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Glioma is one of the leading causes of death from cancer, and autophagy-related genes
(ARGs) play an important role in glioma occurrence, progression, and treatment. In this
study, the gene expression profiles and clinical data of glioma patients were obtained
from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA),
respectively. ARGs were obtained from the Human Autophagy Database. We analyzed
the expression of the ARGs in glioma and found that 73 ARGs were differentially
expressed in tumor and normal tissues. Univariate Cox regression analysis was
used to identify prognostic differentially expressed ARGs (PDEARGs). Least absolute
shrinkage and selection operator (LASSO) and multivariate Cox regression analyses
were performed on the PDEARGs to determine the risk genes; and BRIC5, NFE2L2,
GABARAP, IKBKE, BID, MAPK3, FKBP1B, MAPK8IP1, PRKCQ, CX3CL1, NPC1,
HSP90AB1, DAPK2, SUPT20H, and PTEN were selected to establish a prognostic risk
score model for TCGA and CGGA cohorts. This model accurately stratified patients with
different survival outcomes, and the autophagy-related signature was also appraised as
being an independent prognostic factor. We also constructed a prognostic nomogram
using risk score, age, gender, WHO grade, isocitrate dehydrogenase (IDH) mutation
status, and 1p/19q co-deletion status; and the calibration plots showed excellent
prognostic performance. Finally, Pearson correlation analysis suggested that the ARG
signature also played an essential role in the tumor immune microenvironment. In
summary, we constructed and verified a novel autophagy-related signature that was
tightly associated with the tumor immune microenvironment and could serve as an
independent prognostic biomarker in gliomas.

Keywords: glioma, autophagy-related genes, prognosis, signature, tumor immune environment

INTRODUCTION

Glioma is one of the most common primary brain tumors in adults, accounting for about 15%
of all brain tumors and more than 48% of malignant brain tumors (1). The prognosis of patients
with glioma is poor, despite the use of multi-mode therapy, including neurosurgery, radiotherapy,
chemotherapy, targeted therapy, and immunotherapy, due to the high recurrence and mortality

Frontiers in Oncology | www.frontiersin.org 1 October 2020 | Volume 10 | Article 571189

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.571189
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fonc.2020.571189
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.571189&domain=pdf&date_stamp=2020-10-19
https://www.frontiersin.org/articles/10.3389/fonc.2020.571189/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-571189 October 13, 2020 Time: 17:26 # 2

Xu et al. Autophagy-Related Gene Signature

rates (2, 3). For glioma patients, it still appears difficult to predict
and extend survival, and the identification of novel prognostic
biomarkers for glioma is therefore imperative. Autophagy is
the process of degradation and circulation of proteins and
intracellular components during starvation or stress (4). It occurs
at the basal level of all cells and is fundamental to cell homeostasis
(5, 6). Autophagy often plays a key role in the pathogenesis
of diseases, such as type 2 diabetes, cardiovascular disease,
neurological disease, and cancer (7). Autophagy also has a dual
function in tumors, eliminating damaged proteins and organelles
in the early stages of the tumor, reducing cell damage, and thus
inhibiting tumor development (8). However, once tumors have
formed, autophagy via HIF1α/AMPK can provide nutrients to
promote tumor cell growth when nutrients are limited (9). In
most cases, autophagy is thought to inhibit early tumorigenesis
but promote the development of established tumors.

To illustrate the importance of autophagy, there is increasing
evidence of the role of autophagy-related genes (ARGs) in the
development of cancer. High expression of Atg10 is associated
with poor prognosis for lung cancer (10), and autophagy
gene Atg7 knockout leads to the progression of lung cancer
to eosinophilic cell tumors, inhibiting tumor proliferation
(11). Autophagy has been negatively correlated with mTOR
substrate phosphorylation, and recent studies have shown
that high expression of LC3/beclin 1 is associated with poor
prognosis in glioma patients (12). In addition, autophagy-related
proteins, such as cathepsin D and LAMP2, are overexpressed
in glioma and may also be potential targets for prognosis and
prediction (13). These findings confirm the role of autophagy
in cancer and suggest that ARGs may serve as prognostic
markers for glioma.

