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Abstract: Combined pituitary hormone deficiency (CPHD) is characterized by deficiency of growth
hormone and at least one other pituitary hormone. Pathogenic variants in more than 30 genes
expressed during the development of the head, hypothalamus, and/or pituitary have been identified
so far to cause genetic forms of CPHD. However, the etiology of around 85% of the cases remains
unknown. The aim of this study was to unveil the genetic etiology of CPHD due to congenital
hypopituitarism employing whole exome sequencing (WES) in two newborn patients, initially
tested and found to be negative for PROP1, LHX3, LHX4 and HESX1 pathogenic variants by Sanger
sequencing and for copy number variations by MLPA. In this study, the application of WES in
these CPHD newborns revealed the presence of three different heterozygous gene variants in each
patient. Specifically in patient 1, the variants BMP4; p.Ala42Pro, GNRH1; p.Arg73Ter and SRA1;
p.Gln32Glu, and in patient 2, the SOX9; p.Val95Ile, HS6ST1; p.Arg306Gln, and IL17RD; p.Pro566Ser
were identified as candidate gene variants. These findings further support the hypothesis that CPHD
constitutes an oligogenic rather than a monogenic disease and that there is a genetic overlap between
CPHD and congenital hypogonadotropic hypogonadism.

Keywords: combined pituitary hormone deficiency; congenital hypopituitarism; hypogonadotropic
hypogonadism; whole exome sequencing; pathogenic gene variants

1. Introduction

Combined pituitary hormone deficiency (CPHD) is characterized by deficiencies of
growth hormone (GH) and at least one more anterior pituitary hormone. The most frequent
hormone deficiencies besides that of GH are deficiencies of thyroid stimulating hormone
(TSH), the gonadotrophins, luteinizing hormone (LH), follicle stimulating hormone (FSH),
and lastly, adrenocorticotropic hormone (ACTH). The normal secretion of LH and FSH
is under the control of the gonadotropin releasing hormone (GnRH) produced by the
hypothalamus that binds to GnRH receptors in the anterior pituitary. Reduced production
and secretion of gonadotrophins leads to hypogonadotropic hypogonadism (HH) [1].
CPHD may either present already in the neonatal period, representing cases of congenital
hypopituitarism, or later during life secondary to insults of the hypothalamic–pituitary
region, such as tumors or irradiation, leading to the acquired forms of CPHD.
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Cases of congenital hypopituitarism are, therefore, diagnosed during the neona-
tal period, most commonly with the clinical picture of hypoglycemia, due to GH and
ACTH/cortisol deficiency, protracted jaundice, due to TSH/thyroxine and cortisol defi-
ciency and, especially in males, micropenis, due to GH and gonadotrophin deficiencies.

In less severe cases, if left undiagnosed beyond the neonatal period, the patient
with congenital hypopituitarism may be diagnosed later on with short stature as the
first clinical manifestation accompanied by other features such as delayed puberty or
metabolic abnormalities.

Neuroimaging may reveal abnormalities of the hypothalamic–pituitary region, mainly
hypoplasia of the anterior pituitary, ectopic posterior pituitary, and hypoplastic or absent
pituitary stalk resulting in impaired pituitary hormone secretion, while some cases are
further characterized by craniofacial malformations [2]. Thus, depending on the hormone
deficiencies identified and the underlying etiology, there is a wide spectrum of phenotypic
characteristics ranging from mild to more severe. The incidence of congenital forms of
CPHD is estimated at 1:8000 live births worldwide [3].

As stated above, the etiology of CPHD might be either genetic or acquired due to
trauma, tumor, infection, infiltration or autoimmune diseases affecting the hypothalamic–
pituitary region [3–5]. As far as the genetic etiology is concerned, several genes, mostly
transcription factors, have been identified to be associated with congenital forms of CPHD
and participate in the Bmp, Shh, Fgf, Wnt or Notch signaling pathways [6]. Pathogenic
variants of the transcription factor genes PROP1, POU1F1, HESX1, LHX3, and LHX4 are
the most frequent causes of CPHD [7].

In recent years, the application of next generation sequencing methodologies (NGS),
including the screening of large gene panels in many patients simultaneously, and whole
exome sequencing have revealed new variants of known CPHD genes and new genes
associated with CPHD [8–10]. However, the etiology of approximately 85% of the cases
still remains unknown [3]. Furthermore, various studies demonstrated that the genetic
causes of CPHD and pituitary stalk interruption syndrome (PSIS) are oligogenic rather
than monogenic [11–13]. Similarly, congenital hypogonadotropic hypogonadism (CHH)
is now considered as an oligogenic disease, and it has been shown by various studies
that mutations in genes associated with CHH may also be related with CPHD, PSIS and
holoprosencephaly, indicating a genetic overlap between these syndromes [14–16].

The aim of this study was to unveil the genetic etiology in two newborn patients with
congenital hypopituitarism, employing WES.

