptogenesis, leading to enhanced
long-term memory.

2.2.2. Endothelial Cells (ECs)

Endogenous VEGF produced by ECs is crucial for vascular homeostasis [60]. Specific
deletion of VEGF in ECs using VE-cadherin-driven Cre recombinase showed signs of
severe failure of the cardiovascular system such as hemorrhages, microinfarcts, EC rupture,
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and vascular constriction [60]. In this study, exogenous VEGF was unable to compensate
for the loss of endogenous VEGF in ECs despite the fact that signaling through VEGFR2
activates several downstream pathways, including the PI3K–Akt pathway, which is respon-
sible for cell survival. Micro-hemorrhages observed in VEGF-deficient ECs in adult mice
(VEGFECKO) are likely a reflection of the focal disruption of the vasculature attributed to EC
death, as observed in vitro [61]. Additionally, the sudden death of a significant number of
mutant VEGFECKO mice was also observed [61]. In human umbilical vein ECs (HUVECs),
the inactivation of VEGF results in mitochondrial fragmentation (as revealed by Hsp60
immunocytochemistry), the suppression of cell metabolism, and autophagic cell death [5].
These cellular phenotypes are mediated by forkhead box protein O1 (FOXO1), which is
robustly stabilized in the absence of VEGF. When FOXO1 is deleted from VEGF-deficient
endothelium, autophagic cell death is rescued, suggesting that the main role of autocrine
VEGF is to regulate FOXO1 levels to maintain cellular homeostasis [5]. Therefore, the
maintenance of baseline levels of VEGF in the endothelium is required to support vascular
homeostasis.

Activation of VEGFR2 in ECs via binding with a strong agonist, VEGF, results in Akt-
dependent phosphorylation of eNOS as well as NO production [62] (Figure 1). Increased
CBF attributed to the VEGF–eNOS-NO pathway may facilitate ischemic tissue repair
after a stroke [43]. Intravenous treatment with the eNOS substrate l-arginine mediated
the blood-flow-dependent recovery in a rat model of an experimental stroke [63]. NO
can increase the number of circulating endothelial progenitor cells (EPCs) after a stroke,
consequently triggering neovascularization [64,65]. Treatment of human microvascular
ECs with recombinant VEGF increases protein kinase C-mediated HIF-1α gene expression,
leading to increased expression of downstream target genes such as glucose transporter-1
and VEGF [30]. Therefore, secreted VEGF influences vascular tone, angiogenesis, and
glucose transport in the vascular system (Figure 1).

2.2.3. Astrocytes

Neuronal survival relies in part on astrocytic antioxidant abilities [66–68]. Following a
stroke, ischemic tissues demonstrate O2 and energy depletion, and subsequently, acidosis,
inflammation, glutamate excitotoxicity, and ROS/RNS generation [69]. Oxidative stress
leads to the fragmentation and autophagic degradation of mitochondria through excessive
Ca2+ influx in rat astrocytes [70]. Transfer of mitochondria from healthy astrocytes to
adjacent ischemic-damaged neurons enhances neuronal survival and improves functional
behavioral outcomes [71].

In astrocytes, Ca2+ signaling stabilizes the hypoxia-inducible factor-1α (HIF-1α),
thereby inducing the expression and secretion of VEGF [19,49]. Upon CNS injury, HIF-1α,
a major transcription factor for VEGF, may trigger regenerative signaling pathways by
manipulating various transcription factors [72,73]. The HO-1–CO pathway-mediated entry
of extracellular Ca2+ occurs through L-type voltage-gated Ca2+ channels (VGCCs) [19].
Ca2+ influx into astrocytes activates calmodulin-dependent protein kinase ββ (CaMKKββ)-
mediated expression of AMP-activated protein kinase α (AMPKα) by enhancing phospho-
rylation and nicotinamide phosphoribosyltransferase (NAMPT)-mediated sirtuin 1 (SIRT1)
activation. Subsequently, the peroxisome proliferator-activated receptor γ-coactivator-1α
(PGC-1α)-estrogen-related receptor α (ERRα) axis is activated. These events result in up-
regulated VEGF expression and secretion [19]. The L-type VGCC-mediated PGC-1α-ERRα
axis strongly induces human astrocytic mitochondrial biogenesis [74]. Consequently, an
increase in O2 consumption stabilizes HIF-1α, leading to VEGF secretion and ERRα ex-
pression [49,75]. ERRα, a transcription factor for VEGF, also binds to HIF-1α and PGC-1α,
leading to enhanced VEGF transcription [19,49]. Taken together, L-type VGCCs in human
astrocytes may be involved in angiogenesis and mitochondrial biogenesis (Figure 2).

