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Abstract: Corneal keratocyte apoptosis triggered by cornel debridement is one mechanism 

of corneal disorders. In this study, the feasibility of cyclo-(D-Trp-Tyr) peptide nanotubes 

(PNTs) as carriers of caspase 3 silence shRNA delivery was assessed. A model of 

epithelial injury by epithelial debridement was applied to investigate the feasibility of 

PNTs as gene delivery carriers on corneal injury. First, the PNTs were found within 2 μm 

in length and 300 nm in width by an atomic force microscope and confocal laser 

microscope system. Plasmid DNAs were observed to be associated with PNTs by atomic 

force microscope and confocal laser scanning microscope. The plasmids were associated 

with tyrosine of PNTs with a binding constant of 2.7 × 108 M−1. The stability of plasmid 

DNA with PNTs against the DNase was found at 60 min. Using thioflavin T pre-stained 

PNTs on the corneal eye drop delivery, the distribution of PNTs was in the epithelial  

and stroma regions. After corneal debridement, the rhodamine-labeled plasmid DNA and 

thioflavin T pre-stained PNTs were also delivered and could be observed in the stroma of 

cornea. PNTs complexed with anti-apoptotic plasmid caspase 3 silencing shRNA eye drop 

delivery decreased 41% of caspase 3 activity after the first dose by caspase 3 activity and 

Western blot analysis. 
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1. Introduction 

Cornea epithelial debridement often results from cornea surgery, such as laser-assisted in situ 

keratomileusis (LASIK) and photorefractive keratectomy (PRK) in the treatment of myopia, hyperopia 

or astigmatism [1–3]. Cornea epithelial damage is also caused by hypoxia or exposure to alkali, 

ethanol or UV and even with continued epithelial injury by eye rubbing or contact lens wearing [4–7]. 

Loss of keratocytes in stroma was mainly due to cell apoptosis triggered by cornea epithelial  

damages [1–3,8–11]. In epithelial debridement-induced cornea injury with delayed wound healing, 

keratocyte apoptosis resulted in the anterior stroma, and subsequent myofibroblast formation 

determined final visual regression and stromal haze formation, which often occurred after mechanical 

epithelial scrape and PRK for myopia [1,11–14]. Keratocyte apoptosis is also involved in the 

pathophysiology of keratoconus, an ectatic corneal dystrophy that is characterized by progressive 

thinning of the corneal stroma [7] and the pathogenic mechanisms of aniridia [15]. Thus, anti-apoptosis 

following corneal damage may reduce the succeeding detrimental effect. 

Previously, we used corneal epithelial debridement-induced cornea injury [14,16]. DNA fragmentation 

was detected at as early as 1 h after epithelial debridement, occurred at the anterior stroma and 

persisted to 48 h after epithelial debridement. In addition, we found that the protein level of caspase 3 

reached a maximum level at 8 and 24 h after debridement [16]. Using topical administration of  

pCMV-bcl-xL-eGFP DNA with sphere-type polymeric micelles (PM) after corneal epithelial 

debridement, bcl-xL-eGFP fusion protein was detected in wounded ocular tissues, and both DNA 

fragmentation and caspase-3 activity were significantly decreased [16]. Recently, high aspect ratio 

(AR) particles, such as nanotubes, have drawn attention due to not only their bulk capability [17,18], 

but also their being taken up in larger amounts with faster internalization rates, as well as prolonged 

blood circulation time than spherical counterparts [18,19]. Because of the biodegradable and 

biocompatible properties of amino acids (AAs), increasing interest has focused on linear or cyclic 

peptides that can self-assemble to form peptide nanotubes (PNTs). Various AA compositions of  

PNTs provide further surface modification to enhance the interaction with biomembranes, increasing 

stacking with DNA, forming artificial transmembrane ion channels, etc. [20–24], and have a promising 

usage as nano-carriers. To enable us to take advantage of these features, we have investigated the 

feasibility of cyclo-(D-Trp-Tyr) PNTs as an oral gene delivery carrier, and the results showed that 

PNTs and genes could distribute to duodenum, stomach, liver and kidney after the first oral PNTs.  