2. Materials and Methods
2.1. Patients

Two male (46, XY) newborns, diagnosed with CPHD, were referred to the Labora-
tory of Molecular Endocrinology, Division of Endocrinology, Diabetes and Metabolism,
Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, National
and Kapodistrian University of Athens, School of Medicine, “Aghia Sophia” Children’s
Hospital, for genetic testing. The parents of the patients provided written informed consent.

Patient 1 was delivered by caesarean section due to intrauterine growth restriction
(IUGR) with a birth weight of 2200 g. Shortly after birth, he presented with refractory
hypoglycemia and mild hypotonia. On physical examination, he had micropenis (1 cm)
with bilaterally palpable small testes (testes volume: 1 mL measured by orchidometer).
Endocrinological workup revealed secondary hypothyroidism, secondary adrenal insuffi-
ciency, and hypogonadotropic hypogonadism (HH) (Table 1).

MRI scan of the hypothalamic–pituitary region depicted hypoplastic anterior pituitary
and ectopic posterior pituitary with absence of the pituitary stalk. The patient was put on
substitutive treatment with hydrocortisone, testosterone during the mini-puberty period,
levothyroxine and somatropin.



Cells 2022, 11, 2088 3 of 15

Table 1. Laboratory hormone tests of the two newborns diagnosed with CPHD.

Hormones
Patients

Normal Ranges
1 2

TSH 5.66 <0.004 0.5–5 µUI/mL
FT4 0.784 0.776 0.8–1.8 ng/dL

ACTH <1 3.49 7–63 pg/mL
Cortisol 0.523 2.87 6.24–18 µg/dL

D4-Andostenedione <0.30 NA 0.05–0.45 ng/mL
DHEA-S <15 29.4 6–21 µg/dL

LH <0.1 <0.1 0–1.3 mIU/mL
FSH 0.123 0.226 0.1–2.4 mIU/mL

Testosterone <20 22.5 75–400 ng/dL
GH 4.54 1.19 5–40 ng/mL

IGF-1 <15 <0.25 15–129 ng/mL
PRL 291.5 27.06 5–20 ng/mL

Aldosterone 1185 NA 50–900 pg/mL
Renin 27.6 NA <37 ng/mL/h

Notes: TSH: Thyroid Stimulating Hormone; FT4: Free Thyroxine; ACTH: Adrenocorticotropic Hormone; DHEA-S:
Dehydroepiandrosterone-sulfate; LH: Luteinizing Hormone; FSH: Follicle Stimulating Hormone; GH: Growth
Hormone; IGF-1: Insulin-like Growth Factor-1; PRL: Prolactin; NA: Not Available.

Patient 2 presented with protracted jaundice, direct hyperbilirubinemia, severe episodes
of hypoglycemia and severe hypertransaminasemia. Clinical examination revealed a hy-
poplastic and thin penis (1.5 cm). Ultrasound of the scrotum depicted hypoplastic testicles
bilaterally with hydrocele on the right. Hormonal assessment revealed multiple pituitary
hormone deficiencies with central hypothyroidism, secondary adrenal insufficiency, hypog-
onadotropic hypogonadism, and growth hormone deficiency (Table 1). MRI scan depicted
a hypoplastic anterior pituitary, an ectopic posterior pituitary lobe and thinning of the
pituitary stalk. The patient was treated with substitution of hydrocortisone, thyroxine,
testosterone during the mini-puberty period, and somatropin.

Both patients were tested by direct sequencing of the PROP1, LHX3, LHX4 and HESX1
genes, with no pathogenic variant identified. They were also found to be negative for
copy number variants (CNV) of the genes GH1, POU1F1, GHRHR, LHX3, LHX4, HESX1
and PROP1 employing multiplex ligation-dependent probe amplification (MLPA) (SALSA
MLPA Probemix P216 Growth Hormone Deficiency mix-1; MRC-Holland, Amsterdam,
The Netherlands).

The study was approved by the Institutional Scientific and Bioethics Committee and
is in accordance with the Declaration of Helsinki.

2.2. DNA Isolation

DNA was extracted from 400 µL peripheral blood leucocytes employing the Maxwell
16 Blood DNA Purification Kit (Promega, Madison, WI, USA), an automated method that
uses paramagnetic particles to bind DNA, according to the manufacturer’s instructions.

2.3. Whole Exome Sequencing, Filtering and Bioinformatic Analysis

WES was carried out on an Ion S5™ XL System (ThermoFisher Scientific, Waltham,
MA, USA) using the Ion AmpliSeq™ Exome RDY Kit (ThermoFisher Scientific, Waltham,
MA, USA). The amount of DNA used for WES was ≥50 ng.