In primary rat cortical astrocytes with reduced O2 availability (hypoxia and anoxia),
the inhibition of protein kinase A reduced the expression of HIF-1α and phosphorylation
of the cyclic AMP-responsive element-binding protein (CREB) and induced cell death [76].
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Astrocyte-derived VEGF also activates the eNOS–NO pathway [77], possibly leading to
the regulation of the vascular tone in ECs [78] (Figure 2).
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Figure 2. After the ischemia-reperfusion injury, HO-1 is expressed in the astrocytes of the penumbra
of the ischemic brain. CO and bilirubin can be produced via enzymatic activity of HO-1, which then
activates the L-type Ca2+ channel, leading to the entry of extracellular Ca2+. Ca2+-mediated AMPKα-
HO-1 circuit results in NAMPT gene expression and consequent SIRT1 activation. Deacetylation of
PGC-1α by SIRT1 activates ERRα expression. PGC-1α-ERRα axis induces mitochondrial biogenesis,
ATP production, and increased O2 consumption. Reduction of O2 inhibits PHD2 activity and
then stabilizes HIF-1α protein. Both the PGC-1α-ERRα pathway and HIF-1α pathway induce the
expression and secretion of VEGF. VEGF dimerization and binding to VEGFR2 triggers the eNOS–
NO axis and HIF-1α–VEGF pathway in endothelial cells, leading to vasodilation and angiogenesis,
respectively. Abbreviations: CO, carbon monoxide; HO-1, heme oxygenase-1; AMPKα, AMP-
activated protein kinase α; PGC-1α, peroxisome proliferator-activated receptor γ-coactivator-1α;
PHD, prolyl-4-hydroxylase domain; ERRα, estrogen-related receptor α; SIRT1, sirtuin 1; NAMPT,
nicotinamide phosphoribosyltransferase.

2.2.4. Pericytes

As pericytes are crucial for the maintenance of BBB integrity, they can also affect
stroke progression and recovery. Brain pericytes are derived from neural crest cells and
demonstrate various functions, including CBF regulation and BBB maintenance by com-
municating with other cells, especially ECs and astrocytes. The ratio of brain pericytes to
ECs can range from 1:1 to 3:1 (endothelial-to-pericyte) [79,80]. Pericyte–EC interactions are
prominent for BBB maintenance with profound effects on the basement membrane and
endothelial tight junction architecture and function. During a stroke, pericyte detachment
from ECs and pericyte death can influence BBB permeability [81]. The contractile properties
of pericytes provide the capacity to regulate capillary blood flow. However, this may exert
detrimental effects on oxidative–nitrative stress [24]. ATP and noradrenaline induce capil-
lary constriction mediated by pericytes [82]. Glutamate reverses noradrenaline-induced
constriction via prostaglandin E2 and NO [25,82].
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Platelet-derived growth factor (PDGF), VEGF, transforming growth factor-β, angiopoietin-
1, and Wnt pathways play critical roles in EC–pericyte interaction [80]. Pericyte-derived
angiopoietin-1 upregulates the expression of tight junction proteins in endothelial cells
via the Tie-2 receptor [83]. EC-derived PDGF attracts pericytes. In addition, pericyte-
derived angiopoietin-1 attracts Tie-2 receptor-expressing ECs [84]. These interactions
mediate pericyte attachment and coverage of newly formed blood vessels, resulting in the
maintenance of vascular homeostasis and maturation. This interaction can be defective in
strokes. Hence, the repair of the EC–pericyte interaction facilitates vascular maturation
and BBB repair.

