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Abstract 

Background: Computational methods to predict binding affinities of small ligands toward relevant biological (off-)
targets are helpful in prioritizing the screening and synthesis of new drug candidates, thereby speeding up the drug 
discovery process. However, use of ligand-based approaches can lead to erroneous predictions when structural and 
dynamic features of the target substantially affect ligand binding. Free energy methods for affinity computation can 
include steric and electrostatic protein–ligand interactions, solvent effects, and thermal fluctuations, but often they 
are computationally demanding and require a high level of supervision. As a result their application is typically limited 
to the screening of small sets of compounds by experts in molecular modeling.

Results: We have developed eTOX ALLIES, an open source framework that allows the automated prediction of 
ligand-binding free energies requiring the ligand structure as only input. eTOX ALLIES is based on the linear interac-
tion energy approach, an efficient end-point free energy method derived from Free Energy Perturbation theory. Upon 
submission of a ligand or dataset of compounds, the tool performs the multiple steps required for binding free-
energy prediction (docking, ligand topology creation, molecular dynamics simulations, data analysis), making use of 
external open source software where necessary. Moreover, functionalities are also available to enable and assist the 
creation and calibration of new models. In addition, a web graphical user interface has been developed to allow use 
of free-energy based models to users that are not an expert in molecular modeling.

Conclusions: Because of the user-friendliness, efficiency and free-software licensing, eTOX ALLIES represents a novel 
extension of the toolbox for computational chemists, pharmaceutical scientists and toxicologists, who are interested 
in fast affinity predictions of small molecules toward biological (off-)targets for which protein flexibility, solvent and 
binding site interactions directly affect the strength of ligand-protein binding.

Keywords: Binding affinity prediction, Free energy calculation, Linear interaction energy, Drug design, 
Computational toxicology

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Interactions between ligands and proteins represent an 
important step in many life-regulating signal-transmis-
sion processes. Upon molecular recognition a ligand can 
modulate protein function, thereby enhancing, inhibiting 

or modulating its activity. The magnitude of the effect 
will depend on the strength or affinity of ligand-protein 
binding. Furthermore, in a complex biological system 
in which multiple interacting partners are present, the 
effect exerted by a ligand also depends on binding selec-
tivity, i.e., the relative binding affinity toward a target 
when compared to other proteins. Therefore, a common 
goal in drug design, discovery and safety pharmacology is 
to obtain a compound with both high affinity for the pro-
tein of interest (target) and with high selectivity against 
other proteins for which activity modulation could lead 
to unwanted and possibly toxic events (off-targets) [1, 
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2]. In this light, computational approaches that are able 
to accurately predict the affinity of potential drug candi-
dates toward targets and off-targets can help in identify-
ing and optimizing new biologically active compounds 
[3, 4]. Such computational methods can be divided in 
ligand-based and protein-structure based approaches. 
In the first group, which mainly comprises quantitative 
structure-activity relationships (QSAR) models, statisti-
cal methods are applied to identify quantitative patterns 
between the structure of a chemical compound (repre-
sented as a series of molecular descriptors) and a specific 
biological property [5]. The fundamental assumption in 
QSAR is that compounds with similar structure share 
analogue biological properties, therefore structural infor-
mation about the interacting partner is usually neglected. 
Furthermore, measures of similarity among structures 
can vary a lot depending of the metric in which it is esti-
mated [6, 7]. Protein-structure based methods combine 
structural features of both the ligand and the interact-
ing biological molecule to predict the binding affinity of 
the compound, usually quantified as the free energy of 
binding (�Gbind) [3]. In this regard, empirical scoring 
functions have been developed to provide a fast estima-
tion of �Gbind during screening of large dataset of com-
pounds [8]. However, the high efficiency of this approach 
comes at the expense of its accuracy, which is often low 
for quantitative �Gbind prediction [9]. On the other hand, 
more rigorous statistical-mechanics based approaches 
such as free-energy perturbation (FEP) [10] and ther-
modynamic integration (TI) [11] can provide accurate 
�Gbind predictions that include thermal conformational 
sampling by means of e.g. molecular dynamics (MD) 
simulation [12, 13]. However, these calculations typi-
cally require numerous and extensive simulations involv-
ing non-physical states of the system of interest, making 
them computationally demanding and therefore not yet 
suitable for screening of large sets of compounds. As an 
alternative, approximations to these techniques led to the 
development of methods in which only the physical pro-
tein-bound and unbound states of the ligand are evalu-
ated in simulation, substantially reducing computational 
costs while still including thermal effects on binding [14]. 
Among these methods, Linear Interaction Energy (LIE) 
theory is an empirical approach in which binding free 
energies are predicted by considering only the intermo-
lecular interactions between the ligand and its environ-
ment in both end states [15]. Although QSAR methods 
still represent the most commonly used approach to pre-
dict ligand-binding affinities in applied settings, struc-
ture-based models are becoming more attractive due to 
the increased availability of three-dimensional struc-
tures of molecular (off-)targets and of computational 
resources. However, extensive application of methods to 