Base calling, alignment to the human genome assembly hg19 and variant calling were
performed on Torrent SuiteTM Server according to the manufacturer’s instructions. The
variants were annotated by: (1) Ion Reporter (v5.2.0.66; https://ionreporter.thermofisher.
com, accessed 17 May 2019) and (2) ANNOVAR (http://annovar.openbioinformatics.org
accessed 17 May 2019) through VarAFT software (Variant Annotation and Filter Tool,
Version 2.15; https://varaft.eu/, accessed 16 September 2019 and 9 February 2021).

https://ionreporter.thermofisher.com
https://ionreporter.thermofisher.com
http://annovar.openbioinformatics.org
https://varaft.eu/
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Initial filtering was carried out employing an in silico panel of 194 genes related to
CPHD and isolated growth hormone deficiency (IGHD): ARNT2, BMP2, BMP4, CDON,
CHD7, FGF10, FGF18, FGF8, FGFR1, GATA2, GHRH, GHRHR, GLI2, GLI3, GLI4, GPR161,
HESX1, HHIP, HNRNPU, IFT172, IGSF1, LHX3, LHX4, NEUROD1, NFKB2, NR5A1, OTX2,
PAX6, PCSK1, PITX1, PITX2, PNPLA6, POLR3A, POU1F1, PROK1, PROKR2, PROP1,
RBM28, ROBO1, SHH, SIX1, SIX2, SIX3, SIX4, SIX5, SIX6, SOX1, SOX2, SOX3, TBX19,
TCF7L1, TGIF, TGIF1, TRH, TRHR, TSHB, WDR11, WNT4, WNT5A, ZFHX3, ZSWIM6;
HH: ANOS1, AXL, CCDC141, DCAF17, DMXL2, DUSP6, FEZF1, FGF17, FLRT3, GNRH1,
GNRHR, HS6ST1, IL17RD, KAL1, KISS1, LEPR, LEP, LHB, NR0B1, NSMF, PROK2, SEMA3A,
SOX10, TAC3, TACR3, OTUD4, RNF216, SEMA3E, SEMA7A, SRA1; as well as holo-
prosencephaly (HPE) and Corpus Callosum Agenesis: AHI1, AKT3, AMPD2, ANOP1,
ARID1B, ARL13B, ARX, ASPM, ATR, ATRX, B9D2, BCOR, CASK, CC2D2A, CENPJ, CEP152,
CEP290, CEP41, CEP63, CREBBP, CTBP1, DCX, DHCR24, DHCR7, DIS3L2, DISC1, DISP1,
DLL1, EFNB1, EOMES, EP300, EPG5, FGFR2, FH, FKRP, FKTN, FLNA, FOXH1, GAS1,
GPSM2, GTDC2, HCCS, HHAT, HYLS1, IGBP1, IGF1, INPP5E, ISPD, KAT6B, KCC3, KIF7,
L1CAM, LRP2, MED1, MED12, MID1, MKS1, NDE1, NFIX, NIN, NODAL, NPHP1, NPHP3,
NSD1, OFD1, OTX1, PDHA1, PDHB, POMGNT1, POMT1, POMT2, PTCH, PYCR1, RAB18,
RAB3GAP1, RAB3GAP2, RBBP8, RBM10, RELN, RNU4ATAC, RPGRIP1L, RPS6KA3, SCKL3,
SLC12A6, SPG11, SPRY4, STRA6, SUFU, TCTN1, TCTN2, TCTN3, TMEM138, TMEM216,
TMEM237, TMEM67, TUBA1A, TUBB2B, TUBB3, VAX1, ZIC2, to select variants with minor
allele frequency (MAF) values < 2% and depth ≥ 20× (filter 1). Next, variants resulting in
premature stop codons with depth ≥ 20× (filter 2) as well as homozygous and heterozy-
gous variants in coding regions and splice sites with MAF values < 1% and depth ≥ 30×
(filter 3) were also checked (Figure 1).