2.2.5. Microglia/Macrophage

Microglia are the source of the inflammatory cascade activated during a brain injury.
Cytokines, including TNF-α, IL-1ββ, and IL-6, are produced in significant amounts by
microglia in the brain after an experimental brain injury. The pro-inflammatory phenotype
of microglia is associated with tissue destruction, whereas the anti-inflammatory phenotype
of microglia facilitates repair and regeneration. Mesenchymal stem cell (MSC) therapy may
improve outcomes of an ischemic stroke by inhibiting the activity of the proinflammatory
phenotype of microglia and augmenting the activity of the anti-inflammatory phenotype
of microglia [85].

Peripheral monocytes infiltrate the ischemic lesion for up to 7 days and then differenti-
ate into macrophages [86]. Inducible NOS (iNOS), expressed in the microglia/macrophages,
is detected up to 7 days after MCAO [87]. VEGF-expressing microglia/macrophages may
play a role in regeneration through cell–cell interactions [44]. VEGFR1 tyrosine kinase
domain-deficient mice are healthy, and angiogenesis is normal in the embryo [88]. In
VEGFR1-deficient mice, VEGF-dependent the migration of macrophages is blocked [88],
supporting the hypothesis that VEGFR1 also generates a positive signal that stimulates cell
migration.

2.2.6. Oligodendrocytes

Pericytes and vascular cells facilitate the proliferation and maturation of OPCs into
oligodendrocytes [89,90]. Cerebral ECs, neurons, and astrocytes secrete VEGF [13,91,92],
followed by the VEGF-induced migration of OPCs. This effect can be blocked by the
VEGFR2 antibody [8]. VEGF-mediated adhesion kinase activation and ROS generation
may be important mechanisms involved in OPC migration [8]. Taken together, myelination
after CNS injury can be facilitated by repaired cells in the neurovascular unit such as
pericytes, ECs, neurons, and astrocytes.

3. Neurovascular Repair

Stem cell therapy using MSCs, endothelial progenitor cells (EPCs), and neural stem
cells (NSCs) may contribute to stroke recovery as stem cells can secrete a variety of cy-
tokines and growth factors related to angiogenesis, neurogenesis, and synaptogenesis
(Figure 3) [93]. Gaseous molecules such as NO and CO also possess regenerative potential
demonstrated by boosting stem cell-mediated repair or by stimulating additional regenera-
tive pathways [58,94,95]. Both pathways share common molecular mechanisms associated
with VEGF and its related factors (Figure 3).

3.1. Stem Cell Therapy

Progress in stem cell biology has significantly contributed to the development of
strategies for the treatment of strokes in preclinical studies and has demonstrated clinical
potential in stroke treatment. Stem cell therapy may be a promising strategy for the
treatment of intractable neurological diseases in the future. Transplanted exogenous
stem cell therapy for a brain ischemic stroke may contribute directly to neurovascular
regeneration (by compensating for the loss of nerve tissue by the differentiation of nerve
and glial cells) as well as indirectly (via secretion of angiogenic and neurogenic factors
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from the penumbra brain regions). Here, we discuss MSCs, EPCs, and NSCs as potential
therapeutic cell types that might be beneficial for the treatment of strokes.
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Figure 3. In the later phase of an ischemic stroke, VEGF expression may facilitate tissue regeneration.
Exogenous stem cells (i.e., MSCs, EPCs, and NSCs) and gaseous molecules (i.e., NO and CO) increase
the expression of VEGF and its related factors, which are involved in angiogenesis, neurogenesis, and
synaptogenesis. Additionally, these factors enhance the ability of endogenous NSCs to proliferate
and differentiate into mature neurons, astrocytes, and oligodendrocytes. Collectively, regeneration
through stem cells and gaseous molecules contributes to repair after an ischemic stroke. Abbrevi-
ations: MSCs, mesenchymal stem cells; NSCs, neural stem cells; EPCs, endothelial precursor cells;
BDNF, brain-derived neurotrophic factor; IGFBP4, insulin-like growth factor binding protein-4; PDGF,
platelet-derived growth factor; SDF-1α, stromal cell-derived factor-1α; SVZ, subventricular zone; LV,
lateral ventricle.

