organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(1,3-Benzothiazol-2-yl)guanidin-2-ium acetate

Peter N. Horton,^a* Simon J. Coles,^a Shaaban K. Mohamed,^b Mahmoud A. A. El-Remaily^c and A. M. Soliman^c

^aSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, ^bChemistry and Environmental Division, Manchester Metropolitan University, England, and ^cDepartment of Chemistry, Faculty of Science, Sohag University, Egypt Correspondence e-mail: pnh@soton.ac.uk

Received 13 September 2011; accepted 4 October 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.011 Å; *R* factor = 0.078; *wR* factor = 0.154; data-to-parameter ratio = 12.8.

In the title compound, $C_8H_9N_4S^-C_2H_3O_2^-$, the cation is essentially planar (r.m.s deviation = 0.037 Å) with the guanidine unit bent out of the plane of the fused-ring system by 4.6 (3)°. In the asymmetric unit, the cations and anions are linked into $R_2^2(8)$ motifs. In the crystal, further N-H···O and N-H···N hydrogen bonds link the components into a twodimensional network.

Related literature

For the crystal structure of the neutral 2-(1,3-benzothiazol-2yl)guanidine molecule, see: Mohamed *et al.* (2011). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} C_8 H_9 N_4 S^+ \cdot C_2 H_3 O_2^- \\ M_r = 252.30 \\ \text{Orthorhombic, } Pca 2_1 \\ a = 12.596 \ (2) \ \text{\AA} \\ b = 11.276 \ (2) \ \text{\AA} \\ c = 8.0936 \ (12) \ \text{\AA} \end{array}$

V = 1149.6 (4) Å³ Z = 4 Mo Kα radiation μ = 0.28 mm⁻¹ T = 120 K 0.14 × 0.10 × 0.02 mm

Data collection

```
Bruker–Nonius APEXII CCD
camera on \kappa-goniostat
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
T_{\rm min} = 0.962, T_{\rm max} = 0.995
```

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.078 & \text{H-atom parameters constrained} \\ wR(F^2) &= 0.154 & \Delta\rho_{max} = 0.42 \text{ e } \text{ Å}^{-3} \\ S &= 1.06 & \Delta\rho_{min} = -0.36 \text{ e } \text{ Å}^{-3} \\ 1991 \text{ reflections} & \text{Absolute structure: Flack (1983),} \\ 155 \text{ parameters} & 897 \text{ Friedel pairs} \\ 1 \text{ restraint} & \text{Flack parameter: } 0.3 (2) \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2−H2···O12	0.88	1.82	2.671 (8)	162
$N3-H3A\cdotsO11^{1}$	0.88	2.06	2.760 (8)	136
$N3-H3B\cdots N1$	0.88	2.05	2.713 (9)	131
$N4-H4A\cdotsO12^{n}$	0.88	2.03	2.861 (7)	158
$N4 - H4B \cdots O11$	0.88	1.91	2.790 (8)	173

7697 measured reflections

 $R_{\rm int} = 0.116$

1991 independent reflections

1301 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x + 1, -y, $z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, -y, z.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors would like to thank Manchester Metropolitan University, Sohag University and the EPSRC for funding the crystallographic facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2373).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Mohamed, S. K., El-Remaily, M. A. A., Soliman, A. M., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o786.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, o2920 [doi:10.1107/S160053681104089X]

2-(1,3-Benzothiazol-2-yl)guanidin-2-ium acetate

P. N. Horton, S. J. Coles, S. K. Mohamed, M. A. A. El-Remaily and A. M. Soliman

Comment

The title compound was synthesized and exists as the acetate salt of benzothiazolo-2-guanidinium. The benzothiazolo-2-guanidinium cation is almost planar with the guanidine unit bent out of the plane of the fused-ring system by just 4.6 (3)°. In the asymmetric unit, The cations and anions are linked into $R_2^2(8)$ motif (Bernstein, *et al.*, 1995). The crystal packing is stabilized by intermolecular hydrogen bonds involving the cations and acetate counter-ions, Table 1, Fig.2.

Experimental

A mixture of 1 mmol of 2-guanidyl benzothiazole with few drops of glacial acetic acid was heated in ethanol for 2 hours. The mixture was left at room temperature for two days to afford the shiny white crystals of benzothiazolo-2-guanidinium acetate in 94% yield. The single-crystal was obtained from a slow evaporation of the ethanolic solution of product over two days.

Refinement

H atoms were positioned geometrically [C—H = 0.95 or 0.98 Å and N—H = 0.88 Å] and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C)$ respectively and $U_{iso}(H) = 1.2U_{eq}(N)$.