Another 233 genes found after relevant literature search were checked for pathogenic
variants: ACVRL1, AES, AGAP1, AHR, AKAP2, AKT1S1, ALK, ALMS1, AMN1, ANK1,
ANOS1, ARNT2, ASCL1, ATF2, ATP13A1, AXIN1, BAMBI, BMP1, BMPER, BMPR1A,
BMPR1B, BOD1L1, CARTPT, CCKBR, CCN4, CDY1, CEBPB, CGA, CHRD, CPE, CRIM1,
CRY1, CSNK1A1, CSNK1D, CSNK2A1, CTNNB1, CXCR4, DAAM1, DEK, DHH, DISP3,
DKK3, DLK1, DLL3, DNER, DR1, DVL1, DVL2, E2F4, EID1, ENG, EYA4, EZH2, FAAH2,
FANCB, FANCC, FANCD2, FBXW2, FGF1, FGF13, FGF14, FGF4, FGFR1OP, FGFR1OP2,
FIBP, FKBP8, FRAT2, FRS3, FSTL1, FSTL5, FUS, FZD2, FZD4, FZD5, FZD6, GAP43, GDNF,
GH, GH1, GLG1, GLI1, GLIPR2, GRK1, HES6, HEY1, HIF1A, HMGA2, HMX2, HMX3, ID1,
ID2, ID3, ID4, IGSF10, IL6ST, IRS4, ISL1, ITGA2B, JAG1, JUN, KISS1R, KLF4, LAMB2, LDB1,
LHX1, LHX2, LHX8, LTBP3, LTBP4, MAMLD1, MASTL, MECP2, MITOL, MLH3, MYO9B,
NAALADL1, NBL1, NEUROG2, NKX2-1, NLE1, NOBOX, NOS1, NOTCH1, NOTCH2, NPC1,
NPFFR1, NPVF, NR4A1, NRP2, OTP, OVOL1, PALLD, PAX2, PDE3A, PIAS4, PIK3CA, PJA1,
PLEKHA5, PLPP3, PLXND1, POFUT1, POLR3B, POLR3D, POU3F2, PPAP2B, PPHLN1,
PPM1L, PPRC1, PRKAG1, PRKAR1A, PTCH1, PTCHD2, PTTG1, RARA, RB1, RBPJ, RD3,
RNPC3, ROR2, RORA, RXRA, SENP2, SFRP1, SIM1, SIRT1, SLC15A4, SLC20A1, SLC9A3R1,
SLX4, SMAD1, SMAD2, SMAD3, SMAD4, SMAD6, SMAD7, SMARCA4, SMURF1, SNIP1,
SOSTDC1, SP1, SP3, SPIN2A, SPRED2, SPRY1, SPRY2, SRF, SRY, STAT3, STAT5B, STIL,
STRAP, STUB1, SYNPO2, TAB1, TANC2, TBX3, TCF12, TCF3, TCF4, TDGF1, TET2, TGFB2,
TGFBI, TGFBR1, TGFBR2, TLE4, TLE5, TMEM231, TNRC6A, TP53, TRAPPC9, TRIP11,
TSHZ1, TSPAN11, TSPYL2, TWSG1, TXNDC5, WDR12, WIF1, WISP1, WNT5B, WNT6,
WNT9A, YBX1, ZBTB20, ZEB1, ZFY, ZFYVE9, ZIC1, ZNF488, ZNF8, ZSWIM6.

Ion Reporter and VarAFT software gathered the pathogenicity scores from 15 pre-
dictive bioinformatic tools. The following in silico tools were further employed for the
interpretation of the filtered variants: protein analysis through evolutionary relation-
ships (Panther; http://www.pantherdb.org), and Human Splicing Finder (HSF; http:
//www.umd.be/HSF3/). The variants were also searched in the VarSome (https://
varsome.com/), Ensembl (http://www.ensembl.org), Human Gene Mutation Database
(HGMD; www.hgmd.cf.ac.uk) and Single Nucleotide Polymorphism Database (dbSNP;
www.ncbi.nlm.nih.gov/snp). These in silico tools were accessed various times over a

http://www.pantherdb.org
http://www.umd.be/HSF3/
http://www.umd.be/HSF3/
https://varsome.com/
https://varsome.com/
http://www.ensembl.org
www.hgmd.cf.ac.uk
www.ncbi.nlm.nih.gov/snp
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2 years period (2019–2021). The classification of the variants’ pathogenicity was performed
taking into consideration the information gathered from the above-mentioned databases and
in silico tools for the application of the American College of Medical Genetics (ACMG) criteria.
The nucleotide sequences were visualized using the software IGV 2.3.91 (Broad Institute;
https://software.broadinstitute.org/software/igv/, September 2019 and February 2021).
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tuitary Hormone Deficiency, IGHD = Isolated Growth Hormone Deficiency, HH = Hypogonadotropic
Hypogonadism, HPE = Holoprosencephaly.

To verify candidate variants, Sanger sequencing was carried out for the patients and
their parents. All variants reported herein were confirmed by Sanger sequencing the
corresponding exon of each gene in the patients and their parents.

The frequencies of the candidate variants identified in our patients were also searched
in a 500 Greek WES in-house dataset.

3. Results
3.1. Patient 1

Employing WES, 18,921 genes were sequenced with 90.72% coverage (>20×), and
38,348 variants in 12,459 genes were detected.

Three heterozygous variants in the genes, BMP4, GNRH1 and SRA1 related to patient’s
phenotype, were identified (Table 2).

https://software.broadinstitute.org/software/igv/
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Table 2. Pathogenic variants detected by WES and their interpretation by some of the used bioinformatic tools.

Patient Gene Transcript ID Nucleotide
Variant Protein Variant dbSNP

Inheri
Tance

Frequency
ACMG

Classification

Prediction Tools

gnomAD
Exomes

500 Greek
Exomes SIFT PolyPhen2 Mutation

Taster CADD GERP

1

BMP4 NM_001202.4 c.124G > C p.[Ala42Pro;=] rs140920120 M 0.000283
HTZ:0.002 VUS

B LP B 22.6 5.19HMZ: 0 (BP4, PS3)

GNRH1 NM_000825.3 c.217C > T p.[Arg73Ter;=] rs375970738 P 0.00000805 0
LP - - - 14.98 4.91(PVS1, PM2)

SRA1 NM_001035235.4 c.94C > G p.[Gln32Glu;=] rs35610885 M 0.00715
HTZ: 0.008 VUS

P LP DC 27.6 5.01HMZ: 0 (BP4, PP5)

2

SOX9 NM_000346.4 c.283G > A p.[Val95Ile;=] Novel M NA 0
VUS

B LP DC 23.3 4.24(PM2, BP4)

