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Abstract

Patients infected with HIV exhibit orders of magnitude differences in their set-point levels of the plasma viral load. As to
what extent this variation is due to differences in the efficacy of the cytotoxic T lymphocyte (CTL) response in these patients
is unclear. Several studies have shown that HIV-infected CD4+ T cells also present viral epitopes that are recognized by CTLs
before the productive stage of infection, i.e., during the intracellular eclipse phase before the infected cell starts to produce
new viral particles. Here, we use mathematical modeling to investigate the potential impact of early killing of HIV-infected
cells on viral replication. We suggest that the majority of CTL-mediated killing could occur during the viral eclipse phase,
and that the killing of virus-producing cells could be substantially lower at later stages due to MHC-I-down-regulation. Such
a mechanism is in agreement with several experimental observations that include CD8+ T cell depletion and antiretroviral
drug treatment. This indicates a potentially important role of CTL-mediated killing during the non-productive stage of HIV-
infected cells.
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Introduction

Infection with HIV typically leads to a vast replication of the

virus during the acute phase of the infection which is followed by a

chronic phase where the viral load approaches a quasi-steady-

state, known as the viral set-point. It has been shown that the viral

load levels can vary over orders of magnitude between patients [1–

3] and the set-point level has been recognized to be an important

predictor for disease progression [4]. Part of the difference in the

control of HIV replication between patients has been attributed to

varying efficacies of the patient’s immune responses to induce

cytotoxic T lymphocyte (CTL)-mediated killing of infected cells

[5–8]. A major role of the CD8z T cell response in controlling

HIV infection is further supported by the very rapid evolution of

immune escape variants during the first months of infection [9–

11]. However, it is remarkable that the virus load declines at very

similar rates in different patients when they are treated with

antiretroviral drugs [12,13]. The viral load decay during

antiretroviral therapy is typically related to the loss of HIV-

infected cells and occurs at a rate between 0.5 and 1.5 per day

[14]. Recent experiments with depleting CD8z T cells by

antibodies have further indicated that the rate at which virus-

producing cells are cleared during antiretroviral therapy is

unaffected by the presence or absence of CD8z T cells [15,16].

Therefore, it is puzzling how CTLs could account for large

differences in the viral set-point causing a controversy as to

whether CTLs mediate control of HIV through cytotoxic or non-

cytotoxic mechanisms [17–19].

Klenerman et al. [20] have presented a mathematical model to

show that CTLs can markedly reduce the virus load by limiting

virus production with minor effects on the half-life of infected cells.

Assuming that the rate at which an infected cell becomes a target

for CTLs is slow (e.g. 0.4 d{1), it will be this transition rate rather

than the death rate of the cells that is reflected in the viral load

decline [20]. Others have adopted this model in combination with

experiments to highlight the impact of epitope expression kinetics

on the recognition of HIV-infected cells by CTLs [21,22]. Newer

studies, however, have shown that HIV-infected cells become a

target for CTLs as soon as 2 to 6 hours after infection [23–25]. It

was further shown that SIV-specific CD4z T cells recognize and

inhibit viral replication very early after infection of a cell [26]. This

suggests that the transition rate at which cells become recognized

and turn into a target for CTLs is very fast (4 to 12 d{1), and is

much higher than the typical decline rate of viral load after drug

treatment. This observation casts doubt on the explanation of

Klenerman et al. [20], and highlights two important new features.

First, that infected cells become a target for CTL-mediated killing

very early, and second, that infected cells can be killed during the

non-productive stage of infection, i.e., during the intracellular

eclipse phase.

