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Abstract

Background

This manuscript describes an approach for analyzing large amounts of disparate clinical

data to elucidate the most impactful factor(s) that relate to a meaningful clinical outcome, in

this case, the quality of life of cancer patients. The relationships between clinical and quality

of life variables were evaluated using the EORTC QLQ-C30 global health domain—a vali-

dated surrogate variable for overall cancer patient well-being.

Methods

A cross-sectional study design was used to evaluate the determinants of global health in

cancer patients who initiated treatment at two regional medical centers between January

2001 and December 2009. Variables analyzed included 15 EORTC QLQ-C30 scales, age

at diagnosis, gender, newly diagnosed/ recurrent disease status, and stage. The decision

tree algorithm, perhaps unfamiliar to practicing clinicians, evaluates the relative contribution

of individual parameters in classifying a clinically meaningful functional endpoint, such as

the global health of a patient.

Findings

Multiple patient characteristics were identified as important contributors. Fatigue, in particu-

lar, emerged as the most prevalent indicator of cancer patients’ quality of life in 16/23 clini-

cally relevant subsets. This analysis allowed results to be stated in a clinically-intuitive, rule

set format using the language and quantities of the Quality of Life (QoL) tool itself.

Interpretation

By applying the classification algorithms to a large data set, identification of fatigue as a root

factor in driving global health and overall QoL was revealed. The ability to practice mining of

clinical data sets to uncover critical clinical insights that are immediately applicable to pa-

tient care practices is illustrated.
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Introduction
Current Quality of Life (QoL) assessment tools were developed for use in clinical trials to quan-
tify the benefits of innovative therapies on patients’ symptom burden, functioning, and overall
quality of life. Clinical investigators have discovered that specific QoL scales provide informa-
tion on the duration of patient survival independently of known prognostic variables[1,2]. Re-
cent research has determined the clinical significance of changes in QoL scores[3,4].
Additional research has begun to link QoL domains with clinically relevant biological path-
ways[5–7].

The emergence of life-extending oncology treatments has resulted in an increasing number
of cancer survivors who live for many years after the cessation of treatment. Consequently, the
patient’s evaluation of their quality of life and well-being has become an important patient out-
come. It is a key driver of patient satisfaction with their clinical team[8] and could increasingly
become an important consideration in clinician and patient decision making. The EORTC
QLQ-C30 instrument’s modular format replicates the Wilson and Cleary model of health relat-
ed quality of life (HRQOL) which is a sequence of interconnected constructs that start with
physiological and disease state; progress to symptom status, functioning, and general health
perception and ends with satisfaction with overall QoL[9–12] (Fig 1).

The main aim of the study is to investigate predictors of QoL using an innovative approach
of decision tree analysis. This research used a large database composed of a heterogeneous can-
cer patient population with Patient Reported Outcomes (PRO), demographic and clinical data.
The analysis stratified patients by site of origin, stage of disease and treatment history, i.e.,
whether they were undergoing first or subsequent lines of therapy. Sets of algorithm-generated
decision trees were used to identify the drivers of patient evaluation of their quality of life. De-
cision trees can generate accurate predictions, handle mixtures of categorical and continuous
data, indicate ranges of values where variables are most predictive, and have the advantage that
their outputs can be described in clinically intuitive labels, rather than statistical terminology
and quantities[13–15]. Decision trees have been successfully used in various scenarios in the
medical domain [16,17], including predicting errors in chronic disease care, identifying signals
of adverse drug reactions, and detecting artifacts in neonatal ICU data. The use of decision
trees to discover drivers of overall quality of life in cancer patients is a novel application. This
method enables the investigation of whether the drivers of QoL are diverse and contingent on
disease type or are few in number and independent of type of disease and its progression.

Methods

Study design
A cross-sectional study design was used to evaluate the determinants of global health in 8478
cancer patients who initiated treatment at two Cancer Treatment Centers of America regional
medical centers between January 2001 and December 2009. Administrative staff offered all pro-
spective patients, regardless of treatment or disease history, an opportunity to complete the
EORTCQLQ-C30 instrument upon arrival at the clinic, before undergoing treatment. The only
criterion for participation was being able to read and complete the survey in English. Demographic
data were provided by the cancer registries of each center. All patients gave written consent. This
study was approved by the Midwestern Regional Medical Center’s institutional review board.