HS6ST1 NM_004807.3 c.917G > A p.[Arg306Gln;=] rs201307896 M 0.000706 0
P

B LP DC 29.9 4.78(PS3, PM2, PM5,
PP5, PP3)

IL17RD NM_017563.5 c.1696C > T p.[Pro566Ser;=] rs61742267 M 0.0144
HTZ: 0.028 VUS

B LP DC 22.6 5.64HMZ: 0 (PM5, BP4)

Abbreviations: dbSNP = database Single Nucleotide Polymorphism, gnomAD = Genome Aggregation Database, ACMG = American College of Medical Genetics, SIFT = Sorting Intolerant
From Tolerant, Polyphen2 = Polymorphism Phenotyping v2, CADD = Combined Annotation-Dependent Depletion, GERP = Genomic Evolutionary Rate Profiling, M = Maternal,
P = Paternal, NA: not annotated, VUS = Variant of Uncertain Significance, B:Benign, P = Pathogenic, LP = Likely Pathogenic, DC = Disease Causing, PD = Probably Damaging,
HTZ = Heterozygous, HMZ = Homozygous.
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Notes: CADD: value > 20 = Deleterious, GERP: −12.3 = less conserved to 6.17 = more
conserved, ACMG classification: P = Pathogenic, LP = Likely Pathogenic, and VUS = Variant
of Uncertain Significance. The BMP4 variant c.124G > C, p.Ala42Pro (193 ×), of maternal
inheritance, was identified by the CPHD gene panel employed. Residue Ala42 is conserved
and the p.Ala42Pro is a rare variant (f = 0.000283). According to ACMG criteria, it is
classified as Variant of Unknown Significance (VUS).

The GNRH1 variant c.217C > T, p.Arg73Ter (58×), of paternal inheritance, was iden-
tified by the CHH gene panel. It is a nonsense variant resulting in protein truncation by
19 amino acids. It is an ultrarare variant with frequency in gnomAD Exomes 0.00000805.
According to ACMG criteria, it is classified as likely pathogenic.

The SRA1 variant c.94C > G, p.Gln32Glu (200×), of maternal inheritance, was identi-
fied by the CHH gene panel. Residue Gln32 is highly conserved among species, and the in
silico conservation tools Panther and GERP classified this variant as pathogenic. According
to ACMG criteria, it is classified as VUS.

3.2. Patient 2

Employing WES, sequencing was achieved for 18,900 genes with 88.92% coverage
(>20×), and 38,032 variants in 12,337 genes were detected.

Three heterozygous variants in the genes SOX9, HS6ST1 and IL17RD, related to
patient’s phenotype, were identified (Table 2).

The novel SOX9 gene variant c.283G > A, p.Val95Ile (82×), of maternal inheritance,
was identified by the CHH gene panel. It was found to be pathogenic by PolyPhen2,
Mutation Taster, DANN and CADD bioinformatic tools. Residue Val95 is conserved, and
the in silico conservation tools Panther and GERP classified it as pathogenic. According to
ACMG criteria, it is classified as VUS.

The HS6ST1 gene variant c.917G > A, p.Arg306Gln (143×), of maternal inheritance,
was identified by the CHH gene panel employed. According to the ACMG criteria, it is
classified as pathogenic.

The IL17RD gene variant c.1696C > T, p.Pro566Ser (37×), of maternal inheritance,
was identified by the CHH gene panel. Its gnomAD Exomes frequency is 0.0144, and it is
classified as VUS according to ACMG criteria.

4. Discussion

The genetic etiology of CPHD is heterogeneous, and patients present complex phe-
notypes. Despite the wide application of WES in large cohorts of patients, most cases still
remain without genetic identification. In recent years, various studies revealed a possible
oligogenic or multigenic basis for CPHD.

In this study, the application of WES in two CPHD newborns revealed the presence
of several gene variants mostly associated with CHH and the identification of a novel
SOX9 variant.

Patient 1 was found to be heterozygote for variants in three genes, the BMP4, GNRH1
and SRA1.

The bone morphogenic protein-4 (BMP4), a member of the BMP family that belongs
to the transforming growth factor-beta (TGF-β) family, plays a significant role in early
organogenesis, pituitary development and function [17]. BMP4 activity is required for
initial organ commitment and development of the pituitary anlage. Particularly BMP4
expression in early development contributes to the formation of Rathke’s pouch in the
mouse, while BMP4 together with BMP2, and 7 later secreted by surrounding tissues,
contribute to the polarization of the pouch [18]. Inhibition of Bmp signaling in the oral
ectoderm of mouse embryos disrupts pituitary cell specification [19].