calculate �Gbind from simulation is also hindered by the 
high degree of supervision and technical knowledge that 
is typically required. To overcome these issues, we as well 
as others have in the past years developed extensions of 
the relatively efficient LIE method that open up possibili-
ties for fully automated affinity prediction.

According to LIE, �Gbind can be computed from the 
difference in the ensemble Lennard–Jones 
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 interaction energies between the 
ligand and its environment as obtained from MD simula-
tions of the ligand in complex with the protein (protein) 
and free in solvent (water) [15, 16]:

α and β in Eq.  (1) are empirical parameters that can be 
fitted using a training set of ligands with known binding 
affinity toward a specific protein. After calibration, the 
LIE model can be used to predict �Gbind for query com-
pounds with unknown affinity [16].

Similar to other free energy methods, predicted values 
may well depend on the conformation of the ligand-pro-
tein complex that is chosen by the user to start MD from 
[17]. As a remedy, Stjernschantz and Oostenbrink [18] 
proposed an extension to the LIE method in which the 
contributes obtained in simulations starting from differ-
ent conformations of the ligand-protein complex could 
be included within a single model . �Gbind of a ligand 
can be expressed as averaged sum over the independent 
simulations i,

where the relative contribute Wi of i can be derived from 
[19]

with kB Boltzmann’s constant and T the temperature.
Considering that the Wi’s depend on α and β (and 

vice versa), Stjernschantz and Oostenbrink proposed a 
scheme in which α, β and Wi’s could be obtained in an 
iterative way during model fitting [18]. Beside leading 
to more accurate models due to inclusion of multiple 
(separate) parts of conformational space of the ligand-
protein complex [18, 20], this scheme made LIE models 
independent from the a priori selection of ligand-binding 
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poses, laying the basis for fully unsupervised LIE free 
energy predictions.

Due to their complexity, fully automated predictions 
require the implementation and/or integration of generic 
procedures for (1) generation of ligand-protein confor-
mations to start MD from, (2) preparation of the force-
field topology of the system, (3) running and (4) analysis 
of the MD simulations, and finally (5) the actual LIE-
based �Gbind estimation [21].

Partially automated workflows have been developed 
previously to facilitate the set up and execution of LIE-
based binding free energy calculations for protein–ligand 
complexes [21–23]. However, they still require manual 
intervention (e.g. for the preparation of topologies or 
ligand-protein complex coordinates). Furthermore the 
use of commercial propriety software or textual user 
interfaces can limit their usage to a restricted group of 
users.