QoL Instrument
The EORTC QLQ-C30 is a validated[3] and widely used[18] research instrument that collects
Patient-Reported Outcomes (PRO) for symptoms routinely found in cancer patients. It collects
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data on patient functioning and evaluation of their overall QoL. The instrument consists of 30
questions. The responses to these questions range from 1 to 4 for symptom and functioning do-
mains (1 = Not at all, 4 = Very much) or 1 to 7 for global health domain (1 = Very poor, 7 = Ex-
cellent). Responses to all questions are linearly transformed to a 0–100 score in each of 15
categorical (nine symptoms, five functions and one global health), non-overlapping scales (i.e.,
each response is only used to determine one scale score). The symptoms fatigue, pain, and nau-
sea/vomiting are each composed of multiple questions. For example, fatigue is made up of
three questions that ask the patients about their need to rest, feeling weak, and level of tired-
ness. The remaining symptom scales are single items that address: dyspnea, appetite loss, in-
somnia, constipation, diarrhea, and the perceived financial effect of the disease and treatment.
The five functioning domains are: physical, role (work-related), cognitive, emotional, and so-
cial. The global health item combines responses of two questions: patients’ rating of their over-
all health and overall QoL. For functioning and global health scales, a higher score represents a
better level of functioning, while for symptom items, a higher score represents more severe
symptoms[19].

Fig 1. A pathwaymodel of patient quality of life adapted fromWilson & Cleary, 1995. The pathway generally progresses from left to right, starting with
the construct of disease state, symptom status, functional status, overall quality of life and patient satisfaction with quality of life. Each construct is composed
of multiple patient attributes and is also affected by individual and environmental characteristics.

doi:10.1371/journal.pone.0130023.g001
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Variables analyzed
The outcome variable of the study was global health, and the goal of the analyses was to identify
the structure and accuracy of the trees. This analysis includes all 15 EORTC QLQ-C30 scales,
and the following demographic and clinical variables from the cancer registry: age at diagnosis,
gender, newly-diagnosed/recurrent disease status, best AJCC (American Joint Committee on
Cancer) stage at the time of diagnosis for the analytic patient cohort, and regional/metastatic
disease for recurrent cancer patients. These variables were used as inputs to generate classifica-
tion rules to predict global health levels for individual patients. Gender, newly-diagnosed/re-
current status, and stage were defined as categorical variables.

The clinical variables site of origin, newly-diagnosed or relapsed disease and stage for the
newly-diagnosed are powerful predictors of patient lifespan. These variables were used to gen-
erate experimental groups with distinct prognoses that ranged from curable to hospice-bound.
These subgroups were analyzed independently to determine if the drivers of global health dif-
fered by prognosis or whether drivers of global health are independent of site of origin and
disease progression.

Analytic method
The goal of this analysis was to identify determinants of global health from a clinical perspec-
tive. Global health scores were stratified into three clinically distinct classes: low, medium, and
high. This stratification was based on scores derived from surveys of European general popula-
tions[20]. These surveys were population based and conducted without knowledge of the par-
ticipants’ health status. The stratification of global health score was determined a priori. A low
global health score corresponded to values that were almost two standard deviations below the
general population mean score (~45). A high global health score corresponded to general pop-
ulation mean scores (75) or above[20]. Therefore, patients with scores> 66.67 were defined as
high; low� 33.33; medium ranged from 33.33 to and including 66.67[3]. Of the demographic
variables used in this analysis, only age at diagnosis was continuous. Decision tree algorithms
were parameterized to accommodate the type of each variable (e.g., continuous, categorical,
etc.).

Generating a decision tree
Decision trees (often called Classification and Regression Trees-CART) can be used in multi-
variate analyses where the underlying distributions of data are unknown or non-normal and
the variables are categorical[16]. Decision tree algorithms search the entire dataset to identify
the most predictive variable available relative to the target variable (e.g., global health). The al-
gorithm calculates the optimal value of that branching variable to bifurcate the data and maxi-
mize classification accuracy. This process is repeated recursively on each split data set until the
data are no longer split and a terminal node is generated to classify data in that branch.

This algorithm used Gini coefficients to compute the best splits for each branching node in
a given tree[14,21]. The accuracy of a given tree (a goodness-of-fit measure) was computed by
coursing a patient-level data record through the branches of the tree until a terminal, leaf node
was reached and a classification assigned. The percentage of patients correctly classified was
computed for the entire data set.

To ensure the algorithm did not generate a decision tree that was overly specific to a given
dataset (i.e., sacrificing generalization), a technique called 10-fold cross-validation was used.
Before a tree was generated, a data set was randomly divided into 10 equally sized subsets. The
algorithm used the first nine subsets to generate a tree and the held-out set to validate the accu-
racy of the tree. The cross-validation technique rotated this process through each of the
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remaining nine subsets for a total of ten iterations. Rather than selecting the most accurate tree
from the group, a composite tree was created from the 10 resulting trees[22]. The last step
(pruning) reduced the size of the tree by removing branches of the tree that provided little or
no improvement in predictive accuracy. Pruning reduces the possibility of over-fitting which
might be due to the presence of outliers in the training data. This makes the tree smaller and
simpler to generate rule sets. This complete process is run for each clinical subgroup tested.