3.1.1. Mesenchymal Stem Cells

MSCs can differentiate into chondrocytes, adipocytes, and osteoblasts, as well as
transdifferentiate into ECs, glial cells, and neurons. Owing to their remarkable regeneration
potential, MSCs are widely used in current medical research [96]. MSCs secrete a wide range
of growth factors, cytokines, chemokines, and extracellular vesicles, thereby contributing
to the repair process (i.e., angiogenesis, gliogenesis, and neurogenesis) after an ischemic
stroke [97].

The therapeutic potential of MSCs has been demonstrated in ischemic animal models.
Human MSCs have been shown to enhance stroke lesion recovery by mediating inflamma-
tion and tissue repair through the secretion of trophic factors. Human MSC transplantation
into a rat focal ischemia model of transient cerebral artery occlusion revealed decreased
accumulation of Iba-1-positive microglia and GFAP-positive astrocytes and the inhibition
of pro-inflammatory gene expression in the core and ischemic border zone [87]. MSC
therapy may improve outcomes of an ischemic stroke by inhibiting the activity of the proin-
flammatory phenotype of microglia but augmenting the activity of the anti-inflammatory
phenotype of microglia [85]. Human umbilical cord blood-derived MSCs (intravenous
injection, 0.25 million cells/animal and 1 million cells/animal) were injected into a rat
ischemia–reperfusion stroke model, and experiments were conducted 7 days after reper-
fusion [98]. The treatment reduced the mRNA and protein levels of metalloproteinases
(MMPs) (i.e., MMP-9 and MMP-12) [98].
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Apart from the anti-inflammatory responses, MSCs stimulate the regenerative path-
way. B10 human MSCs express cytokines and growth factors, including IL-5, fractalkine,
insulin-like growth factor-1, glia-derived neurotrophic factor, and VEGF [87]. B10 trans-
plantation also increases the expression of angiogenic factors, such as HIF-1α in the core
and border zone of rat ischemic stroke brains [99], which can induce VEGF expression
and new vessel formation [99,100]. Allogeneic adipose-derived MSC sheets demonstrated
neurological improvement with angiogenesis and neurogenesis in a rat stroke model [101].
Mitochondrial transfer from MSCs to cerebral microvasculature resulted in significant
improvement of the mitochondrial activity in injured microvasculature, enhanced angio-
genesis, reduced infarct volume, and improved functional recovery following an ischemic
stroke [102].