To overcome these issues, we present here eTOX 
ALLIES (Automated pipeLine for Linear Interaction 
Energy-based Simulations), which allows for the calibra-
tion and (in-house) use of LIE models for �Gbind estima-
tions in a fully automated way. Requiring the chemical 
structure of ligand(s) as input (submitted as Structure 
Data Format (SDF) file), in silico screening of compounds 
can be performed: docking into the (off-)target is per-
formed for each ligand and relevant binding poses are 
selected from a statistical-geometric analysis of the dock-
ing results; subsequently, the interaction energies of rep-
resentative binding poses are evaluated during MD, and 
results are collected and employed to compute �Gbind’s. 
In addition, an (automated) protocol to estimate the reli-
ability of each prediction has been implemented, accord-
ing to our recently proposed approach [24]. The pipeline 
employs open source third-party software only, making 
no restriction for its use in both academic and private 
environment. Furthermore, a web graphical user interface 
(GUI) has been developed that allows for use and creation 
of new models in a user-friendly manner, making the tool 
accessible also to users that are not an expert in modeling.

Overall, eTOX ALLIES represents a new computational 
tool for pharmaceutical scientists, toxicologist and mod-
elers, both from academia and industry, who are inter-
ested in predicting binding affinities toward (off-)targets 
for which structural features of the binding site and/or 
thermal conformational effects can significantly affect the 
ligand-binding process.

Implementation
Software architecture
eTOX ALLIES has been designed to provide a com-
plete pipeline for creation and use of LIE-based models 
for �Gbind calculation of small molecules toward (off-)

targets with known three-dimensional structure. The 
code has been written in Python 2.7 [25] and makes use of 
external open source softwares. Molecular (ligand) struc-
tures are handled by Open Babel libraries [26, 27], while 
SciPy [28] and scikit-learn modules are employed for 
statistical analysis [29]. ParaDockS [30] and GROMACS 
[31] are adopted as docking and MD engines, respec-
tively. A web interface for easy handling of job and model 
submission and management has been built adopting 
the python framework Flask [32], and using Open Babel 
[27] and matplotlib [33] modules for structure and plot 
representations.

The software is organized in two main parts (Fig.  1): 
the Job Manager performs the steps required to obtain 
the descriptors used in the model for each ligand (from 
ligand-structure preparation and optimization, to gather-
ing of interaction energies from MD simulations), while 
the Application Programming Interface (API) allows for 
easy submission of new-model calibrations or screening 
of query compounds.

The Job Manager
The Job Manager runs in background and is responsi-
ble for obtaining ligand–protein interaction energies 
(
〈

Vlig−surr

〉

 terms in Eq. (1)). For each ligand, the process 
includes: (1) ligand preparation, (2) ligand topology crea-
tion and structure optimization, (3) identification of rep-
resentative ligand-protein complex conformations from 
docking and clustering, (4) MD simulations, and (5) post-
processing and gathering of interaction energies. Exter-
nal open source software is employed for execution of 
some of these steps (i.e., ligand-topology creation, dock-
ing, MD simulations) and is executed within the main 
framework using the subprocess module as interface.

1. Ligand preparation
An SDF file is used to submit query or training com-
pounds. Structural information contained in these files 
can be incomplete or not appropriate (e.g. improper pro-
tonation state, two-dimensional coordinates, etc.), there-
fore a preliminary structure optimization is performed.

During this first step, preprocessing of the ligand is 
performed using Open Babel [27], consisting of genera-
tion of 3D coordinates (in case 2D coordinates are pro-
vided only) and neutralization or protonation according 
to a pH of 7.4 (depending on the model settings).

2. Ligand topology creation and structure optimization
The structure of the ligand(s) must be processed to pro-
vide suitable 3D coordinates as input for molecular dock-
ing, and to generate the force-field potential parameters 
that will describe bonded and nonbonded interactions 
involving the ligand during MD (referred to as topology).
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After preprocessing, the optimized structure of and 
atomic charges for the ligand are obtained according 
to the AM1-BCC method [34] and the topology of the 
ligand is generated according to the General Amber 
Force Field (GAFF) [35]. These tasks are performed by 
the sqm and antechamber packages provided in Amber-
Tools15 [36]. The optimized geometry of the ligand is 
employed as input for subsequent docking, while the 
topology obtained is converted to GROMACS [31] for-
mat using ACPYPE [37].