Although some previous studies have explored the
relationship between ARGs and prognosis in glioma patients,
those studies have focused on the function of a single gene.
Very few studies have used gene expression profiles to examine
the relationship between multiple ARGs and glioma prognosis.
Therefore, in this study, we develop a reliable prognostic model
based on ARGs and explore the clinical application of the ARG
signatures in glioma patients.

MATERIALS AND METHODS

Acquisition of Glioma Datasets
The RNA-Seq and somatic mutation data of 703 patients were
downloaded from The Cancer Genome Atlas (TCGA) data
portal (14)1 and used as a training cohort. From the Chinese
Glioma Genome Atlas (CGGA) dataset2, we collected the RNA-
Seq data of 1,018 samples as a validation cohort (15, 16).
We compared transcriptome data with the patients’ clinical
information based on the patient ID numbers. If a patient’s
ID number did not match, we removed it. Thus, 665 patients
with complete overall survival (OS) information and gene
expression profiles were obtained from TCGA database, while

1https://tcga-data.nci.nih.gov/tcga/
2http://www.cgga.org.cn/

929 patients with complete OS information and gene expression
profiles were obtained from the CGGA database. The 232 ARGs
were obtained from the human autophagy HADb database3

(17). Immune infiltrate data for glioma patients were derived
through a deconvolution algorithm based on a normalized gene
expression profile (CIBERSORT), which was used to characterize
the infiltrating components of the immune cells in 22 complex
samples (18, 19).

Identification of Differentially Expressed
Autophagy-Related Genes
The R package “edgeR” was used to screen differentially expressed
genes (DEGs) in glioma and normal neural tissue samples
(20). A Wilcoxon signed-rank test was used to screen DEGs
according to the cutoff values’ false discovery rate (FDR)
<0.05 and |log2 FC| > 1. The intersection of DEGs and
ARGs was considered to be the set of significant differentially
expressed ARGs (DEARGs).

Construction and Verification of a
Prognostic Risk Score Model Based on
Autophagy-Related Genes
We chose the data in TCGA dataset as the training cohort,
which was used to construct the Cox proportional hazard
regression model, and the data in the CGGA dataset was
used as the validation cohort, which was used to validate the
model’s performance. First, univariate Cox analysis was used to
identify possible prognostic DEARGs (PDEARGs) by using the
“survival” package with a P-value of <0.05 (21). Second, the
potential risk genes were selected, and the overfitting genes were
eliminated by least absolute shrinkage and selection operator
(LASSO) regression using the “glmnet” R package (22). Third,
Cox proportional hazard regression was used to construct the
prognostic risk model by using the “glmnet” R package (22).
The following formula was used to establish the prognostic risk
model:

risk score =
n∑

j=1

(Coefj × Xj),

where Coef is the multivariate Cox regression analysis coefficient
of the ARGs and X is the relative expression level of each ARG.
The patients were divided into high-risk and low-risk groups,
with the median risk score used as the cutoff value and high-risk
scores suggesting that the prognosis of the patients was poor.

Statistical Analysis
R software (3.6.1) was used for all statistical analyses. Pearson
correlation coefficients were used to evaluate the rank
correlations among the variables. Independent t-tests were
used to assess differences between the variables. Kaplan–Meier
curve and log-rank tests were used for survival data analysis,
and univariate Cox regression analysis was used for survival
factor analysis. Multivariate Cox regression analysis was used
to identify independent prognostic factors. The accuracy of

3http://www.autophagy.lu/
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the prognostic model was assessed by time-dependent receiver
operating characteristic (ROC) analysis. A P-value of <0.05 was
considered statistically significant.