Stromal cell-derived factor-1α (SDF-1α)-transfected MSCs enhance ischemia-mediated
new vessel formation as well as angiogenesis in vivo via the VEGF–eNOS axis [103]. IFN-γ-
activated MSCs were injected into a rat MCAO model. IFN-γ-activated MSCs demonstrated
more potent functional recovery as assessed by the modified neurological severity score
and open-field analysis compared to that observed in vehicle-treated animals [104]. IFN-
γ-activated MSC-treated stroke-conditioned animals showed a reduction in infarct size,
diminished microglial activation, and enhanced recruitment and differentiation of OPCs to
myelin-producing oligodendrocytes [104]. Intra-arterial transplantation of 3-dimension
(3D) aggregate-derived human MSCs into transient MCAO stroke model mice exhibited
increased cell persistence and better therapeutic outcomes compared to that in saline
control or 2D human MSC control [105]. The PI3K–Akt signaling pathway was activated by
3D-aggregate-human MSCs [105]. The extracellular regulating kinase 1/2 (ERK) pathway
is considered an important regulator in CNS regeneration [58,106]. ERK-overexpressing
MSCs were transplanted into stroke model rats, demonstrating the increased proliferation
of NSCs and maturation into neurons in the subventricular zone [107]. Glia-like human
MSCs (ghMSCs) exhibit better efficacy and enable better protection of the neurons and
the brain from ischemia than naïve human MSCs, and insulin-like growth factor binding
protein-4 (IGFBP-4) played a critical role in mediating the beneficial effects of ghMSCs in an
ischemic stroke [108]. IGFBP-4, hepatocyte growth factor, and VEGF released from ghMSCs
may serve as key molecules for enhanced neuronal survival and neurite outgrowth in
ischemic CNS injuries [108,109]. Small extracellular vesicles secreted by human-induced
pluripotent stem cell-derived MSCs enhance angiogenesis by inhibiting STAT3-dependent
autophagy in a rat model of an ischemic stroke [110]. MSC transplantation has also
been investigated in humans. Autologous MSC transplantation (intravenous injection,
1 × 108 cells) may improve neurological functions one year after symptom onset in stroke
patients [111]. In this study, of the 31 enrolled patients, 16 were administered MSCs. The
MSC-treated group showed improvements in motor functioning based on the examination
of the National Institutes of Health Stroke Scale score and Fugl-Meyer scores as well as in
task-related functional magnetic resonance imaging activity [112]. The transplantation of
autologous human MSCs (intravenous injection), cultured in human serum, was performed
in 12 stroke patients [113]. In this unblinded study, the mean lesion volume, as assessed by
magnetic resonance imaging, was reduced by 420% at one week post-cell infusion [113].
Allogeneic ischemia-tolerant MSCs (intravenous injection, 0.5, 1.0, and 1.5 million cells/kg
body weight) were transfused into patients with chronic stroke. Their Barthel index scores
increased at 6 months and 12 months post-infusion [114]. Taken together, MSCs may
exhibit therapeutic potential by inhibiting excessive inflammation and stimulating the
repair pathway.

3.1.2. Endothelial Progenitor Cells (EPCs)

The formation of new blood vessels in the adult brain after a stroke stems from
angiogenesis (migration and proliferation of local mature ECs) and the systemic regulation
of bone marrow-derived EPCs [93]. CD34 and VEGFR2 double-positive mononuclear cells
from peripheral blood are considered as EPCs [115]. EPC mobilization from the bone



Int. J. Mol. Sci. 2021, 22, 8543 11 of 21

marrow stroma into the blood circulation is regulated by various enzymes and factors such
as eNOS, VEGF, and granulocyte colony-stimulating factor (G-CSF) [43,116,117]. The SDF-
1α/C-X-C motif chemokine receptor 4 (CXCR4) pathway plays a key role in the homing of
EPCs to the ischemic region [93,118]. The SDF-1α–CXCR4 interaction may recruit not only
EPCs, but also MSCs and NSCs to ischemic tissues since the SDF-1–CXCR4 axis modulates
survival, proliferation, migration, and differentiation of MSCs and NSCs [119,120].

Ex vivo expanded EPCs (intravenous injection, 1 × 106 cells) were injected into mice
after 1 h following induction of transient MCAO [121]. EPC transplantation significantly
reduced ischemic infarct volume and induced angiogenesis in the ischemic penumbra
after MCAO compared to that observed in control mice in vivo, and a CXCR4 antagonist
blocked SDF-1-mediated EPC migration in vitro [121]. Moreover, SDF-1 upregulates VEGF
expression and eNOS activity via cellular communication [103].

The interplay between eNOS and BDNF may be involved in EPC-mediated angio-
genesis, neurogenesis, and axonal growth after an ischemic stroke [122]. Conditioned
media derived from EPC culture was administered to mice 1 d after MCAO. A significant
increase in capillary density was observed in the ischemic penumbra, consequently im-
proving forelimb strength [123]. The expression of multiple growth factors, cytokines, and
proteases has been demonstrated in the EPC secretome, showing enhanced endothelial
and OPC proliferation and maturation [90]. Angiogenin, a HIF-1α target gene, may be a
key factor since pharmacological blockade of angiogenin signaling negates the positive
effects of the EPC secretome [90,124]. Under in vivo conditions, treatment with the EPC
secretome increases vascular density, myelin, and mature oligodendrocytes in the white
matter and rescues cognitive function in a mouse model of hypoperfusion [90]. Hypoxic
preconditioning via overexpression of HIF-1α, SDF-1α, VEGFR2, or VEGF may facilitate
EPC functions such as angiogenesis and neurogenesis [125,126].