At 48–72 h after the first dose of oral delivery, the expression of delivered gene at both the protein and 

mRNA levels was also detected at those organs. Therefore, PNTs with a multifunctional nature appear 

to be required for ideal carrier capable for interacting with nucleic acid and penetrating the “tightly” 

organized epithelial layers of cornea, as well as to deliver DNA to cornea. In this study, we delivered 

the plasmid-encoding caspase 3 silencing shRNA with PNTs via eye drop to cornea with epithelial 

debridement and assessed its anti-apoptotic effect. 
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2. Experimental Section 

2.1. Preparation of cyclo-(D-Trp-Tyr) Peptide Nanotubes 

The self-assembly of cyclo-(D-Trp-Tyr) (Bachem, Bubendorf, Switzerland) peptide nanotubes 

(PNTs) was prepared according to our previous study with modification [25]. Briefly, 5 mg of  

cyclo-(D-Trp-Tyr) powder were dissolved in 1.5 mL of 50% ethanol in an Eppendorf tube. The 

Eppendorf tube was left opened, and a white suspension of nanotubes was obtained after equilibrating 

the gas phase for 48–72 h. Nanotubes were harvested by evaporation of residual ethanol. 

2.2. Plasmid DNA 

Caspase 3 silencing shRNA (CAP3 pRFP-C-RS) was purchased from OriGene Technologies 

(Rockville, MD, USA). CAP3 pRFP-C-RS constructs or control shRNA were transfected in vivo using 

PNTs as in our previous studies [16,25]. These plasmids were amplified in Escherichia coli host strain 

DH5α and purified by equilibrium centrifugation on a CsCl-ethidium bromide gradient [16,25]. The 

purity of the plasmid DNA prepared was determined by electrophoresis on an agarose gel followed by 

ethidium bromide staining. DNA concentration was measured by ultraviolet (UV) absorption at  

260 nm [16,25]. 

2.3. Plasmid DNA Labeling 

Plasmid CAP3 pRFP-C-RS was labeled with TM-rhodamine (Label IT® nucleic acid labeling kit; 

Mirus, Madison, WI, USA) according to the manufacturer’s instructions, as described in our previous 

studies [25]. Briefly, CAP3 pRFP-C-RS was mixed with labeling buffer and labeling reagent. After 

incubating at 37 °C for 2 h, the labeled DNA was further purified by ethanol precipitation and 

confirmed by HPLC with a TSK-GEL® G5000 PWXL column (Tosoh Bioscience, Tessenderlo, 

Belgium) at a 0.7 mL/min flow rate with water (pH 5) as the mobile phase and detected by 

fluorescence detector (ex = 546 nm, em = 576 nm), as previously report [25]. 

2.4. The Formulation of Plasmid/PNTs Complexes 

The CAP3 pRFP-C-RS/PNTs or TM-rhodamine-labeled CAP3 pRFP-C-RS/PNTs were formulated 

by gently mixing the plasmid DNA (0.08 μg/μL) with PNTs (0.15%, w/v) in an Eppendorf tube for  

24 h at 25 °C, as previously described [25]. 

2.5. Characterization of CAP3 pRFP-C-RS/PNTs 

2.5.1. Scanning Electron Microscope Imaging 

The PNT suspension was dropped on the mica surface and dried in a vacuum system. Samples were 

then coated with gold particles using the sputter coating method under vacuum of 2 millibar at 20 mA 

for 8 min and further observed by SEM. The SEM (S-2400/Hitachi instruments Inc., San Jose, CA, 

USA) was operated at an accelerating voltage of 3.0 kV. 
  