RESULTS

Identification of Differentially Expressed
Autophagy-Related Gene and Functional
Enrichment Analysis
The mRNA levels of genes in gliomas (n = 698) and brain
tissues (n = 5) in TCGA cohort were examined, and these
values were compared using the Wilcoxon signed-rank test. This
analysis revealed 15,001 DEGs in glioma tissues compared with
normal brain tissues [FDR < 0.05, |log2 fold-change (FC)| > 1].
Then, we obtained 73 DEARGs in glioma tissues compared with
normal brain tissues after taking the intersection of DEGs and
ARGs (Figure 1A).

To explore the potential functional characteristics of the
DEARGs, we annotated their functions using Metascape. The
results showed that these genes were mainly involved in
autophagy, animal autophagy, apoptosis, apoptotic signaling
pathways, and the response to oxidative stress (Figures 1B,C).

Identification of Prognostic Differentially
Expressed Autophagy-Related Genes
To identify the PDEARGs, we performed a univariate Cox
regression analysis of each DEARG expression in TCGA cohort.
A total of 62 DEARGs were significantly correlated with OS in
glioma patients (P < 0.05).

Training Cohort to Identify Risk Genes
for Inclusion in the Risk Model
Considering the effect of PDEARGs on patient prognosis,
we further screened the PDEARGs by constructing a Cox
regression hazard model, selecting the potential risk genes,
and eliminating the overfitting genes in the model by LASSO
regression; 23 genes (Figures 2A,B) were thus obtained
and further analyzed by multivariate Cox proportional risk
regression analysis. Finally, 15 risk genes (BRIC5, NFE2L2,
GABARAP, IKBKE, BID, MAPK3, FKBP1B, MAPK8IP1,
PRKCQ, CX3CL1, NPC1, HSP90AB1, DAPK2, SUPT20H,
and PTEN) were identified, and the risk scores for each case
were calculated using their expression levels and regression
coefficients (Figure 2C). Among these genes, FKBP1B, BIRC5,
NFE2L2, and IKBKE were considered high-risk genes (poor
prognosis), while MAPK3, NPC1, DAPK2, MAPK8IP1, PRKCQ,
CX3CL1, HSP90AB1, SUPT20H, GABARAP, PTEN, and BID
were considered low-risk genes (protective factors) for patients’
OS. To explore the potential functional characteristics of the
risk genes, we annotated their functions using Metascape.
The results showed that these genes are mainly involved in
animal autophagy, apoptotic signaling pathways, pathways
in cancer, and the regulation of cellular response to stress
(Figures 2D,E).

We then used clinical specimens from the Human Protein
Atlas4 to analyze the expression of the proteins encoded by the
risk genes (no data were found for DAPK2, PRKCQ, MAPK8IP1,
and GABARAP). MAPK3 and CX3CL1 were strongly positive;
NFE2L2, HSP90AB1, and SUPT20H were moderately positive;
and FKBP1B, BIRC5, NPC1, IKBKE, BID, and PTEN were weakly
positive in glioma tissue relative to their expression levels in
normal tissue (Supplementary Figures S1A–K). Kaplan–Meier
survival curves were also constructed to evaluate the relationship
between the expression levels of the prognostic genes and
OS, and the results showed that the low-expression groups of
FKBP1B, BIRC5, NFE2L2, and IKBKE (P < 0.05) had better
prognosis (Supplementary Figures S2B,C,E,G) and that the
high-expression groups of MAPK3, NPC1, DAPK2, MAPK8IP1,
PRKCQ, CX3CL1, HSP90AB1, SUPT20H, GABARAP, PTEN,
and BID (P < 0.05) had better prognosis (Supplementary
Figures S2A,D,F,H–O).