Autologous CD34-positive stem/progenitor cells derived from the bone marrow of
human subjects were administered intra-arterially via catheter angiography within 7 days
of the onset of a severe ischemic stroke [127]. In this study, administration of CD34-positive
stem cells resulted in reduced lesion volume and hence, rescued patients with an acute
ischemic stroke during a 6-month follow-up period [127]. Thus, the application of EPCs in
an ischemic stroke may be helpful.

3.1.3. Neural Stem Cells (NSCs)

IL-17A shows two distinct peaks of expression in the ischemic hemisphere: the first
peak observed within 3 days and the second on day 28 after a stroke. Astrocytes are a
major cellular source of IL-17A, which maintains and augments subventricular zone (SVZ)
neuronal precursor cell survival, neuronal differentiation, synaptogenesis, and functional
recovery after a stroke [128]. In this study, the p38 mitogen-activated protein kinase–calpain
1 signaling pathway was involved in IL-17A-mediated neurogenesis [128].

NAMPT is a rate-limiting enzyme involved in the biosynthesis of nicotinamide ade-
nine dinucleotide (NAD) in mammals; this putative therapeutic agent for combating
stroke is highly expressed in neurons, EPCs, and NSCs, with lower expression in glial
cells [129,130]. It plays key roles in defense mechanisms, metabolic homeostasis, and neu-
ronal survival [129]. NAD replenishment in neurons either before or after oxygen-glucose
deprivation reduces cell death and DNA damage [131]. Neuronal survival due to NAMPT
overexpression was blocked in AMPKα2−/− neurons through the SIRT1–AMPK axis in
a rat model of an ischemic stroke [132]. The role of NAMPT has been demonstrated in
neurovascular repair during the chronic phase. NAMPT promotes angiogenesis, neovas-
cularization, and neurite outgrowth as well as increases the levels of regenerative factors
such as BDNF and VEGF [129,133–135].

3.2. Gaseous Biomolecules

Reduced O2 availability (i.e., hypoxia) and energy substrates (e.g., glucose) appear to
represent the critical stimulus that evokes an adaptive response to ischemia, principally
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through HIF-dependent production of multiple angiogenic cytokines and growth factors,
including VEGF, angiogenin, angiopoietins, placental growth factor, PDGF-B, stem cell
factor, and SDF-1, which stimulate angiogenesis, the process of new blood vessel formation
from pre-existing ones [27,124,136–139].

The endogenous repair ability of gaseous biomolecules such as NO and CO can
be promoted after a stroke. Nitric oxide (NO) and CO are endogenous gases produced
by NOS and HO, which diffuse freely between cells, consequently amplifying signaling
pathways involved in neurogenic and angiogenic functions [42,137]. NO can dilute the
cerebral vasculature and enhance cerebral blood flow. CO improves damaged vasculature
by inducing angiogenesis and neovascularization, partly by interacting with the NOS
signaling pathway [94]. Moderate levels of NO and CO induces HIF-1α-mediated VEGF
expression [75,140] and suppress its expression in severe hypoxia [141].

3.2.1. NO

NO is produced by the reaction of l-arginine with NOS isoforms. Two constitutive
isoforms, (eNOS and neuronal NOS [nNOS]) via Ca2+ entry, and iNOS are enzymes that
are expressed in a highly cell type-specific manner. Acting as an intercellular signal, the
nNOS–NO axis can trigger neurogenesis in mouse brain neural progenitor cells. BDNF
upregulates nNOS protein levels, which can induce the maturation of neurons from neural
progenitor cells [142].

