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A B S T R A C T   

Evidence has accumulated that the pathology of CoViD-19 is strongly related to the renin-angiotensin system 
(RAS). The blockage of the angiotensin converting enzyme 2 (ACE2) by the SARS-CoV-2 virus leads to down
stream consequences such as increased vascular tone, extensive fibrosis and pronounced immune reactions. 
Different approaches to tackle the adverse viral effects by compensating the lost ACE2 function have been 
suggested. Here, we use an unequal-arm lever model to describe a simplified version of the biased regulation 
exercised by the angiotensin II and angiotensin-(1–7) hormones, which are the substrate and the product of 
ACE2, respectively. We reason upon the lever dynamics and its disruptions caused by the virus, and propose that 
a combination of RAS modulators will most efficiently compensate the imbalance due to the excess of angiotensin 
II and the scarcity of angiotensin-(1–7). Specifically, we focus on the possible benefits of the simultaneous 
application of two agents, a MAS-receptor agonist and an angiotensin-II-type-2-receptor agonist. We conjecture 
that this combination has the potential to introduce a beneficial synergistic action that promotes anti-hypoxic, 
anti-fibrotic and anti-proliferative effects, thereby improving the clinical management of acute and chronic 
CoViD-19 pathologies.   

Introduction 

The renin-angiotensin system (RAS, Fig. 1) is a complex network of 
molecules that regulates cell growth, differentiation and proliferation, 
fluid and electrolyte balance, and vascular tone, and it is critical for 
inflammatory responses in many organs such as kidneys, liver and lung, 
and in the cardiovascular system [1,2]. 

Renin is an enzyme that converts the protein angiotensinogen to 
angiotensin I (Ang I), a decapeptide [2]. Ang I then binds the angiotensin 
converting enzyme (ACE), which processes it into angiotensin II (Ang II), 
an octapeptide [1,2]. In turn, Ang II interacts with two types of re
ceptors, Ang II type 1 (AT1) and Ang II type 2 (AT2) with opposing ef
fects: increasing cell proliferation, inflammatory reactivity and vascular 
tone via the AT1 receptor, and mitigating these same processes via the 
AT2 [2,3]. Ang II is also processed by the angiotensin converting enzyme 
2 (ACE2) into angiotensin-(1–7) (Ang-(1–7)), a heptapeptide that binds 

the MAS receptor causing vasodilation and having anti-inflammatory 
and anti-proliferative effects [1,4]. The network of RAS interactions 
includes other molecules beyond those mentioned here; however the 
core participants needed for a minimal model that still captures the main 
regulatory capabilities of the system are the ones described above. 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
affects RAS because it uses ACE2 as cell entry point [1,5,6]. It infects 
mainly ciliated respiratory epithelial cells and type-II pneumocytes that 
express ACE2, thus causing the lung to be the main affected organ [7]. In 
addition, the virus has a tropism for vascular endothelial cells, which 
also express ACE2, leading to cerebrovascular, cardiac and renal 
involvement [7]. The infected cells are attacked by the immune system 
attempting to clean the virus [7], leading to a decrease in ACE2 con
centration and to the disruption of the normal functioning of RAS. 
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Hypothesis 

In what follows, we build a simplified model of the opposing action 
of the Ang II/Ang-(1-7) hormones, which are represented as a lever with 
unequal arms. This is a qualitative approach [8,9,10] that nonetheless 
captures a crucial aspect of RAS activity, namely its pronounced bias to 
avoid regimes that are highly dangerous on the short term. We then use 
this model to formulate a hypothesis about how this biased regulation is 
disturbed by SARS-CoV-2, leading to new strategies to devise treatment. 
Consequently, we propose to test our hypothesis by evaluating the 
therapeutic effectiveness of a combination of RAS modulators that 
should most efficiently compensate the disturbances inflicted by the 
virus. 

To maintain processes within the physiological limits, some regula
tory systems, including RAS, exert unequal influences along two 
opposing directions of change, in a similar fashion to the workings of an 
unequal-arm lever [8,9,10]. Powerful mechanisms are installed to pre
vent deviations that may quickly lead to death. However, this happens at 
the expense of a relatively higher tolerance to deviations in the other 
direction. For example, severe drops in blood pressure have a significant 
short-term mortality, and therefore many means exist to ensure against 
them. As a result, there is a permissiveness for higher blood pressure 
values and an overwhelming relative occurrence of chronic hypertensive 
conditions versus chronic hypotensive ones whose occurrence is virtu
ally null. 