Construction and Verification of the
Prognostic Risk Model
To assess the significance of the risk genes in the prognosis
of patients with glioma in the risk models, we used estimated
regression coefficients and the expression levels of the risk genes
to calculate the risk scores for each patient. The calculation
formula is as follows:

Risk score = (0.972364596×MAPK3 expression)

+(0.299641268× FKBP1B expression)

+(−0.364718845×MAPK8IP1 expression)

+(−0.271491791× PRKCQ expression)

+(0.314270977× BIRC5 expression)

+(−0.172912776× CX3CL1 expression)

+(0.664977132×NPC1 expression)

+(−0.257268535×HSP90AB1 expression)

+(0.81239816×NFE2L2 expression)

+(0.271699944× DAPK2 expression)

+(−0.289118873× SUPT20H expression)

+(−0.545908599× GABARAP expression)

+(−0.570898637× PTEN expression)

+(0.300429145× IKBKE expression)

+(−0.398268499× BID expression).

In the CGGA cohort, the risk score was calculated using
the same risk genes and regression coefficients for validation.
The heatmaps show an overview of the correlation between
ARG expression and clinical characteristics in TCGA and CGGA
cohorts (Figure 3).

4http://www.proteinatlas.org
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FIGURE 1 | Identification of differentially expressed autophagy-related genes (DEARGs) in glioma and biological function analysis. (A) Volcano plot of DEARGs in
tumor and normal samples of The Cancer Genome Atlas (TCGA) dataset; the green dots represent down-regulated genes, and red dots represent up-regulated
genes. (B) The functional enrichment map of pathways. Each node indicates an enriched term and is colored by its cluster ID. (C) Enriched pathways of the genes
positively correlated with DEARGs.

Patients in TCGA cohort were divided into a high-risk group
(n = 332) and a low-risk group (n = 333), according to the median
risk score. We used a Kaplan–Meier curve based on the log-rank
test to identify the difference in prognosis between the high-
risk group and the low-risk group. The prognosis of patients in
the high-risk group was worse than that in the low-risk group
(P < 0.05) (Figure 4A).

We then used time-dependent ROC curves to confirm the
accuracy of the model’s predictions for 1–10 years. The ROC
(AUC) of the prediction model was 0.906 over 1 year, 0.921 over
2 years, 0.924 over 3 years, 0.89 over 4 years, 0.874 over 5 years,
0.882 over 6 years, 0.855 over 7 years, 0.809 over 8 years, 0.822

over 9 years, and 0.836 over 10 years in TCGA training cohort
(Figure 4B), all of which were significantly higher than the other
factors (Figure 4C), emphasizing the superior predictive value
of the prognostic risk model. We then ranked the risk scores
of the patients in TCGA cohort and analyzed their distribution
(Figure 5A). The survival status of each patient in TCGA cohort
is shown in Figure 5B.

We also generated heatmap to describe the expression
patterns of risk genes in both the high-risk and low-risk
groups (Figure 5C). In patients with high-risk scores in
TCGA cohort, the high-risk genes (BIRC5, FKBP1B, IKBKE,
and NFE2L2) were up-regulated, while the protective genes
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FIGURE 2 | Construction of the prognostic risk model and biological function analysis. (A) Cross-validation for tuning parameter screening in the least absolute
shrinkage and selection operator (LASSO) regression model. (B) LASSO coefficient profiles of the common genes. (C) Risk genes in the prognostic risk model.
(D) The functional enrichment map of pathways of risk genes. Each node indicates an enriched term and is colored by its cluster ID. (E) Enriched pathways of the
genes positively correlated with risk genes.

(BID, CX3CL1, GABARAP, HSP90AB1, MAPK3, MAPK8IP1,
NPC1, PRKCQ, PTEN, and SUPT20H) were down-regulated.
In patients with low risk scores, these risk genes showed opposite
patterns of expression.