3. Identification of representative ligand‑protein complex 
conformations
The representative ligand-protein complex conforma-
tions that will be used as starting structures for the MD 
simulations are obtained through clustering of binding 
poses obtained during molecular docking:

The optimized ligand structure is initially rotated by 
± 90 degree in the x, y or z direction [38]. The ligand 
is subsequently docked into the protein binding site 
(using settings that can be defined using the API during 
model calibration), and maximally 50 poses with mutual 
RMSD of 2.0 Å are retained for each of the six rotated 
configurations. A principal component analysis (PCA) 
of the docked poses (represented as heavy-atom coordi-
nates) is performed to reduce the number of variables, 
cf. [24]. The components explaining more than 5% of 
the initial variance are retained, and the corresponding 

scores are used in subsequent k-means clustering [39]. 
An increasing number of clusters is considered in case 
it would explain at least 5% more of the variance in the 
score space. The medoids of the clusters obtained are 
considered as representative binding poses and are used 
as starting configurations for the MD simulations of the 
ligand-protein complex.

4. MD simulations
MD simulations allow the inclusion of solvent and ther-
mal fluctuations during the evaluation of ligand–protein 
interaction energies.

Simulations are carried out using the GROMACS 4.5 
package [31]. An optimized version of the bash script 
used on the WeNMR GRID web portal [40] is adopted 
here to facilitate the process. Each protein-ligand com-
plex is solvated in a dodecahedral box filled with TIP3P 
water [41], and Na+ or Cl− ions are added to neutralize 
the charge of the protein. After energy minimization, 
the system is gradually heated to 300  K in (protein and 
ligand) heavy-atom restrained NVT simulations of 10 
ps simulations (at 100, 200 and 300  K, with restraining 
force constants of 10,000, 5000 and 50 kJ mol−1 nm−2 , 
respectively). After an additional (unrestrained) 10 ps 
equilibration NVT run, unrestrained NpT simulations 
at 1.01325 bar and 300 K are performed of few nanosec-
onds from which interaction energies between the ligand 
and its environment are obtained. The length of these 

Fig. 1 Architecture of eTOX ALLIES. �Gbind prediction or calibration (training) of a new model is initiated by submitting a dataset of compounds 
through the API. For each query or training compound, evaluation of ligand–protein interaction energies is requested using model-specific set-
tings. The job manager takes care of the steps required to obtain interaction energies for each compound and to expose them to the API when 
completed. Interaction energies are subsequently used for model calibration or prediction, and as part of the evaluation of the reliability index for 
predictions
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NpT production simulations can be specified by the user 
during model calibration. In typical cases, 2–5 different 
docking poses are obtained per ligand. Starting from a 
given protein-ligand complex conformation, two simula-
tions are run that start from different atomic velocities, 
typically leading to 4–10 protein-bound simulations per 
ligand when using a single protein template structure. 
Interaction energies over the two simulations run per 
starting pose are averaged [20, 21]. Because of the par-
allelizable nature of the setup this allows to obtain free 
energy predictions within few hours even on a small 
state-of-the-art CPU cluster (ca. 10 nodes). The ligand 
is also simulated in explicit solvent in absence of pro-
tein and counterions in order to evaluate ligand interac-
tion energies for the unbound state. Full details on the 
employed MD settings are provided elsewhere [24].

5. Postprocessing and gathering of the interaction energies
Lennard–Jones and electrostatic interaction energies 
between the ligand and its environment are gathered dur-
ing the MD simulations. Furthermore, MD postprocess-
ing is performed to decompose the nonbonded energy 
contributes of the ligand with the residues that line the 
binding site of the protein (for the purpose of applica-
bility domain and reliability estimation, see below). The 
energies obtained are stored and used during �Gbind pre-
diction or model calibration.

The API
An API has been created to handle the calibration of 
new models or the in silico screening of a dataset of 
compounds.