In our case, the regulated parameters are vascular tone, cell prolif
eration and immune reactivity, while the hormones affecting them are 
Ang II and Ang-(1–7). Ang-(1–7), the product of ACE2, is the main force 
leading to an upward movement of the lever arm and a corresponding 
downward shift of the parameters. Ang II, the substrate of ACE2 is the 
principal force behind their increases, causing the opposite motion. 
Since low vascular tone, and low rates of cell proliferation and inflam
matory reactions are more deleterious in the short term, Ang-(1–7) is 
given a shorter lever arm, whereas Ang II operates on a longer one 
(Fig. 2a). Effectively blocking ACE2, SARS-CoV-2 causes both an excess 
of Ang II and a scarcity of Ang-(1–7), and tips the balance of the already 
biased system in a twofold way, removing force from the short lever arm 
and adding force to the long one (Fig. 2b), thus leading to catastrophic 

increases of the regulated parameters. 
We note that our hypothesis is naturally consistent with observations 

about CoViD-19 pathology. In fact, age has emerged as the leading risk 
factor for developing severe CoViD-19 symptoms [7]. Previous results 
have correlated the severity of acute lung injuries with the age- 
dependent reduction of the ratio ACE2/ACE [2]. Based on this, we 
surmise that the lower ACE2/ACE ratio in elderly CoViD-19 patients 
results in a relatively smaller number of ACE2 molecules that can escape 
the viral blockade and continue converting Ang II to Ang-(1–7). In turn, 
this causes an even more pronounced overstimulation of the long lever 
arm and a harsher action deficit of the short one compared to young 
patients, in agreement with our model and offering a strong indication of 
the importance of the ACE2 viral blockade. 

The proliferative and immune processes considered above are indeed 
particularly undesired consequences of the ACE2 blockade. Ang II leads 
to recruitment of inflammatory cells, adhesion of monocytes and neu
trophils to endothelial and mesanglial cells, and expression, synthesis 
and release of cytokines and chemokines, whereas Ang-(1–7) negatively 
modulates leucocyte migration, cytokine expression and release, and 
fibrogenic pathways [11]. However, the immune signature of SARS- 
CoV-2 itself consists of impaired interferon responses, elevated serum 
cytokines and lymphopenia [7]. Thus, a SARS-CoV-2 infection has a 
twofold pro-inflammatory effect, mediated at the same time by the 
native immune response and by the disruption of the RAS balance. In 
addition, these inflammatory mechanisms are likely to have deleterious 
synergistic effects. For example, studies on viral pneumonia of influenza 
origin uncovered that direct cytotoxic effects are not the only drivers of 
mortality, as a major contribution comes from the host’s inability to 
dampen inflammation and to repair damaged tissue [7]. Therefore, we 
believe that the severity of the two main problematic conditions in 
CoViD-19 management, namely the pneumonia-induced acute respira
tory distress symptom (ARDS) [7] and the pulmonary fibrosis in CoViD- 
19 survivors [12], is directly affected by the RAS involvment. Conse
quently, we conjecture that restoring RAS balance will enormously 
improve both the acute organ damage and the post-infection tissue 
repair processes. 

From the point of view of lever dynamics, one possible strategy to 
offset the virus-related RAS disturbance is to alleviate pressure on the 

Fig. 1. Main RAS participants and interactions.  
Fig. 2. A lever schematic of the biased regulation by the antagonistic couple of 
hormones Ang II / Ang-(1–7) (a) and their disturbance by SARS-CoV-2 (b). 
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long arm. This can be achieved by decreasing Ang II production. ACE 
inhibitors have been proposed to this effect [1]. Many CoViD-19 patients 
already use them routinely for myocardial infarction, heart failure, ce
rebrovascular and chronic kidney disease [13]. Studies showed no 
positive correlation between severity of CoViD-19 and use of ACE in
hibitors, and reported benefits to the hypertensive cohort [13]. How
ever, other enzymes insensitive to these compounds are able to take over 
production of Ang II [5], which might limit efficacy. Additionally, this 
approach may be inherently impaired in restoring RAS balance, as it 
would cause a downstream decrease of the already lowered Ang-(1–7). 

An alternative strategy aimed at relieving the long lever arm could be 
to block the AT1 receptors, rather than blocking the production of Ang II. 
The selectivity provided by the current AT1-receptor blockers [1,3] 
would preserve the protective effects via the AT2 receptors. Many 
CoViD-19 patients already undergo treatment with AT1-receptor 
blockers for pre-existing disorders. Similarly to ACE inhibitors, evidence 
shows no positive correlation with disease severity, and beneficial ef
fects in the hypertensive cohort [13]. However, the introduction of ACE 
inhibitors and/or AT1 receptor blockers in CoViD-19 patients that are 
not already receiving them requires further investigation. 