VEGF–VEGFR2–PI3K–Akt axis is an important regulator of cellular survival, cell
motility, and NO production [143,144]. Activation of AMPK, a crucial cellular energy sensor,
can also stimulate eNOS by phosphorylating it at Ser1179, suggesting crosstalk between
cellular metabolism and vascular tone. By using flow channels with cultured ECs, AMPKα

Thr172 phosphorylation can be increased with changes in flow rate or pulsatility [145].
eNOS exhibits neuroprotective properties against ischemic strokes [43]. Moderate NO

gas inhalation in mice with transient focal ischemia reduced infarct volume to 10 ppm for
24 h, and to 20, 40, and 60 ppm for 8 and 16 h following NO inhalation [146]. NO inhalation
improves penumbral blood flow and neurological outcomes in a mice ischemia induced by
transient MCAO [147] and in a rat model of focal cerebral ischemia [63].

An HO inducer or carbon monoxide-releasing molecule 2 (CORM-2) restores TNF-α-
induced downregulation of the expression of eNOS–NO by inhibiting NF-κB-responsive
miR-155-5p expression in HUVECs [42]. CO can reduce the production of ROS, conse-
quently reducing the synthesis of peroxynitrite [148]. Application of CORM-2 in BV2
microglial cells prevents the production of NO upon lipopolysaccharide (LPS) stimula-
tion [149]. Therefore, CO may reduce LPS-mediated NO production in activated glial cells
and stimulate NO production in vascular cells. In addition, CO may facilitate repair and
regeneration by activating the nNOS–NO pathway in neuronal cells [95]. The interplay
between CO and NO leads to vascular dilation, angiogenesis, and neurogenesis.

The nNOS–NO axis is activated in the neurons and NSCs when mice are injected
with CORM-3 after an ischemic CNS injury [95]. CO may exert neurogenic effects by
stimulating the HO-1 pathway, consequently activating the nNOS–NO axis. The HO
metabolite, bilirubin, stimulates ERK1/2 phosphorylation, CREB phosphorylation, and
nNOS–NO production in the absence of exogenous growth factors in PC12 cells. This
effect is blocked by an extracellular Ca2+ chelator [150]. NMDAR, a critical receptor for
hippocampal long-term potentiation and spatial learning, is S-nitrosylated by NO [150].
Thus, the crosstalk between HO/CO and NOS/NO may induce diverse signaling pathways
leading to neurogenesis, long-term potentiation, learning, and memory.

3.2.2. Carbon Monoxide (CO)

HO-1 and HO-2 are essential enzymes in heme catabolism that cleave heme to carbon
monoxide (CO), biliverdin (which is rapidly converted to bilirubin), and Fe2+. In this step,
O2 is required as the reaction substrate [136]. HO-2 is constitutively expressed in neurons
where it functions as an intrinsic protector [151]. The expression of HO-1 is strongly
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induced in various cells in response to hypoxia and stress, which promotes neuroprotection
and angiogenesis in the ischemic milieu [152]. CO induces the expression of HO-1 and
plays important roles in neurotransmission, neurogenesis, mitochondrial biogenesis, and
blood circulation in the brain [153–155]. CO generated either by exogenous delivery or
by HO activity is fundamentally involved in regulating mitochondria-mediated redox
cascades for adaptive gene expression and improving blood circulation (i.e., O2 delivery)
via neovascularization, leading to the regulation of mitochondrial energy metabolism [137].
CO can be delivered in a pharmacologically active form as a CO-releasing molecule,
CORM [156]. The biological effects of CO are largely dependent on the HO activity [137].

HO-derived CO promotes angiogenesis and neovascularization by regulating pro-
angiogenic VEGF expression [157–160]. CO can also upregulate HO-1 expression, and the
HO-1/CO circuit may interact with the NOS/NO pathway [94]. CORM-2 can stimulate
the eNOS–NO axis through inositol triphosphate receptor-mediated intracellular Ca2+

release, PI3K-Akt phosphorylation, and eNOS dimerization in HUVECs [161]. CORM-2
prevents TNF-α-induced eNOS downregulation by inhibiting NF-κB-responsive miR-
155-5p biogenesis [42]. Inflammatory responses after ischemic stroke are diminished by
CORM-3, demonstrated by examining the levels of TNF-α and IL-1ββ [162]. CO-mediated
ROS/RNS inhibition may protect the BBB from acute neuroinflammatory diseases [95,162].