Pharmaceutics 2015, 7 125 

 

 

2.5.2. Atomic Force Microscope Imaging 

Ten microliters of PNTs suspension were placed on a mica surface without further treatment, as in 

previous studies [25]. The AFM (diCPII; Digital Instruments/Veeco Metrology Group, Santa Barbara, 

CA, USA) was operated in a constant tapping mode. The cantilevers were standard NanoProbe silicon 

single-crystal levers (NSC15/AIBS; MikroMasch, Tallinn, Estonia). The constant force mode was used 

with a recommended scan frequency of 328 kHz. A scanner with a 5-μm scanning range was used, and 

all images were collected within a 5 × 5 μm2 area. 

2.5.3. Fluorescence Microscope Imaging 

Ten microliters of TM-rhodamine labeled CAP3 pRFP-C-RS/PNTs complexes were placed on the 

slide surface and air dried. The labeled DNA and only thioflavin T-stained PNTs groups were imaged 

with a fixed exposure time by a fluorescence microscope (Olympus BX40, Tokyo, Japan). 

2.5.4. Size and Zeta Potential Measurement 

The sizes of PNT (0.15%, w/v) suspensions and the Zeta potential of CAP3 pRFP-C-RS (0.08 μg/μL), 

PNTs alone and CAP3 pRFP-C-RS/PNTs complexes in water were measured by quasielastic  

laser dynamic light scattering (DLS) (Hydro 2000S and nano-series nano-ZS, respectively; Malvern 

Instruments, Malvern, UK), as described in our previous studies [16,25]. All measurements were 

performed at 25 °C at a measurement angle of 90° with an assumed refractive index ratio of 1.33. 

2.5.5. Fluorescence Measurement 

In order to determine the association constant of the binding of Tyr in PNTs and the plasmid DNA, 

fluorescence measurements were performed following reports in other studies [25–28]. The emission 

spectra (emission slit 2.5 nm, F-4500 spectrophotometer, Hitachi instruments Inc., Tokyo, Japan) were 

measured upon excitation at 280 nm (excitation slit 2.5 nm), where both Trp and Tyr residues were 

excited, and at 295 nm, where only Trp residues were selectively excited. The binding constant K of 

Tyr to DNA was evaluated by the change of intensity in fluorescence emission spectra of PNTs in the 

presence of different concentrations of DNA excitation at 280 nm according to Equation (1) described 

in previous studies [25,27,28]: log[ ଴ܨ − ܨܨ ] = logܭ + ݊ log[DNA] (1)

Here, F0 and F are the fluorescence intensity of the fluorophore, Tyr, at 280 nm in the absence and 

the presence of different concentrations of DNA, respectively. 

2.5.6. Stability of CAP3 pRFP-C-RS /PNTs with DNase I 

Protection of CAP3 pRFP-C-RS with PNTs against DNase I was carried out as described  

previously [16,25]. Briefly, 13 units of RQ1 RNase-free DNase I (Promega Biotech Co., Ltd, Madison, 

WI, USA) and 100 μg of CAP3 pRFP-C-RS with or without PNTs in a total volume of 200 μL were 

incubated at 37 °C. The mixture was sampled in each 10 μL of samples after incubating with DNase I 
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at 37 °C for 0, 5, 10, 15, 20, 40, 55, 60, 65, 70 and 90 min, and then, 1 μL of RQ1 DNase I stop 

solution (Promega Biotech Co., Ltd, Madison, WI, USA) was immediately added to each sample. The 

resulting solutions were directly loaded onto a 0.8% agarose gel for electrophoresis, and then, the gel 

was stained with ethidium bromide. Qualification of band intensities was performed with a Kodak 

EDAS290 Analysis system (Kodak Scientific Imaging System, New Haven, CT, USA). 