Interestingly, HIV evolved a mechanism to partially evade

killing by CTLs through down-regulation of MHC-I molecules in

infected cells [27–29]. Down-regulation is induced by the protein

Nef [30] and starts as early as 12 h post-infection [24]. The

intracellular eclipse phase lasts around 24 hours [31–33]. Hence,

CTL-mediated killing of infected cells during the eclipse phase can

be more efficient because MHC-I is not yet down-regulated. CTLs

recognizing epitopes that are presented very early, such as epitopes

derived from the viral protein Gag, might thus mediate efficient

cytotoxic killing soon after the cell has become infected. In
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contrast, virus-producing cells that partly evade killing by CTLs by

MHC down-regulation, are expected to be killed by CTLs, natural

killer (NK) cells, and the cytopathic effects of viral production,

which in combination would have to account for the typical death

rate of infected cells (0.5–1.5 d{1) that is observed after the start of

drug therapy. The fact that the death rate of infected cells that are

actively producing SIV is hardly decreased when CD8z CTL and

NK cells are depleted [15,16], seems to suggest that this typical

death rate is largely determined by the cytopathic effects of viral

production.

We devise a mathematical model of HIV dynamics to

investigate the impact of CTL-mediated killing of HIV-infected

cells during the intracellular eclipse phase. Our model can

account for large variations in viral set-point levels without

affecting the typical decay rate of virus load after drug treatment.

We further test the consistency of the hypothesis that HIV-

infected cells are cleared during the non-productive stage of

infection with several experimental observations such as the

unexpected effects of CD8z depletion experiments during

antiretroviral therapy [15,16]. While non-cytotoxic mechanisms

of CD8z T cells cannot be ruled out, our study indicates a

potentially important role of cytotoxic killing of HIV-infected

cells during the intracellular eclipse phase.

Results

Early vs. late killing of HIV-infected cells
Our model considers two types of cells infected with HIV.

Infected cells during the viral eclipse phase, I , do not produce

virus yet, whereas cells that pass the eclipse phase (caused by an

intracellular delay of virion production) become productively

infected cells, P, and release new viral particles (Fig. 1, top). Both

populations experience cell death, at a rate dI and dP respectively,

that can at least partly be due to CTL-mediated killing (see Methods

for the mathematical description).

First, we analyze which parameter regimes realistically describe

the characteristic early down slope of d^1 d{1 of the viral load

decay during effective antiretroviral treatment [12–14]. All

parameter combinations in the area between dashed lines in

Fig. 2 would account for a realistic downslope of 0:5vdv1:5 d{1

(see Methods for how these lines are computed). The influence of

the death rates of infected cells, dI , and virus-producing cells, dP,

on the reduction of the viral set-point is indicated by the contour

lines in Fig. 2. One realistic possibility to reduce the viral load

significantly is that virus producing cells die rapidly, i.e. dP is high,

while cells in the viral eclipse phase die slowly, i.e. have a low dI ,

and have an eclipse phase of approximately one day (c~1 d{1).

This is depicted by region B in Fig. 2, and corresponds to the

regime previously described by Klenerman et al. [20]. In this

regime the decline slope after drug treatment is reflecting the rate

at which cells move through the eclipse phase (i.e., d^c in the

model from Eq. 1). Our main result is the new regime depicted by

region A in Fig. 2 with early killing of infected cells during the

intracellular eclipse phase, i.e., high dI . This falls in the realistic

area when the death rate of producing cells would indeed

correspond to the observed downslope of the viral load during

treatment (i.e., d^dP). The length of the eclipse phase is hardly

reflected in the downslope d in the ‘early killing’ regime. Note that

there is no realistic regime where both early and late killing could

be fast. The new evidence for early killing [23–25] provides

support for the new regime depicted by region A in Fig. 2. In this

paper we investigate the implications of killing mediated early

during the intracellular eclipse as the main mechanism at which

HIV-infected cells are controlled by CTLs.

Set-point viral load
To explicitly analyze the effect of early CTL-mediated killing of

HIV-infected cells on the set-point viral load, we describe the

death rate of infected cells as dI~dTzk, which sums the natural

death rate of CD4z cells, dT , with a function describing CTL-

mediated killing, k. The death rate of virus-producing cells, dP,

remains small and constant and is a combination of natural death,

virus induced cytotoxicity, moderate CTL-mediated killing, and

killing by NK cells as a consequence of MHC-I down-regulation.