To validate the accuracy of the prognostic risk model, the
patients in the CGGA cohort were also divided into two groups
based on the median risk score. Next, we used Kaplan–Meier
survival analysis to identify the prognostic differences between
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FIGURE 3 | Heatmaps of autophagy-related genes based on the risk score value in The Cancer Genome Atlas (TCGA) cohort (A) and the Chinese Glioma Genome
Atlas Chinese Glioma Genome Atlas (CGGA) cohort (B).

the high-risk group and the low-risk group. The Kaplan–Meier
survival curves differed significantly between the two risk groups
in the CGGA cohort (P < 0.05) (Figure 4D), with the patients’

survival rates being higher in the low-risk group than in the
high-risk group throughout the follow-up period. ROC analyses
were also performed for the CGGA cohort over 1–10 years; the

Frontiers in Oncology | www.frontiersin.org 6 October 2020 | Volume 10 | Article 571189

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-571189 October 13, 2020 Time: 17:26 # 7

Xu et al. Autophagy-Related Gene Signature

FIGURE 4 | The prognostic value of the risk signature in The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) cohorts.
(A) Kaplan–Meier (K–M) survival analysis of the risk score in TCGA cohort. (B,C) Time-dependent receiver operating characteristic (ROC) curve analysis of the risk
score and traditional factors in TCGA cohort. (D) Kaplan–Meier (K–M) survival analysis of the risk signature in the CGGA cohort. (E,F) Time-dependent ROC curve
analysis of the risk score and traditional factors in the CGGA cohort.

AUCs for each year were, in order, 0.698, 0.741, 0.717, 0.721,
0.718, 0.712, 0.677, 0.675, 0.659, and 0.626 (Figure 4E), which
were higher than for the traditional factors (Figure 4F). The risk

score distribution, survival status, and risk gene expression in the
CGGA cohort are shown in Figures 5D,E. Similar to the results
in TCGA cohort, the most protective gene levels were higher
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FIGURE 5 | Distribution of the risk score (A,D) survival status (B,E) and expression level of risk genes (C,F) in the Cancer Genome Atlas (TCGA) and the Chinese
Glioma Genome Atlas (CGGA) cohort.

and the most risk gene levels lower in the low-risk group than
in the high-risk group (Figure 5F). These results indicate that
the prognostic risk model is capable of precisely predicting the
prognosis of glioma patients.

In addition, when the patients were stratified according to
different clinicopathologic parameters, the autophagy signature
remained a significant prognostic factor in both TCGA
cohort (Supplementary Figures S3A–J) and the CGGA cohort
(Supplementary Figures S3K–T).

Independent Prognostic Value of the
Prognostic Risk Model
Supplementary Table S1 shows the demographics and
clinicopathologic characteristics of glioma patients in TCGA
cohort and CGGA cohorts based on the autophagy signature.
Univariate and multivariate Cox regression analyses were then
performed to assess whether our model-generated risk scores
were independent of other clinical parameters [WHO grade,
age, gender, isocitrate dehydrogenase (IDH) mutation status,
1p/19q co-deletion status, and risk score] as prognostic factors
for patients with glioma. Univariate analysis showed that WHO
grade, age, IDH mutant status, 1p/19q co-deletion status, and
risk score were associated with the prognosis of glioma patients
in both TCGA and CGGA cohorts (P < 0.05) (Figures 6A,C);
only gender was not. Multivariate analysis showed that age and
risk score were independently associated with OS in TCGA
cohort (P < 0.05), while WHO grade, 1p/19q co-deletion status,
and risk score were independently associated with OS in the
CGGA cohort (P < 0.05) (Figures 6B,D). These results suggest
that the prognostic risk model can be independently used to
predict the prognosis of patients with glioma.

Construction and Validation of the
Nomogram
To better predict the prognosis of patients with glioma at 1–
10 years, we constructed a new nomogram (Figure 7A). In
Figures 7B,C, the blue lines represent the observed survival rate,
the gray lines represent the ideal survival rate, and the black lines
represent the optimized modified survival rate. The optimism-
corrected line, also known as the bias-corrected or overfitting-
corrected line, was produced using a bootstrap approach to
estimate the observed and predicted values based on a non-
parametric smoother applied to a sequence of predicted values
(23). For the predicted 1- to 10-year survival plots in the training
cohort (Figure 7B) and the validation cohort (Figure 7C), the
observed and optimism-corrected lines are aligned, although
the two are slightly different from the ideal 45◦ line, which
means that the 1- to 10-year survival predicted by the nomogram
reflects the observed actual survival in both the training and
validation cohorts.