2.6. Animals Used for in Vivo Gene Delivery 

The animal protocol was approved by the Laboratory Animal Research Committee of Taipei Medical 

University (NSC 101-2320-B-038-MY3 and MOST 104-2320-B-038 -014 -MY2). Male nude mice 

(BALB/cAnN-Foxn1nu/CrlNarl) at 6~8 weeks of age were used for epithelial debridement in cornea and 

in vivo eye drop delivery and were purchased from the National Laboratory Animal Breeding and 

Research Center (Taipei, Taiwan). They were maintained under specific pathogen-free conditions. 

2.7. Epithelial Debridement in Mouse Cornea and Eye Drop Gene Delivery to  

Epithelial-Defective Cornea 

Under general anesthesia and topical anesthesia, a round epithelial debridement of 2 mm in 

diameter was generated in the central cornea following previous reports [10,16]. After epithelial 

debridement injury of cornea, the injured eyes were confirmed by photographing with fluorescein (2%; 

Sigma Co., St. Louis, MO, USA) staining to assess the corneal epithelial debridement. After different 

periods of injury, the injured animals were euthanized, and the corneas with a 2 mm in diameter 

wounded area were recruited for further studies. For the in vivo eye drop delivery studies, plasmid at 

0.08 μg/μL in 0.15% PNTs (10 μL per eye, six doses of eye drops and three times a day) was delivered 

to the eyes of mice immediately with or without corneal epithelial debridement [16]. The animals were 

euthanized at 48 h after the first topical administration, and the corneas in the wounded area were 

immediately removed for determining caspase 3 protein and its activity. 

2.8. Distribution of CAP3 pRFP-C-R/PNTs in Mouse Epithelial-Defective Cornea 

In order to trace the distribution of delivered DNA or PNT, the complexes of TM-rhodamine-labeled 

CAP3 pRFP-C-RS/thioflavin T-stained PNTs were administrated following the methods described in 

the section for eye drop gene transfer in vivo [16,25,29]. Mice also receiving no epithelial debridement 

were delivered only thioflavin T-stained PNTs. Mice were euthanized by cervical dislocation at 48 h 

after the first dose; cornea tissues were removed, and cryosections (10 μm) of the O.C.T.-embedded, 

paraformaldehyde-fixed eyes were washed for microscopy observation. After DAPI (1 µg/mL) 

staining for 20 min, sections were observed using confocal laser scanning microscope (Leica TCS SP5, 

Germany) with a diode (50 mW) and DPSS (diode-pumped solid state; 10 mW) laser light source. 

2.9. Determination of Caspase 3 Activity 

Caspase 3 activity was analyzed using the Caspase-Glo® Assay (Promega Biotech Co., Ltd, 

Madison, WI, USA) with a modified protocol [16,30]. Briefly, cytosolic extracts of cornea tissues  

(2 mm) were prepared by dounce homogenization in hypotonic extraction buffer (25 mM HEPES,  
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pH 7.5, 5 mM MgCl2, 1 mM EGTA and 1 μg/mL of leupeptin and aprotinin) and subsequently 

centrifuged to collect the supernatant. The protein concentration of supernatant was adjusted to  

1 mg/mL with extraction buffer and stored at −80 °C. An equal volume of caspase-3 substrate and  

50 μg cytosolic protein were incubated at room temperature for 1 h, and the caspase 3 activity was 

measured with a Veritas™ microplate luminometer (Turner BioSystems, Inc., Sunnyvale, CA, USA). 

Statistical comparisons were made with ANOVA tests with Dunnett’s multiple comparison tests at a 

95% confidence level. All results were presented as the mean ± SEM. 