First, consider the simple case with a constant CTL response,

i.e. k~k, where the death rate during the eclipse phase,

dI~dTzk, is a constant like in Fig. 2. Here the total CTL

response kills infected cells, I , at a rate k per day. Increasing k
reduces the set-point viral load (Fig. 3A), and increasing the rate of

killing above a threshold of k&5 d{1 will clear the infection. The

basic reproductive number (R0) indeed falls below 1 at the same

critical value of k (Fig. 3C, see Methods for the definition of R0).

Early killing can therefore be extremely efficient, and could in

theory clear the infection if infected cells during the eclipse phase

are expected to be killed at a rate exceeding a value of

Figure 1. MHC-I density and epitope presentation on the
surface of an HIV-infected cell. On top, an infected cell, I , is shown
that passes through the eclipse phase to become a virus-producing cell,
P. In the middle panel, the relative MHC-I density is shown as being
down-regulated around 12 h after infection. The bottom panel depicts
the early surface presentation of epitopes during the first 24 hours after
infection. Gag and Pol epitopes show a peak shortly after infection since
they are derived from the infecting virus particles. Later, de novo
synthesis of viral proteins takes place, generating the early proteins Tat,
Rev and Nef and the late proteins Env, Gag and Pol. The viral eclipse
phase is denoted by the white area. After the eclipse phase, virus-
producing cells, P, are likely to experience a moderate death rate due to
the MHC-I-down-regulation (gray area). The illustrations are based on
kinetic data from Sacha et al. [23,24].
doi:10.1371/journal.pone.0016468.g001
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approximately k&5 d{1, i.e. would on average be killed in about

five hours after infection.

Second, consider CTL effector cells E that proliferate according

to a function r and die at a rate dE per day. These CTLs kill

infected cells, I , according to a specific function k. For the detailed

mathematical description of the CTL proliferation r and the

CTL-mediated killing k, we refer to Methods. To account for

different efficacies of CTL-mediated killing we can change the

saturation parameter of the killing term, hk, in this function. hk is a

generalized Michaelis-Menten constant, and decreasing hk

increases the killing rate of cells expressing ‘early’ epitopes. This

allows us to have a single parameter defining the ‘immune

responsiveness’, which turns out to account for orders of

magnitude differences in viral load set-point levels (Fig. 3B). The

corresponding R0 now approaches 1 when hk is reduced, i.e., the

efficacy of CTL-mediated killing is increased to k&5 d{1

(Fig. 3D).

This analysis demonstrates that ‘early killing’ is an efficient

control mechanism, i.e., can account for large variations in the

viral load between patients by substantial differences in the efficacy

of the immune response, and for a critical killing rate at which the

infection is cleared. However, it does not imply that early killing is

more efficient than late killing, or that the critical killing rate of

approximately 5 d{1 is a reliable estimate. First, the killing rate at

which the infection is cleared does depend on other parameters

(not shown). But tuning the other parameter values such that we

obtain a realistic viral replication rate of 1.5 d{1 during the acute

phase of infection (see Table 1) results in critical killing rate that is

at least plausible. Second, one can also repeat the bifurcation

analysis of Fig. 3 for different assumptions on the distribution of

the killing over the early and the late stages of an infected cell. One

possibility is that most killing occurs late, which we can study by

letting dI~dT and dP~dTzk. This yields a very similar critical

rate of about 5.5 d{1 (not shown). Late killing is therefore an

equally efficient control mechanism, and would be consistent with

the characteristic early down slope of d^1 d{1 of the viral load

decay during effective antiretroviral treatment [12–14] when there

is little early killing, and an eclipse phase of approximately one day

(see region B in Fig. 2) [20]. Alternatively, the killing rates during

the early and late phases could be assumed to be similar, e.g., by

setting dP~dI~dTzk. This results in a lower but still relatively

high threshold killing rate of approximately 2 d{1 (not shown).

Killing that is mediated during the early and late stage of an

infected cell is therefore also an efficient control mechanism but

would require a viral load decay during antiretroviral treatment

that is not consistent with the characteristic down slope of d^1
d{1 [12–14].