The BMP4 gene encodes a 408 amino acid protein that consists of an N-terminal signal
peptide, which directs the protein to the secretory pathway, a prodomain that ensures
proper folding, and the C-terminal mature peptide [20].
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The p.Ala42Pro BMP4 gene variant identified in our patient is located in the highly
conserved prodomain part of the protein and up to now has been classified as a VUS
according to the ACMG criteria. Various BMP4 variants have been reported in patients
with tooth agenesis, amongst them the BMP4 variant p.Ala42Pro identified in our patient
and a female patient and her mother with tooth agenesis [21,22]. Other variants also
found in the prodomain region have been reported in patients with a wide spectrum of
phenotypes, such as Stickler syndrome, anophthalmia, ocular malformation, cleft palate
and scleroma, as well as colorectal cancer predisposition [23–26].

BMP4 gene variants have been associated with a wide range of phenotypic character-
istics, including ocular, craniofacial, finger and urogenital abnormalities, and psychomotor
retardation, as well as CPHD [23,27–30]. Specifically, the BMP4 variants p.Arg300Pro (VUS)
and de novo p.Trp265Ter have been identified in heterozygosity in two patients with CPHD;
on neuroimaging, these patients presented hypoplastic anterior pituitary gland, ectopic
posterior pituitary, and absent pituitary stalk, as is the case in our patient, while clinically
they presented sclerosed nodules at the hands, short metacarpals IV, azoospermia [29] and,
GH and TSH deficiencies [30]. After exome sequencing in 20 patients (trio analysis) with
isolated pituitary stalk interruption syndrome (PSIS), the BMP4 variant p.Ala334Asp was
identified together with a SIX6 gene variant p.Glu129Lys (and DCHS1 gene variants) in a
patient who presented with growth retardation, pituitary hormone deficiencies and MRI
findings of ectopic posterior pituitary, small stalk and anterior pituitary [11].

The GNRH1 gene encodes a preproprotein that generates the GnRH decapeptide, a
member of the gonadotropin-releasing hormone (GnRH) family of peptides. It consists of
four exons, three of which are translated, and encodes a 92 amino acid preprohormone that
is organized to a signal sequence, followed by the GnRH decapeptide, a conserved GKR
cleavage site, and the GnRH-associated peptide (GAP). The decapeptide is secreted in a
pulsatile manner by the GnRH neurons in the hypothalamus and triggers the synthesis and
secretion of LH and FSH by the anterior pituitary gonadotrophs [31].

The GNRH1 pathogenic variant p.Arg73Ter was identified in heterozygosity in our
patient 1, inherited from his father. Residue R73 resides in the GAP region of the protein and
results in its truncation by 19 amino acids, and although a nonsense variant, it is considered
as VUS since the resulting protein truncation leaves the GnRH decapeptide intact.

This variant has been previously reported in heterozygosity in a male patient investi-
gated for absent puberty at the age of 17 6/12 years [32]. Chan and coworkers speculated
that, since the premature stop codon is close to a splice junction, it may escape nonsense-
mediated decay and, if this is the case, an abnormal protein is produced. Although, the
effect of this variant on GNRH1 synthesis is unclear, the authors suggested that the CHH of
this family with the p.Arg73Ter might be of autosomal dominant inheritance with variable
expressivity since the father, heterozygous for the variant, exhibited a mild phenotype of
delayed puberty [32].

Furthermore, recently a homozygous splice site variant of exon 2 (c.142-2A > C),
damaging the natural acceptor site and activating a cryptic acceptor site, was described
in a patient with lack of pubertal development and bilateral cryptorchidism, surgically
corrected in childhood. In the patient’s lymphocytes, an aberrant GNRH1 transcript was
detected, harboring a four bp deletion resulting in a premature stop codon at amino acid 74.
The authors speculated that this may lead to mRNA nonsense mediated decay indicating a
probable functional importance of the GAP region of GNRH1 [33].

Only a few GNRH1 gene pathogenic variants have been detected to date in patients
with CHH, even though GnRH is the central regulator in reproductive function and sexual
development. Thus far, four variants have been identified in the decapeptide encoding
sequence, the p.Gly29GlyfsTer12 and p.Arg31His in homozygosity, and the p.Trp26Ter
and p.Arg31Cys in heterozygosity [32,34,35]. The remaining variants have been found in
heterozygosity either in the highly conserved signal peptide (p.Val18Met) or in the GAP
(p.Thr58Ser and p.Arg73Ter) [32].
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Our patient was very young (infant), and his severe micropenis and hypoplastic
testicles along with the absence of LH and FSH surge during his mini-puberty suggest
impaired future reproductive function However, since this variant is paternally inherited,
we can assume that this variant without the synergistic effect of other reported variants
identified in our patient, cannot lead to impaired reproductive capacity, if isolated.

The CHH phenotype of our patient, consisting of micropenis, small testes and low
LH, FSH and testosterone, cannot be attributed solely to the GNRH1 p.Arg73Ter heterozy-
gous variant, since hypogonadotropic hypogonadism 12 with or without anosmia (MIM
Number 614841) is dominantly inherited. However, we may speculate that our patient’s
phenotype might be due to a synergistic effect with the second CHH variant identified, the
SRA1 p.Gln32Glu. Although heterozygous variants of the GNRH1 gene have been reported
in the literature, no oligogenic case of GNRH1 has been reported so far, whereas this is not
the case for GNRHR [36]. Furthermore, in a recent study applying WES in a large cohort of
GnRH deficient Greek patients, no GNRH1 variant was identified either as a monogenic or
as an oligogenic cause of CHH [37].