2.10. Western Blotting Analysis 

To analyze the protein level of caspase 3 after corneal epithelial debridement, the corneas in  

the wounded area of 2 mm in diameter at each time point were excised for Western blotting  

analysis [16]. Tissue homogenates were prepared by sonication with 2× SDS gel-loading buffer  

(100 mM Tris–HCl pH 6.8; 200 mM dithiothreitol; 4% SDS; 0.2% bromophenol blue and 20% 

glycerol); lysates were collected after centrifugation, and the protein concentrations were determined 

using the DC protein assay kit (Bio-Rad, CA, USA). Protein samples were separated on a SDS 

polyacrylamide gel and transferred to methanol-activated polyvinylidene difluoride (PVDF) membrane 

(Hybond-P; Amersham Biosciences, NJ, USA). Primary antibodies against caspase 3 (Santa Cruz 

Biotechnology, Inc., Paso Robles, CA, USA) at 1:200 dilutions and anti-β-actin antibody at 1:2000 as 

the loading control were incubated with the membrane. The membranes were then washed with 0.1% 

Tween 20 in Tris-buffered saline (TBS) and incubated with horse-radish peroxidase (HRP)-conjugated 

secondary antibody for 1 h at room temperature, followed by detection with enhanced chemiluminescence 

(ECL) analysis (ECL Western Blotting Detection Reagents, RPN2209; Amersham Biosciences, 
Hercules, NJ, USA). 

3. Results and Discussion 

3.1. Characterization of CAP3 pRFP-C-RS/PNTs 

The tube-shaped PNTs composed of cyclo-(D-Trp-Tyr) appeared to be 1.8 ± 0.6 μm in length as 

observed by scanning electron microscope (SEM) (Figure 1A,B). Images of AFM further found that 

cyclo-(D-Trp-Tyr) PNTs were tube shapes with 30–200 nm widths (Figure 1D–G). Using 0.2 mg of 

PNTs pre-staining with thioflavin T (4 μM), a dye that has been used to stain PNTs [25,29,31], the 

resulting PNTs are shown to be similar (Figure 1C) to unlabeled PNTs. The labeled thioflavin T with 

PNTs showed a similar nanotube shape with a comparable length and width range reported by others 

using diketopiperazine cyclo-dipeptide with 50% methanol as the solvent [32–34]. They reported that 

the widths or shapes of fiber were influenced by different solvents and their peptide properties, which 

could affect or even induce aggregated ensembles. 
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Figure 1. Morphology of cyclo-(D-Trp-Tyr) peptide nanotubes (PNTs). Images from 

scanning electron microscopy (SEM) (A,B), atomic force microscopy (AFM) (D–F) and 

staining with thioflavin T by fluorescent microscopy are presented (C). 

The self-association of PNTs was evaluated using pyrene as the fluorescence probe. The critical 

association concentration (CAC) was determined by the pyrene I1/I3 ratio, a well-known property 

reflecting the microenvironment polarity [16,25,35]. Results showed that the CAC of PNTs was above 

a 0.1 mg/mL concentration (Figure 2), which is similar to our previous reports [25]. To further 

evaluate the formation of PNTs, the sizes of PNTs above the CAC of 1.5 mg/mL were analyzed by 

quasielastic laser dynamic light scattering (DLS). The overall size of PNTs at a 1.5 mg/mL concentration 

was an average of 2.2 ± 0.5 μm measured by DLS (Table 1), which was similar to the length estimated 

on the images obtained by fluorescent and SEM microscopes. To ensure that PNTs remained in a 

tubular shape, PNTs at this concentration (1.5 mg/mL) were used for all further in vivo eye drop delivery. 

 

Figure 2. Self-association of cyclo-(D-Trp-Tyr) peptide nanotubes (PNTs). The self-

association property was estimated by a pyrene fluorescence probe. For the pyrene 

solution, 6.7 × 10−7 M was used, and the critical association concentration (CAC) was 

determined by the turning point of I1/I3 ratio represented as a solid circular symbol. 
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Table 1. Size and Zeta potential of CAP3 pRFP-C-RS (P) formulated with cyclo-(D-Trp-Tyr) 

peptide nanotubes (PNTs). 