Summarizing, we have shown that if CTL-mediated killing

happens before the infected cell starts to produce new viral

particles, the viral load can be suppressed very effectively by the

CTL response, independent of the predicted downslope of the

viral load during drug treatment. The infection can be cleared

when the killing rate during the eclipse phase exceeds a rate of 5

per day. Such a high killing rate has never been consistent with the

viral load decay data, and has therefore has not been considered in

studies of the effect of CTL on controlling HIV-1 infection [34].

Reproducing experimental observations of HIV dynamics
Viral load decay during drug treatment. We demon-

strated above that ‘early killing’ can account for large differences

in viral set-point levels while the observed death rate of virus-

producing cells during antiretroviral therapy would remain largely

invariant. This characteristic behavior is depicted by the solid lines

in Fig. 4A, where the set-point viral load varies over orders of

magnitude when the saturation constant of the immune response is

changed, but decreases with the same rate after starting therapy.

Recent experiments combining drug treatment with CD8z T cell

depletion also suggested that CTL-mediated killing is not

responsible for the death of virus-producing cells. In SIV-infected

rhesus macaques, the viral load decay following the administration

of antiretroviral drugs was not different in CD8z T depleted

animals compared to controls [15,16]. In our model we can

reproduce this observation by performing an in silico experiment

where CD8z depletion takes place at the same time when drug

treatment is started. Technically speaking, we set the infection rate b
to zero and the number of CTL effector cells to low levels at the

onset of treatment. Because in our ‘early killing’ regime the death

rate of virus producing cells hardly depends on the CTL response,

we obtain the same exponential decay of the viral load as observed

when CTL are not removed (dashed lines in Fig. 4A). Interestingly,

the shoulder phase after the start of treatment, that is typically

assumed to be caused by the intracellular delay, becomes longer

when CD8z depletion is performed. This is due to the fact that a

larger fraction of the cells in the eclipse phase at the start of

treatment will move into the state of virus-producing cells when

CTLs are removed.

Early CD8z depletion experiments. Strong evidence

that CTLs are responsible in suppressing the viral load during

Figure 2. Influence of early and late death rates of HIV-infected
cells on the viral load and the slope of the virus decline after
drug treatment. During the viral eclipse phase, infected cells, I ,
experience a death rate of dI per day whereas virus-producing cells, P,
die at a rate dP. The contour lines depict the impact of cell death on
reducing the viral load (see Methods). The area where the virus decline
slope is between 0.5 d{1 and 1.5 d{1 is given by the dashed lines.
Region A: Infected cells experience a higher death rate during the
eclipse phase than later when they start to produce new viral particles.
Hence, the slope of the virus decline after drug treatment is determined
by dP. Region B: As the death rate of infected cells during the eclipse
phase is low, the decline slope after drug treatment is determined by
the rate at which cells move through the eclipse phase (c~1:0 d{1).
The exponential slope of the virus decline is calculated at 5 days after
the start of treatment. For the mathematical derivation we refer to
Methods.
doi:10.1371/journal.pone.0016468.g002

CTL-Mediated Killing of HIV-Infected Cells

PLoS ONE | www.plosone.org 3 February 2011 | Volume 6 | Issue 2 | e16468



Figure 3. Set-point viral load and the basic reproductive number, R0, as a function of CTL-mediated killing. The left panels depict the
behavior when killing is induced with a total rate k per day. The viral load decreases sharply for k&5 d{1 (A) since R0 falls below one, and the
infection is cleared (C). If CTL effector cells form a complex with the infected cell before delivering their lethal hit, we assume a maximal killing rate
(kmax~50 d{1) and change the Michaelis-Menten constant hk instead. This way, we can account for orders of magnitude differences in the viral load
(B) since R0 is slowly approaching one (solid line, D). The total killing (dashed line, D) induced by all CTL effector cells is approaching the same critical
value around 5 d{1 although kmax~50 d{1. In panel (A) and (B), the dotted line represents the usual detection limit for HIV-1. The dotted line in
panel (C) and (D) depicts the R0 of 1 below which the infection cannot sustain itself anymore.
doi:10.1371/journal.pone.0016468.g003

Table 1. List of parameter values for the HIV dynamics model.