Clinical Utility of the Prognostic Risk
Model
By analyzing somatic mutation data from TCGA dataset, we
explored differences in genomic changes between the high-risk
and low-risk groups, as some genomic changes have a negative
impact on glioma survival (24). By comparing the frequency of
mutation occurrences, we found that there was some significant
mutation enrichment between the two groups – IDH1, TP53,
ATRX, and CIC mutations were more abundant in the low-risk
group (Figure 8A). By examining the association between risk
scores and clinical features in both TCGA and CGGA cohorts,
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FIGURE 6 | Cox regression analyses in The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) cohorts. (A,B) Univariate and multivariate
Cox regression analyses of risk score and pathologic characteristics in TCGA cohort. (C,D) Univariate and multivariate Cox regression analyses of risk score and
pathologic characteristics in the CGGA cohort.

we found that the risk score was positively correlated with the
grade of glioma (Figures 8C,F) and that it was significantly
lower in the 1p/19q co-deletion and IDH mutation samples
(Figures 8B,D,E,G).

To examine the performance of our model in predicting the
progression of glioma, we analyzed the relationships between
the clinical variables in the two cohorts and the risk genes.
We found that the expressions of BRIC5, FKBP1B, IKBKE,
and NFE2L2 were significantly greater in the 1p/19q non-
co-deletion samples, while the expressions of BID, CX3CL1,
DAPK2, GABARAP, HSP90AB1, MAPK3, MAPK8IP1, and
SUPT20H were significantly lower in those samples in both
cohorts (Supplementary Figure S4); the expressions of BRIC5,
FKBP1B, IKBKE, and NFE2L2 were positively correlated, and
the expressions of BID, CX3CL1, DAPK2, MAPK3, MAPK8IP1,
and PRKCQ negatively correlated with the grade of glioma in
both cohorts (Supplementary Figure S5); and the expressions
of BRIC5, FKBP1B, IKBKE, and NFE2L2 were significantly
greater in IDH wild-type samples, while the expressions of BID,
CX3CL1, GABARAP, HSP90AB1, MAPK3, MAPK8IP1, PRKCQ,
and SUPT20H were significantly lower in those samples in both
cohorts (Supplementary Figure S6) (P < 0.05). These results
demonstrate that the dysregulation of autophagy-related risk
gene expression is associated with the development of glioma.

To determine whether the model could reflect the status
of the tumor immune microenvironment in glioma patients,
we analyzed the correlation between the risk scores and
immune cell infiltration by using Pearson correlation analysis

in both TCGA and CGGA cohorts. We found that the risk
scores were correlated positively with the levels of CD8+ T
cells; gamma delta T cells; M0, M1, and M2 macrophages;
and activated dendritic cells. Meanwhile, they were negatively
correlated with the levels of naive B cells, naive CD4+ T
cells, follicular helper T cells, activated NK cells, monocytes,
and resting mast cells, suggesting that the immune-related
gene signature could indicate the level of infiltrating immune
cells in gliomas to a certain extent (Figures 9A,D). We
also found that risk scores were correlated positively with
the expressions of the immune checkpoint (B7-H3, CTLA4,
LAG3, PD-1, PD-L1, PD-L2, and TIM-3) (Figures 9B,E)
and inflammatory factors (HLA-A, HLA-B, and HLA-C) by
using Pearson correlation analysis in TCGA and CGGA
cohorts (Figures 9C,F), indicating that the risk scores are also
positively associated with an elevated level of immune exhaustion
and that the immune-related gene signature might promote
activation of inflammatory responses in glioma patients. In
conclusion, the immune-related gene signature could promote
the malignant progression of glioma by shaping the tumor
immune microenvironment.