Formulation DLS Size (μm) a Microscope b 
ζ-potential (mV) c 

Width (μm) Length (μm)

P d 0.068 ± 0.003 – – −47.1 ±7.7 
PNTs e 2.2 ± 0.5 0.29 ± 0.08 1.8 ± 0.6 −37.6 ±2.8 

P/PNTs f 1.7 ± 0.6 0.26 ± 0.06 1.4 ±0.8 −74.3 ±1.3 
a Results are expressed as the mean and standard deviation (mean ± SD) for six experiments; b values 

represent the range of particle sizes measured by matching the scale bar visually in SEM images; c results are 

expressed as the mean ± SD for three experiments; d CAP3 pRFP-C-RS (0.08 mg/mL); e PNTs (0.15%);  
f CAP3 pRFP-C-RS (0.08 mg/mL) formulated with PNTs (0.15%) (P/PNTs). 

Furthermore, the overall size of CAP3 pRFP-C-RS/PNTs formulation was an average of  

1.7 ± 0.6 um measured by DLS (Table 1), and this was similar to the length of the PNT formulation 

observed by SEM. The similar size distribution of PNTs and CAP3 pRFP-C-RS/PNTs suggested that 

the presence of plasmid DNA may not affect the sizes of PNTs. To further analyze the effect of DNA 

on the surface charge, the Zeta potential of the CAP3 pRFP-C-RS/PNTs formulation was measured. 

The results (Table 1) revealed that the Zeta potential of CAP3 pRFP-C-RS or PNTs alone in water was 

−47.1 ± 7.7 and −37.6 ± 2.8 mV, respectively. However, the Zeta potential was shifted to  

−74.3 ± 1.3 mV when CAP3 pRFP-C-RS was formulated with PNTs, indicating that the plasmid DNA 

might associate on the surface of PNTs. To further confirm the association of DNA on the surface of 

PNTs, TM-rhodamine-labeled CAP3 pRFP-C-RS was also associated with PNTs and detected by 

fluorescence microscope (Figure 3), as well as imaging with AFM. 

 

Figure 3. Atomic force microscope (A) and fluorescence microscope imaging of  

TM-rhodamine-labeled CAP3 pRFP-C-RS image (red color) (C) formulated with  

cyclo-(D-Trp-Tyr) ThT pre-stained peptide nanotubes image (green color) (B). (D) The 

imaging was merged with (B) and (C). Scale bars denote 2.5 μm. 

In order to confirm the involvement of Tyr residues of PNTs in association with DNA, the 

fluorescence emission spectra of PNTs with or without DNA were examined. The emission intensity 

contributed by Tyr of PNTs (Figure 4A), with excitation at 280 nm [21], was significantly decreased 

when DNA was added, and the results were similar to our previous studies [25]. The emission intensity 

of fluorescence with excitation at 295 nm, which was specific for Trp [21] in PNTs, however, was not 

influenced by the addition of DNA (data not shown) [25]. The quenching at Tyr fluorescence emission 

spectra was found to be augmented with the increasing concentration of DNA used. The binding 
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constant (K) of Tyr residues in PNTs to DNA and the mole fraction of bound DNA were calculated to 

be 8.43 × 108 M−1 and 1.15 mole fraction of DNA bound to Tyr, respectively (Figure 4B). These were 

supported by another report that PNTs with a neutral amino acid, Tyr, were able to associate with  

DNA by stacking the phenolic oxygen of Tyr between the AT pairing in the DNA double-helix via  

an electron-transfer interaction [26]. Several studies also confirmed that Tyr in both linear and cyclic 

peptides stacked its aromatic ring between the base pairing of the DNA molecule [26,32]. In addition,  

it was reported that the binding constant of short peptides, such as linear Lys-Tyr-Lys or  

cyclo-(-Lys-Tyr-Lys-Ahx-) with DNA, was estimated to be far below 1 × 103 M−1 [36]. Therefore, 

different ratios between DNA and PNTs, as well as the lengths of PNTs not only could influence the 

binding/releasing pattern of DNA, but also may affect the internalization rates, penetration behavior 

and stability during circulation due to their different aspect ratios (AR) [17–19]. 