Parameter Value Explanation and reference

l 2|105 cells d{1 Tuned to obtain a maximal viral load around 107 per ml
in the absence of a CTL response.

dT 0:1 d{1 Natural death rate of CD4z target cells T .

b 3|10{8 d{1 Infection rate per virus particle. Results in a maximal

viral replication rate of 1:5 d{1 [61].

c 1:0 d{1 Viral eclipse phase of 24 hours [31,32].

dI 0:1 d{1 Natural death rate of infected cells I .

dP 1:0 d{1 Death rate of virus-producing cells [31,32].

p 2300 d{1 Virus production rate.

dV 23 d{1 Clearance rate of viral particles [56].

kmax 50 d{1 Maximal killing rate [62].

hk ½1,109� cells Variable efficacy of CTL response.

g 1:5 d{1 Maximal CTL proliferation rate of 1.0 d{1 [63].

hg 0 cells CTLs are stimulated to proliferate rapidly.

dE 0:5 d{1 Death rate of CTL effector cells.

doi:10.1371/journal.pone.0016468.t001
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chronic HIV infection comes from the marked increase in the viral

load after CD8z T cell depletion. Monkeys infected with simian

immunodeficiency virus (SIV) show a rapid and transient increase

in their viral load over orders of magnitude upon depleting their

CD8z T cells [6,35,36]. This observation was difficult to explain

with a mathematical model [35] in which the CD8z T cell

depletion affects the death rate of virus-producing cells. Jin et al.

[35] also investigated non-cytotoxic mechanisms, such as

increasing virus production or increasing infection rates, but

concluded that the model fails to accurately describe the

experiments. Later, it was suggested that an ‘early cytotoxic’

immune response could eliminate infected cells before they

produce viral particles, and such a model readily explained the

large and rapid increase in the viral load in the CD8z T cell

depletion experiments [2]. Similarly, with our model that explicitly

takes into account a CTL response targeting infected cells during

the intracellular eclipse phase, we can account for a strong

suppression of virus replication during the chronic phase of

infection. Upon CD8z T cell depletion, the number of cells

becoming virus-producing cells increases rapidly leading to a

transient increase in the viral load (Fig. 4B). We obtain similar

peak viral loads for the different set-point levels because in the

absence of an immune response, the viral load in our model is

expected to approach the steady-state determined by limited target

cell availability, which is independent of the hk parameter. These

similar levels are not in agreement with the variation in peak viral

loads in the study of Jin et al. [35], which could be due to the

differences in target cell availability in the CD8z T cell depleted

monkeys, and/or due to different efficacies of CD8z T cell

depletion in the monkeys. After the peak, the viral load reaches the

previous set-point since the CD8z T cells start to proliferate again

(Fig. 4C). Thus, the rapid and dramatic effects of CD8z T cell

depletion are perfectly consistent with cytotoxic control of viral

replication, if – and only if – this control occurs early in the life

cycle of an infected cell.

Discussion

The traditional concept of recognition of HIV-infected cells by

CTLs was that the cells have to express viral proteins first before

they can present viral epitopes on their surface. This belief implied

a puzzling problem because specific CD8z T cell responses

appear to be strongly associated with different viral set-point levels

in patients [3,37], but the death rate of virus-producing cells is very

similar in different patients [14]. The notion that the death rate of

virus-producing cells is largely unaffected by the CTL response

was further supported by the similar decay kinetics of the viral load

in treated natural hosts of SIV, i.e., sooty mangabeys and African

green monkeys, that experience little immune activation and

trigger weak CTL responses [38,39]. This problem raised

questions about the role that CTL play in controlling HIV-1

infection. In this paper we have shown that these seemingly

contradictory findings become perfectly consistent when most of

the CTL-mediated killing of HIV-infected cells occurs during the

viral eclipse phase, i.e., during the intracellular delay before the

infected cell starts to produce new viral particles. During the viral

eclipse phase, HIV-infected cells can be recognized by epitopes

derived from the proteins that enter the cell with a viral particle

[23–26].