The third variant identified in our patient 1 was the SRA1 gene variant p.Gln32Glu,
which has been previously reported in compound heterozygosity in an IHH Turkish male
patient in trans with the p.Ile179Thr variant [38]. It has also been identified after WES in a
heterozygous 46,XY NR5A1 patient, together with six other gene variants, supporting the
concept of an oligogenic basis for DSD phenotypes [39].

The SRA1 gene plays a dual role, encoding a long non-coding RNA and a conserved
steroid receptor RNA activator protein (SRAP), which, among its other functions, regulates
steroid receptor-dependent gene expression [40]. SRA1 as a steroid receptor coactivates
thyroid hormone, androgen, estrogen, progesterone, glucocorticoid and retinoic acid re-
ceptors [41–44]. It has also been shown that DAX-1 functions by binding to the RNA
coactivator SRA and p160 coactivator proteins and that SRA1 is important to stabilize
complexes of SF-1 and DAX-1 for the recruitment of p160 coactivators in order to regulate
target gene expression during steroidogenesis [45].

To date, various SRA1 gene variants, p.Pro20Leu, p.Tyr35Asn, p.Arg126His and
p.Ile179Thr, have been identified in homozygosity, compound heterozygosity, heterozy-
gosity or as digenically inherited with PNPLA6, RNF216 and SEMA7A gene variants in
patients with CHH [38,46,47]. All but one of the patients reported with SRA1 variants are
of Turkish, Cypriot, and Greek (this report) origin, indicating the possibility of a founder
effect in the East Mediterranean area.

In Patient 2, three heterozygous variants in the genes SOX9, HS6ST1 and IL17RD
were identified.

The variant p.Val95Ile of the SOX9 gene identified in patient 2 is a novel variant. SOX9
gene encodes the transcription factor SOX9, which is a member of the SRY-related HMG box
(SOX) family of transcription factors. It is essential for both sex and skeletal development
and is expressed in various tissues during embryogenesis, such as the cartilage, brain,
pituitary, heart, lungs, pancreas, testes, etc. SOX proteins play an important role in the
differentiation, establishment or maintenance of stem and progenitor cells of various
tissues [48]. Various studies have reported the presence of potential populations of stem
cells in the pituitary. In particular, it has been shown by in vitro studies that a small
population of progenitor cells in the adult pituitary gland express SOX2 and SOX9 [49].
Furthermore, it was demonstrated that SOX2 and SOX9 expressing progenitor cells can
self-renew and give rise to endocrine cells in vivo, suggesting that they are tissue stem
cells, playing a role in the physiological maintenance of the pituitary gland as well as in the
induction of pituitary tumors [50,51].

In mammals, during embryonic gonadal development, the factors SRY and SF-1 induce
the expression of the SOX9 gene. SOX9 itself then suppresses the expression of the SRY
gene, while it takes over the differentiation of the bipotential gonad to testis. Finally, SOX9,
together with SF-1, induces the differentiation of Sertoli cells in the testes [52]. The role
of SOX9 in testis formation and sex determination was first recognized in patients with
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campomelic dysplasia, of whom around 75% with a 46, XY male karyotype bearing one
mutant SOX gene exhibit male-to-female sex reversal [53].

During embryonic development in mice (e13.5–14.5), the SOX9 protein is expressed in
the migratory nerve cells of the brain, which are distributed in the posterior and mainly
in the middle of the brain, while later on, SOX9 is expressed in cartilage and bone [54].
Thus, the SOX9 protein has been found to be involved in the formation of craniofacial
structures, and patients with gene variants present with micrognathia, cleft lip and palate,
and craniofacial malformations [55].

The HS6ST1 gene encodes the enzyme heparan sulfate 6-O-sulfotransferase 1 (HS6ST1),
which participates in the biosynthesis of heparan sulfates (HSs). HSs are expressed in
different developmental stages of several tissues and are involved in cell communication
regulating the binding of many ligands–receptors, such as FGF8–FGFR1 [56,57]. The
impaired interaction of the FGF8 ligand with the FGFR1 receptor is known to be involved
in the pathogenesis of HH [58].

Pathogenic variants in the KAL1 gene, also involved in the FGFR signaling pathway,
are the main genetic cause of CHH. However, pathogenic variants of the HS6ST1 gene are
also common in patients with normosmic/anosmic IHH (approximately 2%), resembling
that of KAL1-HH phenotype, but also as an oligogenic cause of CHH together with FGFR1
and NELF genes [36,59,60].

The HS6ST1 gene pathogenic variant, c.917G > A, p.Arg306Gln, was detected in
patient 2 and his mother. A variant in the same codon resulting in a different amino acid,
c.917G > A, p.Arg306Trp (reported as p.Arg296Trp), has been previously reported in a male
patient with Kallmann syndrome and small pituitary gland [59], as was the case in our
patient. The patient’s mother presented delayed puberty without anosmia, indicating an
incomplete penetrance of this variant [59]. It was also shown by in vitro experiments that
the activity of the p.Arg306Gln HS6ST1 mutated enzyme is significantly reduced compared
to the wild type enzyme [59].