Figures

Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

2-(1,3-Benzothiazol-2-yl)guanidin-2-ium acetate

Crystal data

$C_8H_9N_4S^+ \cdot C_2H_3O_2^-$	$D_{\rm x} = 1.458 {\rm ~Mg~m}^{-3}$
$M_r = 252.30$	Melting point = $463-465$ K
Orthorhombic, <i>Pca</i> 2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 2099 reflections
a = 12.596 (2) Å	$\theta = 2.9 - 27.5^{\circ}$
b = 11.276 (2) Å	$\mu = 0.28 \text{ mm}^{-1}$
c = 8.0936 (12) Å	T = 120 K
$V = 1149.6 (4) \text{ Å}^3$	Plate, colourless
Z = 4	$0.14 \times 0.10 \times 0.02 \text{ mm}$
F(000) = 528	

Data collection

Bruker–Nonius APEXII CCD camera on κ -goniostat diffractometer	1991 independent reflections
Radiation source: Bruker–Nonius FR591 rotating an- ode	1301 reflections with $I > 2\sigma(I)$
10 cm confocal mirrors	$R_{\rm int} = 0.116$
Detector resolution: 4096x4096pixels / 62x62mm pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^\circ, \theta_{\text{min}} = 3.2^\circ$
φ and ω scans	$h = -14 \rightarrow 14$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$k = -12 \rightarrow 13$
$T_{\min} = 0.962, \ T_{\max} = 0.995$	$l = -9 \rightarrow 9$
7697 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.078$	H-atom parameters constrained
$wR(F^2) = 0.154$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.P)^{2} + 4.3921P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
1991 reflections	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
155 parameters	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: Flack (1983), 897 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.3 (2)

Special details

Experimental. *SADABS* was used to perform the Absorption correction. Parameter refinement on 6249 reflections reduced R(int) from 0.1275 to 0.0768. Ratio of minimum to maximum apparent transmission: 0.627938. The given Tmin and Tmax were generated using the *SHELX* SIZE command

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.1251 (6)	0.3579 (8)	0.7101 (8)	0.0287 (19)
C2	0.2293 (5)	0.3958 (7)	0.7510 (9)	0.0232 (17)
C3	0.2434 (6)	0.4986 (7)	0.8427 (10)	0.037 (2)
H3	0.3127	0.5226	0.8751	0.045*
C4	0.1569 (6)	0.5650 (8)	0.8861 (9)	0.037 (2)
H4	0.1667	0.6362	0.9469	0.044*
C5	0.0545 (6)	0.5299 (8)	0.8424 (9)	0.037 (2)
Н5	-0.0043	0.5775	0.8740	0.044*
C6	0.0372 (6)	0.4267 (8)	0.7537 (9)	0.034 (2)
H6	-0.0326	0.4034	0.7233	0.040*
C7	0.2709 (5)	0.2345 (7)	0.6117 (11)	0.0262 (18)
C8	0.4331 (5)	0.1292 (8)	0.5459 (9)	0.030 (2)
N1	0.3104 (5)	0.3205 (6)	0.6934 (7)	0.0294 (16)
N2	0.3265 (4)	0.1462 (6)	0.5312 (7)	0.0295 (16)
H2	0.2908	0.0978	0.4663	0.035*
N3	0.4938 (5)	0.2037 (6)	0.6268 (7)	0.0331 (17)
H3A	0.5628	0.1920	0.6311	0.040*
H3B	0.4655	0.2654	0.6768	0.040*
N4	0.4741 (5)	0.0366 (6)	0.4707 (8)	0.0347 (17)
H4A	0.5430	0.0241	0.4743	0.042*
H4B	0.4326	-0.0128	0.4168	0.042*
S1	0.13101 (12)	0.22884 (17)	0.5956 (3)	0.0316 (5)
C11	0.2365 (6)	-0.0922 (8)	0.3103 (10)	0.035 (2)
C12	0.1654 (6)	-0.1819 (8)	0.2300 (10)	0.039 (2)
H12A	0.1089	-0.1410	0.1695	0.058*
H12B	0.1340	-0.2329	0.3149	0.058*
H12C	0.2069	-0.2304	0.1531	0.058*
011	0.3349 (4)	-0.1038 (6)	0.2875 (7)	0.0417 (15)
012	0.1938 (4)	-0.0085 (5)	0.3904 (7)	0.0372 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.026 (4)	0.041 (6)	0.019 (4)	0.002 (4)	-0.003 (3)	0.003 (3)
C2	0.022 (4)	0.019 (4)	0.029 (4)	0.001 (3)	-0.004 (3)	0.000 (3)
C3	0.018 (3)	0.062 (6)	0.032 (4)	-0.006 (5)	0.002 (3)	0.004 (6)
C4	0.038 (5)	0.035 (6)	0.037 (5)	0.000 (4)	0.008 (4)	0.002 (4)
C5	0.026 (4)	0.045 (7)	0.040 (5)	0.002 (4)	0.007 (4)	-0.008 (4)
C6	0.016 (4)	0.049 (6)	0.035 (5)	0.007 (4)	0.003 (3)	0.010 (5)
C7	0.022 (3)	0.036 (5)	0.021 (4)	0.005 (3)	0.003 (4)	0.007 (4)
C8	0.022 (4)	0.037 (5)	0.031 (5)	-0.003 (4)	-0.001 (3)	0.010 (4)
N1	0.017 (3)	0.040 (5)	0.031 (4)	0.002 (3)	0.000 (3)	-0.003 (3)
N2	0.019 (3)	0.040 (5)	0.029 (4)	0.000 (3)	0.001 (3)	-0.002 (3)
N3	0.022 (3)	0.040 (5)	0.037 (4)	0.009 (3)	-0.006 (3)	-0.001 (4)
N4	0.015 (3)	0.037 (5)	0.052 (4)	0.003 (3)	0.001 (3)	0.001 (4)
S1	0.0167 (7)	0.0426 (13)	0.0355 (10)	-0.0010 (9)	-0.0014 (10)	-0.0046 (12)
C11	0.024 (5)	0.045 (6)	0.035 (5)	-0.002 (4)	-0.001 (4)	0.000 (4)
C12	0.029 (4)	0.041 (6)	0.046 (5)	-0.002 (4)	0.003 (4)	-0.006 (4)
O11	0.018 (3)	0.049 (4)	0.058 (4)	0.000 (3)	0.006 (2)	-0.015 (3)
012	0.021 (3)	0.045 (4)	0.045 (3)	-0.003 (3)	0.002 (3)	-0.010 (3)