Another observation that caused controvery on the role of CTL

in controlling HIV-1 infection was the absence of an effect of

depleting CD8z T cells on the death rate of virus-producing cells

[15,16]. One interpretation of these experiments was that specific

CD8z T cells largely exert non-cytotoxic effects (while it was also

stated that the possibility of CTL-mediated killing during the non-

productive stage of infection cannot be ruled out). We have shown

that cytotoxicity during the eclipse phase is indeed perfectly

consistent with the absence of an affect of CD8z T cell depletion

during antiretroviral treatment. An experiment to test whether

Figure 4. Reproducing experimental observations of HIV
dynamics. A) After drug treatment, the viral load declines proportion-
ally to the number of virus-producing cells (straight lines). Since the
death rate of these cells, dP, is constant, we observe the same slope for
the exponential decay of viral load although different patients have
varying efficacies of their CTL response. Hence, the dynamics is not
affected by the killing efficacy hk which determines the set-point level
of viral load before treatment. If CTLs were depleted at the start of drug
treatment, the same phenomenon would be observed. The virus load
declines exponentially with the death rate of virus-producing cells that
is unaffected by CTL-mediated killing (dashed lines). B) In CD8z

depletion experiments, the viral load increases over orders of
magnitude, peaks around two weeks after depletion, reduces again,
and stabilizes afterwards at the previous set-point level. C) The CTLs are
depleted and start to proliferate thereafter. Black lines denote different
hypothetical patients with varying efficacies of their CTL response. Lines
from top to bottom: hk~108 , hk~105 , hk~5|103 and hk~102 . After
CD8z depletion, the concentration of CTL effector cells is set to
E~10{4. The dotted lines represent the usual detection limit for HIV-1.
doi:10.1371/journal.pone.0016468.g004
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CTL-mediated killing acts during the intracellular eclipse phase

would be to follow the dynamics of different cell populations after

drug treatment. The virus-producing cells are expected to decline

with the same rate as the viral load. In contrast, we hypothesize

that infected cells during the early stage before MHC-I-down-

regulation experience strong CTL-mediated killing, and therefore

should decay with a faster rate than the viral load.

The intriguing implication of the studies from Sacha et al. [23–

26] is that they provide an explanation why CTL responses

targeting epitopes from the protein Gag are more efficient in

controlling the viral replication than CTL responses targeting

epitopes from other viral proteins [3,40]. Since Gag epitopes are

presented on the infected cells surface early after infection, the

CTLs have a time-window of about ten hours to recognize

infected cells before their MHC-I is down-regulated. Although Pol,

Vpr and Rev epitopes are presented early as well, responses

targeting those epitopes seem to be less efficient in controlling the

viral replication. It has been argued that the number of proteins in

a virion that enter the cell leads to a different concentration of

protein-derived epitopes on the cell surface. While Gag proteins

are highly abundant, with a copy number of *5000 per virion

[41], Pol, Vpr and Rev proteins are present at much lower copy

numbers. Further, structural constraints in the protein Gag make

it more difficult for the virus to accumulate epitope escape

mutations in order to evade the CTL responses [40]. This could

explain why the rapid escape of HIV during the acute phase of

infection also occurs in epitopes derived from other proteins such

as Tat and Vif [10,11]. Because at least some of these epitopes are

not expressed during the viral eclipse phase [25], specific CD8z T

cells also seem to play an important role during the later

productive stage of an infected cell (at least during the acute

phase of infection). Whether or not this occurs mainly through late

killing in combination with a slow eclipse phase [20], or is largely

due to non-cytolytic effects during the late productive phase of an

infected cell [2,15–19,42], remains to be established.

Nevertheless, the studies by Sacha et al. [23–26] are in conflict

with previous findings on the impact of epitope expression kinetics

on the efficacy of CTL responses [43]. It has been argued before

that since Gag is a ‘late’ protein that is expressed at the end of the

viral eclipse phase, CTL responses against ‘early’ proteins such as

Rev should be more effective in the control of the viral replication.