The IL17RD gene (Interleukin 17 Receptor D) encodes a 739 amino acid membrane
protein, member of the interleukin 17 receptor protein family, that also regulates the signaling
pathway of FGF8/FGFR1, and its pathogenic variants have been associated with CHH with
or without anosmia and delayed puberty and in some cases with deafness [59,61].

The IL17RD p.Pro566Ser identified herein has not been reported previously in CHH
patients. It has been reported in a patient with evening fatigue [62], which might be due to
subnormal cortisol secretion as a plausible explanation for his fatigue, although cortisol
secretion has not been investigated in the patient. However, a homozygous c.1697C > T
variant that results in a different amino acid change of the same codon, p.Pro566Leu,
classified as probably pathogenic, has been reported in a normosmic CHH patient [33]. Two
patients carrying other probably pathogenic variants of the IL17RD gene were identified
after exome sequencing in 37 PSIS families. In these patients, the IL17RD variants were co-
inherited with variants in other genes; specifically, one carried a GLI2 and an IL17RD variant,
whereas the other carried variants in three genes, PROP1, IL17RD and SMARCA2 [56].
Although it is highly probable that the combination of several gene variants may lead to
various clinical phenotypes, the contribution of each gene variant to the patient’s phenotype
was not investigated in detail and, therefore, could not be established.

5. Conclusions

In this study, each patient was found to harbor three possible causative gene variants,
after WES. Although to date numerous studies have shown that CPHD as well as PSIS
have an oligogenic rather than a monogenic etiology [11,12,63–65], such a conclusion could
not be reached in this work.

It is of interest that most of the variants detected in this study were related to CHH,
indicating that there is a significant phenotypic and genetic overlap between CHH and
CPHD that has also been observed in other studies [66], further supporting the notion that
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CPHD and CHH share common genetic background [66] and allowing us to speculate that
a synergistic action of these gene variants may underlie our patient’s phenotype.

Among the six genes identified, only two (BMP4 and SOX9) were expressed in the
pituitary gland, and four genes (GNRH1, SRA1, HS6ST1 and IL17RD), two for each patient,
are known CHH genes. However, it is worth stating that two of these genes, HS6ST1 and
IL17RD, belong to the FGF signaling network, which plays a major role in the hypothalamic–
pituitary axis. Thus far, FGFR1 and FGF8 gene variants have been identified to be causative
genes not only for Kallmann syndrome, but also for CPHD, septo-optic dysplasia and holo-
prosencephaly [14,15,67]. Furthermore, the fact that the HS6ST1 variant, p.Arg306Gln, identi-
fied in our patient has also been previously reported in a CHH patient with small pituitary
gland [16] strengthens the possible role of this gene in our patient’s CPHD phenotype.

None of the identified variants herein was a de novo one. Patient 1 inherited two CHH
variants, one from each parent, and a CPHD variant (BMP4), inherited from his mother.
Patient 2 inherited the three variants identified from his mother, who to our knowledge
does not present any of her son’s phenotypic characteristics, as is the case for patient’s
1 parents. Therefore, we can speculate that this is due either to incomplete penetrance of the
gene variants, as has been previously reported for CPHD [3,11,63], or to the involvement
of other etiologic factors, genetic or environmental.

Furthermore, it is highly probable that apart from the variants reported in this work,
there might also exist other gene variants acting synergistically. These variants could have
escaped identification either because of the WES methodological limitations, or because
they are variants of genes yet unknown to be related with CPHD.

This work has several limitations, the main one being the small number of patients
studied and the lack of functional studies that could possibly delineate the impact of each
variant identified in the patients’ phenotypes. There are also methodological drawbacks:
WES has a diagnostic turnover of 35–50%, which might be due either to technical limitations
(incomplete coverage of all exons, short length reads, sequencing of GC-rich regions,
repetitive sequences, and sequences with high homology), or to methodological limitations
such as inability to detect intronic or structural variants, as well as the limitations of data
analysis with respect to the VUS, particularly in genes with unknown function. In this
study, four variants were classified as VUS; however, considering their frequency and the in
silico predictions, their possible contribution to an oligogenic model of CPHD inheritance
cannot be overlooked.

Further work is required to fully delineate the genetic basis of CPHD, for example, with
large cohorts of patients as well as other methodologies such as whole genome sequencing,
a more comprehensive sequencing option, since it provides analysis of the entire genome or
the long-read WES methodology. However, the presentation of the identified gene variants
in the international literature may provide further evidence to researchers for the critical
role of oligogenic combinations in the pathogenesis of complex human disorders of varied
penetrance and severity.

As the mystery of the genetic basis of congenital hypopituitarism is slowly unraveled,
many new variants and complex combinations of variants of different genes are expected to
be added to the still incomplete list of genes involved in pituitary ontogenesis and function.
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