Upon submission of a new calculation through the 
API, the interaction-energies computation task is ini-
tiated through the Job Manager. When this process is 
completed, model calibration or �Gbind prediction is 
executed. The API provides also access to ancillary tasks: 
calibration of a new model involves the definition of 
model parameters (including e.g. definitions of the pro-
tein binding pocket, ligand-protonation states and MD 
simulation time) and the preparation of specific files such 
as for the protein topology and the formatting of the pro-
tein structure(s) in accordance with the MD and dock-
ing packages. A set of procedures is available to facilitate 
these preliminary processes. Additionally, every func-
tionality is directly accessible to the user via a web GUI, 
which allows a user-friendly monitoring and submission 
of tasks.

Model calibration
Calibration of a new model can be performed by sub-
mitting a training set of compounds, provided that the 
experimental binding free energy �Gobs toward the (off-)

target is included as a common associated data field in 
the SDF file for the entire series of molecules. Calibration 
is performed after the computation of the ligand–protein 
interaction energies from the different independent sim-
ulations of the training set compounds. It involves (i) LIE 
model parameter fitting, and (ii) Applicability Domain 
(AD) definition.

(i) LIE fitting α and β coefficients are fitted using an 
adapted version of the iterative scheme proposed by 
Stjernschantz and Oostenbrink [18, 24], Fig.  2. An off-
set parameter γ (in kJ mol−1) [42, 43] can optionally be 
included in model fitting, which is in that case added as a 
constant to Eq. (2). Initially, arbitrary values are assigned 
to the LIE coefficients and �Gbind is computed for every 
pose. The contribute of each pose to the total free energy 
of binding of a single compound is obtained according to 
Eq.  (3). Using the weighted sums (according to the con-
tribute of each pose) α and β are re-optimized and the 
new α and β coefficients are used to update the contrib-
ute of each pose to the total interaction energy for each 
compound, etc. [18]. This process is repeated iteratively 
until α and β are converged.

Models including increasing number of poses with 
lowest �Gbind for each compound are created and evalu-
ated based on the standard deviation error in prediction 
(SDEP) obtained during internal leave-one-out cross-
validation. The model with lowest SDEP is stored and an 
applicability domain for this model is created according 
to the approach proposed by Capoferri et al. [24].

(ii) AD definition In eTOX ALLIES, the space of infor-
mation used by the LIE model is evaluated according 
to five different metrics: (1) range of �Gobs values; (2) 
chemical similarity of the ligand, in order to take into 
account possible effects of rarely occurring functional 
groups and, implicitly, of the force-field parametrization; 
(3) average ligand–protein interaction energies obtained 
during MD simulations: to evaluate the distribution of 
the variables used by the model; and finally, per-residue 
contributes to the (4) Lennard–Jones and (5) electrostatic 
interactions between the ligand and protein during MD, 
to topographically map the interactions of the ligand 
with specific regions of the protein binding site (possibly 
characterized by different electrostatic and hydrophobic 
properties). During calibration of the model, the space 
delimited by the training set is defined as follows (cf. 
[24]):

1. For the range of �Gobs values, the cutoffs are defined 
as minimum and maximum training set values.

2. Chemical similarity is expressed as Tanimoto scores 
(TSs) between pairs of molecules, represented as 
MACCS fingerprints [44]. Every training compound 
is compared with the other elements of the training 
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Fig. 2 Iterative LIE fitting of a model calibrated using k training compounds (Cpds) for which n simulations are run (note that n can be different per 
Cpd). The final model will contain simulation results for the number of poses (looped over using index j) for which the standard deviation error in 
prediction (SDEP) is lowest as determined in leave-one-out (LOO) cross validation. Note that �Vi’s are averaged over two MD simulations starting 
from different atomic starting velocities
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set and the TS with the most similar compound is 
stored for every ligand. The lowest value is used as 
cutoff.

3. To compare average ligand–protein interaction 
energies obtained during MD simulations, the dis-
tribution of the simulations (in terms of �VLJ and 
�VCoul ) employed during LIE fitting is characterized 
according to its average and covariance matrix [21].