How to read a decision tree
Fig 2 is an example of a decision tree generated using the newly-diagnosed patients and Fig 3 is
an example generated using newly-diagnosed stage 4 patients from this dataset. In Fig 2, fatigue
is the root node, which means that out of all the patient data points under study, fatigue classi-
fied global health most accurately if no additional information had been available. The cut
point for fatigue at the root node is 27.78. If a given patient had a fatigue score� 27.78, then
the right branch would be traversed, and the process repeated with the next node until a classi-
fication of global health can be made at a terminal or leaf node. For example, if a patient has a
fatigue score< 27.78, then the patient is classified to have high global health with no additional
information required. A variable may be selected multiple times as a branching node because
different values of that variable, in conjunction with the values of previously selected variables,
can contain more information relative to other variables in that subset. In Fig 3, role function is
the root node with a cut point of 75.

Classification nodes are terminal nodes that do not split any further. The classification accu-
racy for a tree is an indication of how much of the structure in the data set the tree has cap-
tured. By traversing branches of a decision tree, starting with the root node and ending in a
classification node, sets of conditional rules can be identified and restated in clinical terms.

Results

Patient Demographics
Cancer registries identified 23,783 potential participants from which 12,357 agreed to complete
the instrument preceding initial clinical consultation at two CTCA regional medical centers be-
tween January 2001 and December 2009. 11,469 patients returned the questionnaire. The num-
ber of respondents who underwent treatment at CTCA and completed the QoL assessment
was 8478 patients. The demographics of participants (Table 1) were compared to the non-par-
ticipants and were found to be similar in prior research[23].

This study enrolled patients from all stages of the natural history of diagnosed disease
(Table 1). Patients tended to be relatively young for cancer patients, with a majority of partici-
pants being female (n = 4505; 56%). Nearly two thirds (65%) of these patients had disease origi-
nating in the lung, breast, colon or rectum, prostate, or pancreas. This patient population was
biased towards patients who had recurrence of disease. Of the patients presenting with newly-
diagnosed disease, over half had stage 3 or 4 disease (55%).

Global health scores were distributed as Low (23%), Medium (43%) and High (34%) classes.
Table 2 compares the QOL domain scores of two prognostically distinct cohorts in the study
population to a general population cohort[20].

Decision Tree
The patient population was stratified into clinical sub-groups by site of origin, newly-diag-
nosed/relapsed, and AJCC stage for the newly-diagnosed. Each data subset was used to gener-
ate a decision tree representing that clinical sub-group. The symptom and functioning scales
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that were present in each tree as branching nodes are summarized in Table 3. Figs 2 and 3 are
examples of decision trees generated from a newly-diagnosed cohort and a newly-diagnosed
stage 4 cohort, respectively. The nodes that appear in each tree (row) indicate that the QoL
scale (column) was used to classify the level of global health for patients in that clinical sub-
group. N represents the number of patients in each node. Any node that appeared in at least
one tree was included in Table 3 as a column.

The two QoL scales that were most commonly found to classify global health were fatigue
and social functioning. Fatigue was included in every decision tree except one. The classifica-
tion accuracies ranged from 62.3–74.5%. The root node for each tree indicated the EORTC
QLQ-C30 domain that was selected by the algorithm over the entire data set as containing the
most information about global health level; the cut point for the root node was the value of the

Fig 2. An example decision tree generated from newly diagnosed patients. To predict a patient’s global health level, start at the root node (top oval),
traverse the branches–depending on the specific values of Individual patient data–and come to a leaf node (rectangle). The leaf node is the prediction of Low,
Medium or High global health for that patient. Paths travelled from the root node to each leaf node can be restated as a conditional rule set listing the drivers
of global health levels.

doi:10.1371/journal.pone.0130023.g002
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variable calculated to optimally split the data. Fatigue was the root node in 16 of the 23 trees.
Variables not selected by the algorithm for any patient subset were nausea/vomiting, dyspnea,
constipation, diarrhea, financial problems, age at diagnosis and stage.