 

Figure 4. Fluorescence quenching assay of cyclo-(D-Trp-Tyr) peptide nanotubes (PNTs) 

with CAP3 pRFP-C-RS. (A) The emission fluorescence spectra of PNTs at 1.6 × 10−8 M 

upon binding to various concentration of DNA (1.6 × 10−8, 3.2 × 10−8, 6.4 × 10−8, 1.2 × 10−7, 

2.5 × 10−7, 5.1 × 10−7 M) with excitation at 280 nm for the detection of fluorescence from 

both of Tyr and Trp residues. (B) The linear plot for log(F0 − F)/F vs. log[DNA] according 

to Equation (1) with r2 = 0.9968. 

3.2. Stability of CAP3 pRFP-C-RS/PNTs with DNase I 

We next analyzed the in vitro stability of DNA in the formulation with PNTs with DNase I [16,25]. 

Results showed that naked DNA was completely digested soon after incubation with DNase I at  

37 °C within 10 min (Figure 5). The supercoiled CAP3 pRFP-C-RS with a size of 7.4 kb was observed 

after DNase I digestion for 60 min in the form formulated with PNTs. The 60 min-delayed degradation 

was also found using carbon nanotubes [37], as well as in our previous studies [25]. 
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Figure 5. Stability of CAP3 pRFP-C-RS (7.4 kb) with cyclo-(D-Trp-Tyr) peptide nanotubes 

(PNTs) analyzed by DNase I. Samples treated with DNase I and CAP3 pRFP-C-RS added 

after PNTs formed at each time point were electrophoresed on 0.8% agarose gel. The 

markers (M) represented DNA of 10, 8, 6, 5, 4, 3, 2.5, 2, 1.5, 1, 0.75, 0.5 and 0.25 kb in 

size. At the 0 min time point of the reaction performed without DNase I, supercoil and 

multi-mer forms of DNA were detected. 

3.3. In Vivo Eye Drop Gene Transfer in Cornea Area 

In order to investigate the feasibility of this PNT for being a useful eye drop gene delivery carrier, 

mice were administrated eye drops with thioflavin T (ThT)-stained PNTs. The PNTs were found in 

both regions of the epithelial and stroma area after 180 min (Figure 6), indicating the presence of PNTs 

that could penetrate into cornea areas. Although our previous study showed a decrease in both length 

and width of PNTs detected over 100 min in the presence of simulated gastric acid at pH 2 [25], the 

small sized PNTs could distribute in four major organs, including stomach, duodenum, liver and 

kidney after 1 h of oral delivery with thioflavin T (ThT) pre-stained PNTs. Furthermore, Jiban  

et al. [38] reported that some intact dipeptide nanotubes were still present in the vitreous humor of eye 

at the end of a 15-day period by intra-vitreal injection. However, since cornea consists of epithelial 

layers, which are a major rate-limiting barrier to drug absorption, the collagenous stroma layer with 

hydrophilic properties, as well as an internal endothelium [39–41], Zang et al. demonstrated that a 

peptide of 27 amino acid residues forming an ion channel could transiently open the intact epithelial 

barrier to allow the permeation of small molecules into the stroma [41]. They found that in the 

presence of their peptide at corneal stromal depths around 50, 100 and 150 μm was significantly high 

and almost as high as in de-epithelialized corneas. They therefore proposed that the mechanisms for 

their peptide entering cornea epithelium may be different from those of EDTA opening the tight 

junction of epithelium to allow the diffusion of small molecules. We showed in our previous in vitro 

duodenal permeability studies that the penetration of cyclo-(D-Trp-Tyr) peptide PNTs formulated with 

DNA was energy and directionally dependent [25]. Therefore, the penetration mechanisms of PNTs 

through cornea epithelium still need to be further investigated systemically to elucidate all of the 

potential factors. 
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Figure 6. The histological analysis of cyclo-(D-Trp-Tyr) peptide nanotubes’ (PNTs) 

distribution in tissues of nude mice after 180 min of eye drop delivery with thioflavin T 

(ThT) pre-stained PNTs. The ThT image (green) is merged with DAPI nuclear staining 

(blue) and the bright field image. Note that the ThT pre-stained PNTs (green color) were 

located in both the epithelial (left) and stroma area (right). Scale bars denote 10 μm. 