Indeed, it was shown with recombinant viruses that RT- and Gag-

specific CTL responses become much more effective in the control

of virus replication if the epitopes are expressed as part of an early

protein, such as Rev or Nef [21,44]. This is in contrast to the

studies by Sacha et al. [23–26] where epitopes from Gag, Pol and

Rev were all presented early after infection at about the same time,

suggesting that the efficacy of those CTL responses should not

strictly correlate with the de novo protein expression kinetics. One

possible explanation for this apparent discrepancy comes from the

observation that not all epitopes from a specific protein are

presented with the same kinetics, i.e., epitopes derived from the

same viral protein experience differential antigen presentation

kinetics [45]. Indeed, different epitopes were used in these studies

[21,23,24,44], which might explain the different results of their

experiments. The antigen presentation kinetics of epitopes could

be influenced by different cleavage efficacies of the peptides by the

proteasome. Early after infection of a cell, the peptides are most

likely to be cleaved by the constitutive proteasome. At a later stage,

the immunoproteasome is expected to become expressed, which

has a different specificity [46]. Analysis of the cleavage scores

obtained by the epitope predictor NetChop [47,48] did not result

in a clearly distinct cleavage pattern between the epitopes that

have been investigated in the studies referenced above (results not

shown). In addition, the studies also used different assays to

investigate the impact of the CTL response. In Sacha et al. [23–

25], the elimination of p27 positive cells was followed during a

single infection cycle of SIVmac239, whereas the earlier studies

measured after several generations of HIV-1 infection the relative

amount of p24 antigen that was suppressed by adding specific

CTLs [21,44]. Finally, the epitope presentation kinetics is only one

of a magnitude of factors that determine the efficacy of CTLs [49].

Lastly, it needs to be investigated how efficient an HIV-infected

cell can escape recognition by CTLs through down-regulation of

MHC-I [50]. While the viral protein Nef can down-modulate

HLA-A and HLA-B, the surface presentation of HLA-C is hardly

affected. It has been speculated that this might be a strategy of the

virus to escape the most efficient CTL responses, which are

directed against epitopes presented on HLA-A and HLA-B,

whereas the lack of down-regulation of HLA-C might prevent the

cell from NK-directed killing [51]. The striking observation of the

unchanged death rates of virus-producing cells after CD8z T cell

depletion indeed challenges the view that CTL-mediated killing is

effective during the late, productive stage of the cell [15,16]. Here

we have formally demonstrated that when CTL-mediated killing

occurs early during the intracellular eclipse phase it can control

HIV replication very efficiently, while remaining consistent with

current observations on the up-slopes and down-slopes of the viral

load observed during CD8z T cell depletion experiments and

antiretroviral treatment.

Methods

HIV dynamics model
For the mathematical analysis on the influence of clearing HIV-

infected cells early or late during their viral life cycle, we devise a

model of HIV dynamics that is based on standard models of

within-host virus dynamics [52,53]. In addition, we include an

early stage of infected cells, that accounts for the eclipse phase

during which cells do not produce virus yet [20,54,55]:

dT

dt
~l{bTV{dT T

dI

dt
~bTV{cI{dI I

dP

dt
~cI{dPP

dV

dt
~pP{dV V

ð1Þ

Here, non-infected CD4z target cells T are produced at a rate

of l cells per day, die at a rate dT and can become infected by

virus particles V at a rate b per day. An infected cell I can either

move through the viral eclipse phase with rate c per day to become

a virus-producing cell P, or die at a rate dI per day. Virus-

producing cells P will die with the death rate dP. Viral particles V
are produced at a rate p per day and are cleared at a rate dV . All

parameters used for the analysis of the virus dynamics are given in

Table 1. In Results, we vary the death rate of infected cells, dI , to

account for early CTL-mediated killing during the viral eclipse

phase. The potential effects of non-cytotoxic mechanisms

mediated by CD8z T cells are discussed below.

Influence of cell death on virus production
To investigate the influence of cell death on virus production we

calculate the expected duration of viral production by a cell that
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becomes infected with a virus. Increasing the death rate of infected

cells, dI , will reduce the fraction of cells that become virus-

producing cells. The lifespan of virus-producing cells (1=dP)

determines the amount of virus that is produced by a single cell.

From Eq. 1, the average duration at which an infected cell will

produce viral particles can be given by

d~
c

czdI

1

dP

ð2Þ

which suggests that changing dP has a larger effect on virus

production than changing dI .