Discussion
This multivariate analysis was conducted over disparate clinical subgroups to identify QoL do-
mains that had relatively high levels of agreement with overall global health levels. The study
cohort was composed of participants whose prognosis ranged from curable to hospice bound
and from newly-diagnosed to patients who had already undergone multiple lines of chemo-
therapy. Nonetheless, all of these patients were still seeking treatment. In this clinically hetero-
geneous group, the primary driver of global health was fatigue. When patients were further

Fig 3. A second example of decision tree generated from newly diagnosed stage 4 patients. This tree has role function as the root node (first split) and
fatigue and pain as next splits. ‘N’ in each node represents the number of patients.

doi:10.1371/journal.pone.0130023.g003
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subcategorized by site of origin or tumor stage, fatigue remained the predominant driver of
global health across subgroups.

This analysis was facilitated by the use of decision trees. They are easy to understand and in-
terpret and thus have certain advantages over commonly used biostatistics methods. A tree
generates a set of conditional rules that can be visualized or written out. Unlike other methods
of analysis, decision trees do not depend on the variables to follow any kind of defined, statisti-
cal distribution. The variables can be a combination of continuous and categorical values. Deci-
sion trees are robust as they are not as affected by outliers. Any outlier would be grouped into a
node and thus would have little or no effect on splitting nodes and cut points. Decision trees
can work with very large numbers of variables, which is an additional advantage of this meth-
odology[14].

In this analysis global health was categorized as low, medium, or high by anchoring these
values to data reported in general population surveys. This categorization was done to frame
the analysis in clinically intuitive terms; low score—values that were almost two standard devi-
ations below the general population mean score (~45); high score—general population mean
scores (75) or above[20].

Fatigue was identified in every decision tree, representing 23 clinical sub-groups, but one—
newly-diagnosed lung. It was the root node for 16/23 patient groups. No other symptom item
appeared as the root node. Of the other eight symptom domains in the EORTC QLQ-C30,
only pain, appetite loss and insomnia (in one tree) were used to classify global health level. In
some trees, the algorithm selected fatigue as a node multiple times. The predominant determi-
nant of global health as identified by the decision tree algorithm was fatigue. These findings

Table 1. Patient Characteristics.

Patient Characteristic Newly Diagnosed Recurrent Disease

N (8478) 3767 (44.4%) 4711 (55�6%)

Age at study, median 57 ± 10�4 55 ± 10�6
Sex (%)

Male 1834 (48�7%) 1895 (40�2%)

Female 1933 (51�3%) 2816 (59�8%)

Site of Origin (%)

Lung 730 (19�4%) 682 (14�5%)

Breast 718 (19�1%) 1102 (23�4%)

Colorectal 243 (6�5%) 628 (13�3%)

Prostate 527 (14�0%) 285 (6�1%)

Pancreatic 415 (11�0%) 292 (6�2%)

All other Cancers 1134 (30�1%) 1722 (36�6%)

Vital Status (%)

Alive 2009 (53�3%) 1722 (36�6%)

Dead 1758 (46�7%) 2989 (63�4%)

Best AJCC Stage (%)

Stage 1 470 (12�5%) 69 (1�4%)a

Stage 2 908 (24�1%) 186 (3�8%)a

Stage 3 644 (17�1%) 258 (5�3%)a

Stage 4 1434 (38�1%) 3568 (73�5%)a

Unknown Stage 311 (8�3%) 774 (15�9%)a

apatients re-staged following clinical presentation at CTCA.

doi:10.1371/journal.pone.0130023.t001
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extend prior findings that report fatigue as the driver of global health[24,25]. This means that if
a clinician could only ask one question of a patient in an attempt to discover their global health
level, then they would ask the patient to report their fatigue level.

The value of this finding was underscored by the emergence of fatigue in different patient
contexts. The role of fatigue was independent of site of origin, stage of disease, and stage of
treatment. By deconstructing the decision trees into rule sets, specific cutpoints where fatigue is
a decision node identifies context-specific ranges of fatigue levels. In cases where fatigue was a
root node, patients with advanced disease tended to have higher cutpoints (newly-diagnosed-
27.8 vs recurrent-38.9), indicating the advanced patient was more fatigued. For the entire study
cohort, however, the cutpoint of fatigue was near normal general population levels (27.8 vs
24.1). This suggests that cancer patients with elevated levels of fatigue may improve their over-
all QoL, if given clinical attention for fatigue.

Fatigue as a clinical symptom remains a complex patient feature. Evidence exists that multi-
ple underlying biological pathways (e.g., depression, insomnia, disruptions of circadian
rhythm, and disruption of biological system function), independently or in combination may
manifest elevated fatigue levels[7,26,27]. Acknowledging the importance of fatigue as a driver
of overall global health levels across cancer patients with different diagnoses, stages of disease
and treatment histories is a first step in furthering understanding of these root causes[28,29].