4. Per-residue contributes to the Lennard–Jones inter-
actions between ligand and protein: for each com-
pound, the weighted sum (according to weights Wi 
of the corresponding simulation energies) of the 
Lennard–Jones interaction energies is computed for 
every residue located in proximity of the binding site. 
A principal component analysis (PCA) of the residue 
contributes is performed, in which components are 
retained if they include more then 5% of the original 
variance, to summarize the principal ligand–protein 
interactions explored during fitting.

5. Per-residue contributes to the electrostatic interac-
tions between ligand and protein: same approach as 
described for the analysis of Lennard Jones interac-
tions (4).

The parameters obtained during calibration are coupled 
to a specific model version and can be used to estimate 
the reliability of the �Gbind prediction of query com-
pounds for the specific target.

Prediction and reliability index
Calibrated models can be used for in silico screening of 
datasets of compounds. After gathering of the ligand–
protein interaction energies, �Gbind is computed. Addi-
tionally, an index that takes into account the reliability 
of the prediction is provided, expressed as total number 
of AD metrics (0 to 5) in which the query compound 
is found to deviate from the training set. A query com-
pound is considered to not deviate from the training set 
according to the different metrics reported above if [24]:

1. the predicted �Gbind value is within the range of the 
training set experimental values;

2. the query compound shows, for at least one training-
set compound, a similarity score (as TS) that is equal 
or higher than the cutoff defined during calibration;

3. in terms of the average ligand–protein interaction 
energies, the simulations for the query compound are 
within 95 percentile of the training set distribution, 
evaluated as Mahalanobis distances from the centroid;

4. the weighted sums of the per-residue contributes to 
the Lennard–Jones interactions of the ligands are 
projected onto the principal component space of the 
training set and show score and orthogonal distances 

that are within the 95 percentile of the training set 
distribution;

5. the per-residue contributes to the electrostatic inter-
actions are similar to the training set distribution 
when evaluated analogously as for the Lennard–
Jones interactions.

A low total number of deviations (e.g. 0 or 1) corresponds 
to high reliability estimations, while higher numbers 
indicate low reliability of the predicted �Gbind [24].

Model preparation
Before calibration, a model needs to be configured, e.g. 
in terms of the choice for the protonation treatment of 
the ligand, by preparing the protein conformation and 
topology, and by defining the binding site coordinates 
and residues.

In eTOX ALLIES, model settings can be defined 
through the GUI, and the tedious preparation of files 
required for MD and docking is automated upon submis-
sion of the protein 3D structure as PDB format. This pro-
cess is described hereafter.

1. Preparation of the protein structure: tautomeric 
states and rotamers of the residue side chains are 
obtained using reduce (AmberTools) [36].

2. Topology and coordinates of the protein are gener-
ated according to the Amber 14SB force field [45] 
by LEaP (AmberTools) [36]. In case the protein is a 
Cytochrome P450, special force-field parameters for 
both the heme domain and its coordinating cysteine 
are employed [46]. After conversion of topology 
and coordinate files to the GROMACS format by 
ACPYPE [37], hydrogen atom masses are increased 
to 4.032 amu to allow for timesteps of 4 fs during MD 
[47].

3. Structure templates for molecular docking are gener-
ated according to specific software requirements.

4. Docking software requires definition of the binding 
site (as radius and coordinates of the center of the 
sphere around it). For Cytochrome P450s, the center 
of docking can be automatically assigned according 
to the position of the heme domain atoms [21], oth-
erwise it can be defined manually.

5. Residues lining the cavity of the binding site can be 
defined either manually or automatically as the resi-
dues for which any of the heavy atoms is within 16 Å 
from the (docking) center of the binding site.

Extendibility
The pipeline has been developed in order to provide 
high flexibility in terms of exploitation of computa-
tional resources, software implementation, and job 
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management. A list of the most important features are 
listed hereafter.