3.4. Gene Delivery via Eye Drop to Mouse Cornea after Epithelial Debridement 

The injured corneas were first confirmed by photography with fluorescein before gene delivery with 

PNTs. After corneal epithelial debridement, the anti-apoptotic CAP3 pRFP-C-RS/PNTs was delivered, 

and a 2-mm diameter section within the central debridement area of the cornea was excised for 

detecting labeled plasmid DNA formulated with thioflavin T pre-stained PNTs. The results showed 

that after one dose of eye drop of CAP3 pRFP-C-RS/PNTs to the wounded cornea, the PNTs and DNA 

were found distributed within the stroma region (Figure 7). This was consistent with the observation of  

Pescina et al. that the diffusion of oligonucleotides was not hindered by corneal stroma after being  

de-epithelialized [40]. Although our previous study showed that the release rate of DNA in the PNT 

formulation was in a slow release process [25], we detected some of the labeled plasmid DNA 

distributed around the nuclear area of the keratocyte cell. After 48 h after the first dose of the eye drop 

of CAP3 pRFP-C-RS/PNTs, mice were euthanized, and the caspase 3 activities in cornea were 

evaluated. The results (Figure 8) showed that the caspase 3 activity significantly decreased in cornea 

(41%) at 48 h after the first dose of the eye drop administration of pRFP-C-RS/PNTs (p < 0.05). The 

protein level of caspase 3 was also found to be decreased in wounded corneas after six doses within 48 

h of the eye drop of CAP3 pRFP-C-RS/PNTs, which is comparable to our previous studies with 

pCMV-bcl-xL-eGFP/polymeric micelle delivery after cornea debridement. Although faster internalization 

was reported for nanotubes with a higher aspect ratio (AR) than spherical ones [17,18,42], the 

observed similar decreased caspase 3 level could be due to the removal of the major transport barrier 

of the epithelial layer, and corneal stroma, therefore, could not hinder any hydrophilic compounds.  

In addition, with delivery of the same pCMV-bcl-xL-eGFP plasmid formulated with PNTs, we found  

a similar decreased level of caspase 3 (data not show). In summary, our results provide evidence 

showing the feasibility of this PNT to penetrate the intact cornea via eye drop delivery and to deliver 

CAP3 pRFP-C-RS DNA to decrease the apoptotic protein triggered by corneal epithelial debridement. 

Reducing apoptosis was successfully detected in the wounded cornea after delivery. 
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Figure 7. The histological observation of cyclo-(D-Trp-Tyr) peptide nanotubes (PNTs) 

with the TM-rhodamine-labeled plasmid CAP3 pRFP-C-RS distribution in tissues of nude 

mice after 8 h of eye drop delivery with thioflavin T (ThT) pre-stained PNTs. DAPI image 

(blue) (A), ThT image (green) (B), rhodamine image (red) (C) merged with the bright field 

image (D). Note that the small ThT pre-stained PNTs (green color) and rhodamine-labeled 

plasmid (red) were co-located in the stoma area of cornea. Scale bars denote 10 μm. 

 

Figure 8. Caspase 3 activity of CAP3 pRFP-C-RS/PNT delivery in cornea after  

epithelial debridement. The caspase 3 activity was significant decreased at 48 h of CAP3  

pRFP-C-RS/PNT delivered to epithelial-debrided cornea compared with the same time 

after debridement without treatment. * Significant difference (p < 0.05). 
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