In addition to fatigue, other QOL domains that predicted overall QoL consistently across
patient sub-groups were social, role (work-related) and physical functioning. Less common but
relevant predictive symptoms for certain patient subgroups included appetite loss, pain, and in-
somnia. More common constitutional symptoms such as pain and nausea, which are seen fre-
quently in cancer patients might be expected to drive patient perception of quality of life. That
this is not the case in the current investigation may reflect a greatly enhanced ability to control
such symptoms with the newer generation of pain and anti-emetic medications. Thus, the con-
trol of pain and nausea through application of best practice guidelines is expected for the vast

Table 2. Baseline Description of Quality of Life (QOL) Scores.

QOL Scale mean ± STD Newly Diagnosed Recurrent EORTC General population
N 3767a 4711a 7802b

Fatigue 38.6 ± 28.1 46 ± 28.6 24.1 ± 24.0

Nausea/vomiting 11.8 ± 20 15.9 ± 23.8 3.7 ± 11.7

Pain 32.1 ± 31 38.4 ± 32.9 20.9 ± 27.6

Dyspnea 21.8 ± 28.4 27.1 ± 30.8 11.8 ± 22.8

Insomnia 37.9 ± 32.3 38.7 ± 32.7 21.8 ± 29.7

Appetite loss 25.6 ± 31.9 29.6 ± 33.7 6.7 ± 18.3

Constipation 20.3 ± 29.2 22.9 ± 30.7 6.7 ± 18.4

Diarrhea 11.2 ± 21.6 13.4 ± 23.5 7.0 ± 18.0

Financial Problems 30.5 ± 33.5 35.1 ± 34.2 9.5 ± 23.3

Physical Function 79.3 ± 22.5 71.3 ± 24.8 89.8 ± 16.2

Role Function 69 ± 32.9 62.8 ± 33.7 84.7 ± 25.4

Emotional Function 65.7 ± 25 66.4 ± 24.8 76.3 ± 22.8

Cognitive Function 78.2 ± 24.2 75.7 ± 25.1 86.1 ± 20.0

Social Function 69 ± 31.8 62.8 ± 32.5 87.5 ± 22.9

Global Health 61.4 ± 25.9 55.4 ± 25.9 71.2 ± 22.4

aA total of 8478 patients from 2 CTCA regional medical centers.
bDisease free patient population specified in the reference manual of EORTC (Scott et al., 2008).

doi:10.1371/journal.pone.0130023.t002
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majority of patients in our study regardless of treatment history. Unfortunately, symptoms
such as fatigue have yet to be adequately controlled in the majority of patients.

Additionally, the emergence of fatigue driving overall QoL followed closely by the impor-
tance of functional status domains, combined with the relative lack of observation of common-
ly reported symptoms as drivers, may in some ways reinforce the Wilson Cleary model that
functional status directly drives overall QoL and may also suggest a more complex interpreta-
tion that fatigue is something more than an acute, clinical symptom. The items from the
EORTC survey that were not selected by the algorithm for any patient subgroups were the
symptom items nausea/vomiting, dyspnea, constipation, diarrhea and financial problems. The
demographic and clinical variables including age at diagnosis, gender and stage were not iden-
tified as predictive of global health by the algorithm for any patient subgroups. It should not be
inferred that the patient variables that were not used to classify global health levels in patients
were not indicative of patient QoL at all nor that they were not reported as present in patients.
Rather, each branching node that was selected by the algorithm to be included in the tree struc-
ture was determined to contain the most information over all other variables, given that set pa-
tients. Although stage is a powerful predictor of the duration of patient survival, in this patient
cohort stage of tumor was not found to be a driver of overall QoL, which is a surprising finding
in the world of oncology[2].

This study is limited by the fact that various data points that might be relevant were unavail-
able at the time of study (specific treatment histories, time from diagnosis, comorbid condi-
tions, performance status and other cancer-specific QoL domains like peripheral neuropathy)
[30]. These results confirm the potential value of the inclusion of a question about fatigue in a
QoL tool that community oncologists could routinely use in their treatment of patients[31].
The results also emphasize the importance of identifying the biological pathways that directly
or indirectly affect the patient’s experience of fatigue; future investigations should include data
on biological pathways (e.g., bone marrow suppression, red blood cell count, depression, dis-
ruptive circadian rhythms, etc.) that are involved in regulating fatigue[5,6,26,29].

Conclusion
After stratifying a large patient database into twenty three clinically relevant subsets, fatigue
was the most commonly identified domain used to classify global health levels. It is unclear if
fatigue is a proxy variable for global health, a direct driver of it, or a driver of functioning do-
mains that, in turn, drive global health. The results of this analysis support the Wilson Cleary
theory of QoL but could also support other theoretical models.
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