DISCUSSION

Glioma is a progressive disease that requires an effective
prognostic indicator for diagnosis and treatment. There is
increasing evidence that autophagy plays a key role in the
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FIGURE 7 | Nomogram for predicting overall survival of patients with glioma. (A) A nomogram integrating the signature risk score with the pathologic characteristics.
(B,C) The calibration curve for the nomogram in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) cohorts.

occurrence, progression, and therapeutic resistance of glioma (4,
8, 25). And previous studies have shown that autophagy inhibits
its development. In the KRAS-driven glioblastoma mouse model,
autophagy blocked Atg7, Atg13, or Ulk1 by shRNA; inhibited the

occurrence and growth of tumors; and extended the survival of
mice (26). Chio et al. reported that treatment of temozolomide
(TMZ)-resistant human glioma cells with honokiol can reduce
cell activity and induce apoptosis, and Zhang et al. (27) showed
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FIGURE 8 | Association between genomic alterations, pathologic characteristics, and the autophagy-related signature. (A) Differential somatic mutation analysis
between high-risk group and low-risk group in The Cancer Genome Atlas (TCGA) cohort. (B–D) Distribution of the risk score in glioma patients stratified by 1p/19q
codeletion status, WHO grade, and isocitrate dehydrogenase (IDH) mutation status in TCGA cohort. (E–G) Distribution of the risk score in glioma patients stratified
by 1p/19q codeletion status, WHO grade, and IDH mutation status in the Chinese Glioma Genome Atlas (CGGA) cohort.
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FIGURE 9 | Pearson correlation analysis between the risk score and immune cell infiltration, immune checkpoints, and human leukocyte antigen (HLA) complex
expressions. (A–C) Pearson correlation analysis between the risk score and the level of immune cell infiltration, the expressions of immune checkpoints, and the
expressions of HLA complex in The Cancer Genome Atlas (TCGA) cohort. (D–F) Pearson correlation analysis between the risk score and the level of immune cell
infiltration, the expressions of immune checkpoints, and the expressions of HLA complex in the Chinese Glioma Genome Atlas (CGGA) cohort. “X” means P > 0.05.

that ARG MAPK8IP1 overexpression and SH3GLB1 knockdown
inhibited glioma cell progression and improved TMZ sensitivity.
There have also been many studies on targeted autophagy therapy

for glioma in recent years; for example, 2-propylpentanoic acid
(VPA) combined with TMZ has been found to have significant
antitumor effects on TMZ-resistant malignant glioma cells by
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inducing autophagy (28). ARGs are therefore a promising
therapeutic target and prognostic predictor in glioma.

In this study, we identified prognostic ARGs and used them to
construct a reliable model for predicting the OS of patients with
glioma. First, we analyzed the expression of 232 ARGs in glioma
and found that the expression of 62 DEARGs was related to OS.
These results suggest that ARGs are an important prognostic
factor for glioma patients.

Next, we evaluated these PDEARGs in the stratification of
patient outcomes. Through a combination of LASSO regression
and Cox regression analysis, we identified 15 PDEARGs of
interest and used them to construct a Cox regression risk
model. We also analyzed and verified the reliability and
stability of the model. The results showed that the model can
accurately discriminate patients with different survival outcomes.
Univariate and multivariate Cox regression analyses indicated
that the prognostic risk model could independently predict
the prognosis of patients with glioma. In addition, nomogram
analysis indicated that the accuracy of the model in predicting
glioma prognosis could be improved in combination with other
clinical features.

Nomograms have been widely used in clinical work for visual
presentation (29, 30). In this study, we created a nomogram
containing WHO grade, age, gender, IDH mutation status,
1p/19q co-deletion status, and risk score. The calibration
diagram based on the training and validation cohorts showed
that the actual survival rates of patients with glioma were
very close to the predicted survival rates, indicating that the
prediction performance of the nomogram was excellent. The
visual scoring system could help doctors and patients to make
more personalized survival predictions, which could help them
to choose better treatment options.

The relationship of risk genes with clinical variables
(WHO grade, IDH mutation status, and 1p/19q codeletion
status) was also analyzed. We found that risk genes were
associated with the progression of gliomas. Our model
therefore has high clinical application value in predicting
the development of glioma.