Geometric parameters (Å, °)

C1—C6	1.398 (10)	C8—N3	1.311 (9)
C1—C2	1.420 (10)	C8—N4	1.314 (9)
C1—S1	1.727 (8)	C8—N2	1.361 (8)
C2—C3	1.388 (11)	N2—H2	0.8800
C2—N1	1.408 (9)	N3—H3A	0.8800
C3—C4	1.368 (10)	N3—H3B	0.8800
С3—Н3	0.9500	N4—H4A	0.8800
C4—C5	1.395 (11)	N4—H4B	0.8800
C4—H4	0.9500	C11—O11	1.260 (9)
C5—C6	1.384 (11)	C11—O12	1.265 (10)
С5—Н5	0.9500	C11—C12	1.499 (10)
С6—Н6	0.9500	C12—H12A	0.9800
C7—N1	1.275 (10)	C12—H12B	0.9800
C7—N2	1.381 (10)	C12—H12C	0.9800
C7—S1	1.768 (6)		
C6—C1—C2	120.4 (7)	N3—C8—N2	121.9 (8)
C6—C1—S1	129.6 (6)	N4—C8—N2	117.3 (7)
C2—C1—S1	109.8 (6)	C7—N1—C2	110.3 (6)
C3—C2—N1	126.0 (7)	C8—N2—C7	124.1 (7)
C3—C2—C1	119.7 (7)	C8—N2—H2	118.0
N1—C2—C1	114.3 (7)	C7—N2—H2	118.0
C4—C3—C2	119.5 (8)	C8—N3—H3A	120.0
С4—С3—Н3	120.3	C8—N3—H3B	120.0
С2—С3—Н3	120.3	H3A—N3—H3B	120.0

supplementary materials

C3—C4—C5	121.1 (8)	C8—N4—H4A	120.0
С3—С4—Н4	119.5	C8—N4—H4B	120.0
С5—С4—Н4	119.5	H4A—N4—H4B	120.0
C6—C5—C4	121.1 (8)	C1—S1—C7	88.5 (4)
С6—С5—Н5	119.5	O11—C11—O12	124.8 (8)
С4—С5—Н5	119.5	O11—C11—C12	117.0 (8)
C5—C6—C1	118.2 (7)	O12-C11-C12	118.2 (7)
С5—С6—Н6	120.9	C11—C12—H12A	109.5
С1—С6—Н6	120.9	C11—C12—H12B	109.5
N1—C7—N2	126.5 (6)	H12A—C12—H12B	109.5
N1—C7—S1	117.0 (6)	C11—C12—H12C	109.5
N2—C7—S1	116.4 (6)	H12A—C12—H12C	109.5
N3—C8—N4	120.7 (7)	H12B-C12-H12C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2…O12	0.88	1.82	2.671 (8)	162.
N3—H3A···O11 ⁱ	0.88	2.06	2.760 (8)	136.
N3—H3B…N1	0.88	2.05	2.713 (9)	131.
N4—H4A···O12 ⁱⁱ	0.88	2.03	2.861 (7)	158.
N4—H4B…O11	0.88	1.91	2.790 (8)	173.

Symmetry codes: (i) -*x*+1, -*y*, *z*+1/2; (ii) *x*+1/2, -*y*, *z*.

Fig. 1