  • High-performance computing cluster (HPCC): a 
specific interface is implemented that allows execu-
tion of MD simulations (the most compute-intensive 
part of the calculations) on a HPCC platform, instead 
of the local machine. Connection takes place via ssh 
tunnelling and is based on a paramiko python inter-
face [48].

  • Integration with eTOXlab: the eTOXlab software 
constitutes a framework for the creation of QSAR 
models and their deployment in production environ-
ments [49]. eTOX ALLIES models can be connected 
and used through eTOXlab in order to provide multi-
ple modeling techniques in a single interface.

  • Docking software: interfaces have been developed 
to integrate use of PLANTS (free for academic use) 
[50] and ParaDockS (released under GPL license) 
[30], which are dynamically loaded during execution 
of the program, according to model settings. Minor 
modifications to these modules can provide inter-
faces for other docking software packages.

  • Force field: Amber-based force fields are adopted 
here because of the availability of free-license tools 
for the creation of ligand and protein topologies. All 
the operations that are force-field related are included 
in a specific module that is dynamically loaded in 
analogy to the docking software interfaces. Similarly, 
support for different force fields can be implemented 
in a straightforward way.

  • Job identification: a specific python class has been 
implemented to handle submission and managing 
of jobs between the API and the Job Manager using 
JSON objects. In case of an extensive load of work, 
the class can be replaced in order to make use of a 
database management system.

Results and discussion
The web GUI
A web GUI has been developed that allows access to 
and monitoring of the functions provided by the API. 
The interface is directly accessible from a standard web 
browser, thus reducing the problem of dependency 
from specific libraries. In this way, the software can 
be deployed on a virtual machine and loaded on any 
machine, while being accessible from the host machine 
through the web browser. The functions accessible 
through the GUI include:

  • overview of the available models, in terms of settings 
and statistics and creation of links with eTOXlab 
(Fig. 3);

  • model preparation for a new (off-)target protein 
(Fig. 4);

  • calibration of the model (Fig. 5);
  • in silico screening of a dataset of compounds (Fig. 5);
  • overview of the running jobs, with details about com-

pounds, status, and results of the screening (Fig. 6).

Application studies
Here we demonstrate the advantage of our fully auto-
mated pipeline for (iterative) LIE model calibration and 
predictions for three pharmaceutically relevant proteins: 
Cytochrome P450 (CYP) isoform 1A2, nuclear recep-
tor (NR) Farnesoid X receptor (FXR) and Janus Kinase 2 
(JAK2). Many CYPs are flexible in nature and also NRs 
and kinases may bind ligands in different protein con-
formations and/or binding poses. Human CYPs metabo-
lize a large variety of drug-like compounds. Drugs that 
tightly bind to CYPs can inhibit them and alter metabolic 
pathways of co-administered drugs, therefore leading to 
potential adverse reactions. Hence, affinity toward CYPs 
is of great relevance in safety pharmacology. A LIE model 
for binding affinity toward the isoform CYP 1A2 was 
recently published, in which a similar protocol as pre-
sented here was adopted [24], but in which ligand prepa-
ration was only semi-automated. Using a MD simulation 
time of 2.5 ns per pose, optimal α and β values were 
found to be 0.587 and 0.267, respectively. The root mean 
square error (RMSE) for the model was 4.1 kJ  mol-1 and 
the standard deviation error in prediction during leave-
one-out cross validation  (SDEPCV) was found to be 4.3 kJ 
 mol-1. Using a different docking software (ParaDockS) 
than in [24], a new CYP 1A2 model was calibrated auto-
matically using the same dataset of compounds and pro-
tein structure (for which the center of the binding site 
was defined automatically based on heme domain coor-
dinates). A model was created in eTOX ALLIES based on 
simulations of 1 ns (replicated twice) for each relevant 
ligand binding pose, in which optimal α (0.594) and β 
(0.315) were comparable to the published model. The 
RMSE was 3.9 kJ  mol-1 and the  SDEPCV was 4.3 kJ  mol-1, 
and the SDEP for an external set of (15) compounds for 
which the number of AD deviations = 0 (SDEPEXT ,0) was 
determined at 4.9 kJ  mol-1.