Signaling pathways activated by CORM-2 include the PI3K-HIF-1α–VEGF path-
way [75]. In a mouse model of ischemia–reperfusion injury, HO-1 is expressed in astrocytes
in the penumbra region [19]. Transient HO-1 activation may be beneficial for regeneration
during an acute ischemic injury [95,156,163–166]. HO-1-derived CO and bilirubin activate
LTCC and mediate Ca2+/CaMKKββ-mediated activation of AMPKα, AMPKα-dependent
HO-1 induction, and the consequent stabilization of HIF-1α in a PHD2-dependent man-
ner [49]. The effects of CO on regeneration are associated with VEGF production [19].
Recently, the neuroprotective and regenerative effects of CORM-3 have been demonstrated
in a stroke. CORM-3 injection reduced infarct volume and increased the expression of
mature neuronal markers such as neuronal nuclear antigen and microtubule-associated
protein 2 compared to that in saline-treated mice [162]. CO-mediated VEGF upregulation
does not disrupt BBB, instead, CO protects the BBB from ischemic injury [95,162]. Other
CO-mediated protective factors may mitigate VEGF-mediated vascular permeability, or
CO reduces excessive VEGF production. Taken together, CO reduces VEGF-mediated
disruption of BBB and facilitates VEGF-induced regeneration after an ischemic stroke.

4. Discussions/Conclusions

The present review discusses the repair potential of various exogenous stem cells
and gaseous molecules with respect to neurovascular protection and regeneration after an
ischemic stroke. Ischemic stroke is a complex disease with multiple underlying pathways.
To address this multiplicity, therapeutic agents may target more than one pathway, such as
anti-inflammation, neuroprotection, and neurovascular regeneration involved in angiogen-
esis, neurogenesis, and gliogenesis. Commonly shared key molecular mechanisms in the
neurovascular unit repair are associated with the VEGF and its related factors.

A neurotrophic supportive environment may contribute to neurovascular regeneration
and the formation of functional neural circuits upon an ischemic stroke. Exogenous
stem cells and gaseous molecules have been used to treat ischemic strokes. This strategy
includes enhancing VEGF-mediated regeneration and the ability of VEGF-related factors to
amplify the cellular network in the CNS. The crosstalk between cells and the regenerative
ability of these cell-derived factors boosts renewal potential by activating the functions of
endogenous NSCs (Figure 4).

Nevertheless, current studies examining the repair following an ischemic stroke have
limited applicability for humans, possibly owing to the disconnection between animal
models employed by the laboratory and actual disease states observed in humans [167,168].
In addition to developing proper animal models for representing an ischemic stroke, the
administration of a single drug to ischemic stroke patients would not be sufficient to repair
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the entire neurovascular unit. Therefore, the administration of a cocktail of therapeutic
drugs, discussed in this review, with multiple regenerative mechanisms may be beneficial.
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Figure 4. Neuronal growth-promoting environment supported by exogenous stem cells and gaseous
molecules may contribute to repair upon ischemic stroke. Cellular and molecular crosstalk in the
neurovascular unit leads to BBB maturation, angiogenesis, neurogenesis, gliogenesis, and synapto-
genesis. Collectively, damaged tissue may be repaired through these regenerative pathways and
form new functional neural circuits. Abbreviations: BBB, Blood–Brain Barrier; BDNF, brain-derived
neurotrophic factor; EPCs, endothelial precursor cells; MSCs, mesenchymal stem cells; NAMPT,
nicotinamide phosphoribosyltransferase; NSCs, neural stem cells; SDF-1, stromal cell-derived factor-
1; VEGF, vascular endothelial growth factor.
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