A large number of studies have examined the molecular
biomarkers of glioma using advances in large-scale genome
sequencing technology (31–33). BIRC5 is a member of the family
of genes that inhibit apoptosis, and, in glioma, BIRC5 expression
is positively correlated with tumor grade (34, 35) – a recent
study revealed that BIRC5 affects the tumorigenicity of glioma
cells by regulating p53 protein (36). IKBKE is involved in the
malignant transformation and development of tumors as an
oncogene (37). Lu et al., have suggested that IKBKE plays a
pivotal role in regulating cell proliferation and invasion and
the epithelial–mesenchymal transition of malignant glioma cells
in vitro and in vivo by impacting the Hippo pathway (38).
The overexpression of IKBKE is closely related to the stage of
the glioma, and the invasion and migration of IKBKE cells are
reduced after IKBKE is silenced with synthetic siRNAs (39). The
tumor-promoting activity of NFE2L2 has been attributed to its
own function; its activity is generally enhanced in glioblastoma
cell lines and tumors, and low NFE2L2 expression inhibits
proliferation and self-renewal of glioma stem cells (40, 41). These

results are consistent with our conclusions that the expressions
of BIRC5, IKBKE, and NFE2L2 are positively correlated with the
progression of glioma.

In addition to BRIC5, IKBKE, and NFE2L2, the 15 identified
genes include many related to invasion and metastasis, such as
PRKCQ, MAPK3, and PTEN. PRKCQ is a member of protein
kinase C (PKC), and Couldwell et al., found a correlation
between PKC activity and glioma cell proliferation, as glioma
cells with a fast development speed have high PCK activity (42).
MAPK3 is an important signal transduction molecule in the
ERK/MAPK pathway, and previous studies have found that the
enhanced functional activity of MAPK3 plays a critical role in the
development and progression of gastric cancer (43, 44). Wang
et al. have also investigated how MAPK3 regulates apoptosis
and invasion in gliomas through targeting by mir-483-5p (45).
PTEN dysregulation in mice leads to the development of multiple
tumors (46, 47), and it has been reported that the up-regulation
of PTEN expression is related to the growth inhibition of glioma
cells in vitro (48).

Previous studies have demonstrated that immune infiltration
plays a crucial role in determining therapeutic effects in glioma
and the prognosis of patients with glioma (49, 50). The
interaction between glioma cells and macrophages could promote
the proliferation and invasion of tumor cells (51), and Weenink
et al., found that the level of CD8+ T cells in glioma was
positively correlated with poor prognosis (52). Therefore, we
also explored the relationship between immune cell infiltration
and risk scores in the prognostic risk model and found that
risk scores were correlated, to some extent, with immune
cell infiltration.

Previous studies have also demonstrated that the expressions
of immune checkpoint and HLA complex are an important
factor in determining the response to treatment and the
prognosis of patients with glioma (53–55). Lemke et al.
investigated the role of B7-H3 in glioblastoma and elucidated
its mechanism in the most fatal type of glioblastoma (56),
and Machulla et al. found that the expression of HLA was
positively correlated with the occurrence of gliomas (57). We
also found that the risk scores were positively correlated
with the expressions of B7-H3, CTLA4, LAG3, PD-1, PD-
L1, PD-L2, TIM-3, HLA-A, HLA-B, and HLA-C. These results
confirm the reliability of the model in predicting the immune
microenvironment of glioma.

There are two main limitations of the present study. Firstly,
clinical information downloaded from TCGA and CGGA
databases is limited and incomplete, and secondly, the identified
mechanism of ARGs affecting glioma development requires
further in vivo and in vitro experimental studies.

In summary, we used 15 ARGs to construct a prognostic
risk model that accurately predicted the prognosis of glioma
patients. The risk score generated by this model can be
used as an independent prognostic indicator to discriminate
patients with different survival outcomes. The model can
also predict the immune microenvironment of glioma to a
certain extent. However, further studies are needed using a
prospective, large-scale, multicenter clinical cohort to validate the
prognostic model.
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