As other examples, we used eTOX ALLIES to develop 
LIE binding affinity models for benzimidazole-like com-
pounds binding to FXR in the context of the D3R Grand 
Challenge 2 for blind binding prediction [51, 52], and for 
phenylaminopyrimidines binding to JAK2. Crystal struc-
tures of the proteins were obtained from the Brookhaven 
protein database (PDB ID 3OMK for FXR [53], 5UT6 
for JAK2 [54]) for which the center of docking was 
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Fig. 3 Web GUI: models page. A list of available models and calibrated versions are available here. Configuration parameters are shown in the 
Model Details section, while statistics about the calibrated model version are shown in the Version Details section
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determined as the center of mass of the co-crystallized 
ligand (which was removed before docking). FXR model 
calibration and validation data were obtained for benzi-
midazole agonists with direct therapeutic potential and 
derived from IC50 inhibition data reported by Richter et al. 
[53, 55] After splitting up these data into sets of 22 training 
compounds and of 8 test compounds for which all appli-
cability domain criteria were fulfilled, the thus derived 
experimental binding free energies were used to obtain 
a LIE model (based on twice replicated 1 ns simulations) 
with α = 0.333 and β = 0.121, and the additional off-set 
γ with a value of −13.0 kJ mol−1 (RMSE = 3.8 kJ mol−1, 
SDEPCV = 4.1 kJ mol−1, SDEPEXT ,0 = 5.0 kJ mol−1) [52]. 
For JAK2 we used two 1 ns production simulations as well 
and phenylaminopyrimidine IC50 data from [56] for model 
calibration (22 training compounds; 4 test compounds 
with all AD criteria fulfilled). A LIE model was obtained 
with α = 0.497, β = 0.044, RMSE = 4.3 kJ mol−1, 
SDEPCV = 4.9 kJ mol−1 and SDEPEXT ,0 = 3.8 kJ mol−1 . 

Additional file  1: Figure S1 presents time series for 
ligand–environment interaction energies and protein-
ligand atom-positional RMSDs, obtained from MD simu-
lations used in model calibration and illustrating absence 
of large configurational changes, as needed when applying 
Eqs. (2) and (3) [19].

Conclusions
We have presented an open source framework for unsu-
pervised protein-ligand binding affinity (free energy) 
computation using iterative linear interaction energy 
(LIE) theory. Functionalities are available and imple-
mented in a web GUI to submit predictions and/or (re)
calibrate LIE models in a straightforward way. Output 
of our MD and LIE based pipeline includes predictions 
as well as reliability indices. External sofware only com-
prises open source third-party softwares, and a specific 
interface is implemented to enable running MD simula-
tions on high-performance computing clusters.

Fig. 4 Web GUI: creating a new model. A new model can be calibrated through this page in a straightforward way. Multiple relevant protein struc-
tures can be included in a single model and uploaded in PDB format
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Availability and requirements
Project name: eTOX ALLIES

Project home page: https://github.com/GeerkeLab/
eTOX-ALLIES

Operating systems: Linux OS or Mac OS X

Programming language: Python (MD runner in Bash)
Other requirements: ParaDockS or PLANTS, 

GROMACS 4.5.x, ACPYPE, AmberTools15
License: GPL v2
Any restrictions to use by non-academics: None.

Fig. 5 Web GUI: submit page. This page offers the possibility to submit new screenings (i.e., prediction(s) for a compound or set of compounds 
listed in a SDF file to be uploaded). Calibration of a new model version (recalibration) can be performed by changing the default setting for Type of 
calculation

Fig. 6 Web GUI: running jobs page Status and results from current screening(s) are shown here. For each dataset screening, a dropdown menu 
shows details about calculations for each compound

https://github.com/GeerkeLab/eTOX-ALLIES
https://github.com/GeerkeLab/eTOX-ALLIES
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