Viral load decay slopes
After the administration of antiretroviral drugs, the viral load

declines exponentially during the first week and is typically related

to the loss of virus-producing cells. Since the turnover of the virus

is a fast process [56], we can set V into a quasi-steady-state with

the virus-producing cells P [57]. After the start of treatment, we

assume that the infection rate b becomes 0 and the virus will

decline as follows:

V tð Þ~
V0 dIzcð Þe{dPt{dPe{ dI zcð Þt
� �

dIzc{dP

ð3Þ

For any value of dI , dP and c, this allows us to calculate the

exponential slope of the virus load decline at a specific time t after

drug treatment.

CTL-mediated killing of infected cells
From the general scheme where an unbound CTL effector cell,

Eu, binds a target cell, I , to form a complex, C, that after a time

delivers cytotoxic killing and releases the effector cell, i.e.,

EuzI '
ku

kb

C {k?Eu, one can make the total quasi-steady-state

assumption (tQSSA), dC=dt~0, to obtain the following:

k~kC~
kmaxIE

hkzIzE
ð4Þ

where kmax~k is now the maximal killing rate, and

hk~ kuzkð Þ=kb is a generalized Michaelis-Menten constant

[54,58,59].

Proliferation of CTL effector cells
CTL effector cells are stimulated by cells presenting viral

antigen on their surface. Similar as for the killing of an infected

cell, we can derive a general scheme where an unbound CTL

effector cell, Eu, binds an antigen-presenting cell, I , to form a

complex, C, that after a time dissociates and causes the CTL

effector cell to divide, i.e., EuzI '
gu

gb

C {
g?2EuzI . Making the

total quasi-steady-state assumption (tQSSA), dC=dt~0, one

obtains the following:

r~gC~
gmaxIE

hgzIzE
ð5Þ

where gmax~g is now the maximal proliferation rate, and

hg~ guzgð Þ=gb is a generalized Michaelis-Menten constant

[54,58,59].

Basic reproductive number, R0

The basic reproductive number, R0, of a viral infection within a

host is defined as the number of newly infected cells produced by

one infected cell during its lifetime, assuming all other cells are

susceptible [60]. From Eq. 1, it can be expressed as

R0~
blpg

dI dT dV gzdIð Þ ð6Þ

To calculate R0 as a function of CTL killing, we substitute the

death rate of infected cells during the non-productive stage of

infection with dTzk. Assuming a constant CTL response, k is

simply the killing rate k. For the case where infected cells during

the intracellular eclipse phase are killed by CTL effector cells, we

compute k at the steady-state level of a chronic infection as a

function of the saturation parameter of killing, hk.

Non-cytotoxic mechanisms of CD8z T cells
CD8z T cells can also mediate non-cytotoxic effects on HIV-

infected cells [42]. Mathematically, this can be described by a

process function f that will affect certain stages of the viral life

cycle. Similar as in Muller et al. [2], we define

f ~
1

1zeE
ð7Þ

where CD8z T cells E act as non-cytotoxic effector cells with

efficacy e. If CD8z T cells reduce the number of new infections,

the process function f will reduce the infection rate b, i.e., the total

amount of new infections in Eq. 1 becomes bfTV . Non-cytotoxic

mechanisms can also render newly infected cells non-infectious.

This will affect the rate at which cells move through the eclipse

phase, when the transition rate c is affected by the process

function, i.e., is given by cf . The infected cells that do not become

virus-producing cells will instead render into target cells again with

rate c(1{f ).

The effects of a model with non-cytotoxic effects of CD8z T

cells on the virus dynamics are the same as shown in Results,

except that the parameter region B in Fig. 2 is also a valid

explanation for the invariant decline slope of the virus load

during drug treatment experiments. Since infected cells are not

cleared by CTL effector cells anymore, the death rate of infected

cells dI , can be moderate and smaller than the rate at which cells

move through the eclipse phase. Hence, the decay rate of viral

load after drug treatment could in principle reflect the rate at

which cells move through the eclipse phase, c, as it has been

suggested by Klenerman et al. [20].
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