These considerations show that influencing the long lever arm is not 
straightforward, as it is yet unclear whether ACE inhibitors and AT1- 
receptor blockers are applicable to patients without other pathologies 
that already necessitate their use. Accounting for this and for the bias 
against the counterpart short arm, we propose that additions to CoViD- 
19 therapy aimed at RAS management should focus on compensating 
the loss of the short-arm effects. Ang-(1–7) directly opposes Ang II using 
the short arm. Therefore, to restore balance, one could supplement the 
peptide itself or a suitable receptor agonist. Ang-(1–7) peptide and MAS- 
receptor agonists have been suggested as additions to CoViD-19 therapy 
[1,5,14]. The linear peptide is rapidly metabolized and non-specific in 
high doses [15]. Cyclic Ang-(1–7) (cAng-(1–7)) is a better option, as it 
does not present these shortcomings and has shown protective effects for 
the endothelium when tested on models of myocardial infarction [15]. 
The non-peptide agonist AVE0991 has demonstrated promising results 
when tested on models of inflammatory and hypoxic injury such as 
kidney and cerebral ischaemia, and antigen-induced arthritis, modu
lating inflammation and fibrosis and decreasing pro-inflammatory cy
tokines, neutrophil influx, and leucocyte rolling and adhesion [11]. 
However, further specific studies on lung pathologies are needed to 
assess its organ-protective effects against inflammation and fibrosis. 

Within the framework of our model, it is critical to strengthen the 
effects of the short lever arm via a second modulator, to overcome the 
natural bias against them. The ultimate candidates for this purpose are 
AT2-receptor agonists, as AT2-receptor activation causes the desired 
decreases in the disregulated parameters. The natural agonist is Ang II 
itself, probably as a precaution against its overwhelming strength 
mediated by the AT1 receptors. Its effects via the AT2 pathway are much 
more subtle, likely due to the low receptor expression in adults [16]. 
However, AT2 receptors notably re-express during vascular injuries 
[16]. Since vasculopathy is characteristic of CoViD-19 [7], AT2 receptors 
are likely re-expressed in the affected tissues, which would concentrate 
the agonist activity where it’s most needed. 

Compound 21 (C21) is a non-peptide agonist highly selective for AT2 
receptors [16]. It has shown great organ-protective and anti-fibrotic 
effects: in models of myocardial infarction, its application leads to 
decreased scarring and reduced expression of cytokines in peri-infarct 
tissue [16], and it also reduces kidney inflammation and fibrosis in 
models of hypertension [17]. Most importantly, in models of pulmonary 
hypertension and cardiopulmonary fibrosis, it reverses lung fibrosis and 
prevents right ventricular fibrosis [2,18], making it a stellar candidate 
for a second modulator to restore RAS balance. 

Note that our underlying assumption is that the effects of the two 
types of agonists are additive. We believe this is a reasonable expecta
tion to hold, given existing experimental evidence. In particular, studies 
have shown that a combination of Ang-(1–7) with an ACE inhibitor was 

more efficient in attenuating diabetic cardiac fibrosis than either agent 
alone [19], and that cAng-(1–7) had add-on effects to an ACE inhibitor 
(lisinopril) in the treatment of experimental diabetic nephropathy [20]. 
Moreover, the synergistic action of a MAS and an AT2 receptor agonist 
has been reported in relation to heart pathology, in models of ischaemic 
myocardial injury where the combined application of C21 and AVE0991 
leads to lower infarct size [21]. Nonetheless, we do believe that com
binations of this kind merits further testing, especially in models of in
flammatory lung injury and lung repair. 

Conclusions 

SARS-CoV-2 disrupts the functioning of ACE2, a main RAS compo
nent, leading to accumulation of its substrate, Ang II, and depletion of its 
product, Ang-(1–7). The two hormones normally have opposing effects 
on inflammation, proliferation and vascular tone, with the Ang-(1–7) 
lowering activity being biased against in healthy individuals. We believe 
the indirect stimulation of proliferation and inflammation by SARS-CoV- 
2 adds to the complex immune signature of the virus, and worsens the 
tissue damage caused by the inflammatory immune response to the 
infection itself. These considerations make RAS a promising target to 
increase the effectiveness of CoViD-19 therapy. 

To model the action of the Ang II/Ang-(1–7) system, we represent it 
as an unequal-arm lever whose short arm is critically incapacitated 
during CoViD-19. From it, we conjecture that a combinations of mod
ulators, namely a MAS agonist and an AT2-receptor agonist, will have 
beneficial additive anti-fibrotic and immune-modulating activities. We 
propose that our hypothesis about the mutually potentiating effects of 
such a combination be tested by applying a MAS and a AT2 agonist to 
experimental models of acute lung injury and lung repair. Positive 
confirmation of our expectations has the potential to lead to substantial 
increase of the therapeutic success of ARDS and improvement of the 
management of the long term effects of CoViD-19. 
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