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Background
Discriminant analysis is used in  situations where the clusters are known a priori. The 
main aim of discriminant analysis is to classify an observation, or several observations, 
into these known groups (Härdle and Simar 2007). The problem of multiple group dis-
crimination under normality and non-normality for a long time has posed a challenge 
to researches and several attempts have been made at deriving parsimonious rules that 
address this hurdle (Asamoah-Boaheng et al. 2014). This study evaluates the asymptotic 
performance of a three qroup quadratic discriminant function (QDF) under non-normal 
distribution with varying degrees of sample sizes, varying variable selections and under 
increasing group centroid separators.

Lachenbruch et al. (1977) studied the performance of the QDF under non-normality. 
They generated random samples from non-normal distributions and the samples were 
transformed into components by using Johnson’s system of transformation. Among 
their findings, they found that, the overall sample standard deviation, the between sam-
ple variability of the individual error rates of the function (QDF) under normal or non-
normal distributions was quite large. In the computation of the overall sample standard 
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deviation, the between sample variability of the individual error rates in the QDF on 
normal or non-normal distributions was quite large and for that instability of QDF is 
pronounced. Also the actual error rates were considerably larger than the optimal rates 
in the case of zero mean difference (this is a very difficult problem in assignment). The 
QDF for non-normal samples generally did not do substantially worse than when the 
QDF was derived under normal samples which were obtained after transformation. 
Lachenbruch et al. (1977) compared the re-substitution method and the leave-one-out 
method. The re-substitution method had an unacceptably high bias. The leave-one-out 
method was far superior in respect of generally having a far lesser bias.

Hosseini and Armacost (1992) presented a study on two group discriminant problem 
with equal group mean vectors with several methods and mathematical formulations. 
For comparative purposes, both Fishers linear discriminant function (FLDF) and that of 
QDF were used. Both methods performed better in the case of multivariate non-normal 
distributions than compared to that of the one generated from a multivariate normal 
distribution. All the various discriminatory methods performed better generally when 
the covariance matrices for the two populations were assumed to be unequal. Also, less 
favourable performance was observed for FLDF as well as QDF with presence of outliers 
than when there was absence of outliers/noise. Lachenbruch and Goldstein (1979) con-
sidered the effects of initial misclassification on the QDF. In his simulation, a population 
of two with equal priori probabilities, mean of 0 and 2 and number of variables, 2, 4, 8 
and a fraction αi of the ni, which are actually from the other population, were consid-
ered. He then suggested that if initial misclassification is suspected, all sample points 
should be carefully checked and reassigned if needed. Krzanowski and Hand (1977) con-
sidered an assessment of error rate estimators paying special attention to the leave-one-
out method. The estimator was investigated in a simulation study, both in absolute terms 
and in comparison with a popular bootstrap estimator. Motivated by this, extension of 
leave-one-out, the leave-two-out was looked at considering the variance. As expected, 
the leave-two-out method yields a slight variance reduction relative to the leave-one-out 
method, but was not enough to make it a good competitor.

In order to study the asymptotic error rates of linear, quadratic and logistic rules, 
Kakaï and Pelz (2010) conducted a Monte Carlo study in two, three and five-group dis-
criminant analysis. The simulation study took into account the overlap of the popula-
tions (e = 0.05, e = 0.1, e = 1.5), their common distribution (normal, chi-square with 4, 
8 and 12 df ) and their heteroscedasticity degree, Ŵ, measured by the value of the power 
function, 1− β of the homoscedasticity test related to Ŵ (1− β = 0.05, 1− β = 0.4 , 
1− β = 0.6, 1− β = 0.8). They found that the three rules gave similar error rates for 
normal homoscedastic populations. For non-normal populations, quadratic rule still 
gave lowest relative error except for two-group where logistic was the best. The quad-
ratic and logistic rules were more influenced by the number of groups irrespective of 
their lowest relative error. Also linear and quadratic were more influenced by non-nor-
mality. The study deviates from Lachenbruch et al. (1977) by focusing on three popula-
tions, unequal sample sizes and log-normal distribution for the skewness. Croux (2004) 
studied the influence of observations on the misclassification probability in quadratic 
discriminant analysis. They also studied the effect of observations in the training sample 
on the performance of the associated classification rule. MacFarland (2001) investigated 
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into the exact misclassification probabilities for plug-in normal quadratic functions; 
the case of equal mean. A stochastic representations for the exact distributions of the 
“plug-in” quadratic discriminant functions was derived for classifying a newly obtained 
observation.

As evident in the above literatures, several researchers have done extensive work on 
the performance of various discriminant and classification functions under skewed or 
non normal distributions. However, not much attention has been focused on study-
ing and evaluating the performance of these classifiers using three populations under 
skewed distribution considering different sampling ratios, under different centroid sep-
arators and under varying variable selections. This study therefore seeks to investigate 
the performance of a single classifier (i.e the QDF) under skewed distribution consider-
ing different variable selections, varying sampling ratios and varying centroid separators 
considering three groups/populations.

Methods
The quadratic classifier (�1 �= �2)

Suppose that the joint densities of X ′ = [X1,X2, . . . ,Xp] for population �1 and �2 are 
given by

When the multivariate normal densities have different covariance structures, the terms 
in the density ratio involving |�1/2

i | do not cancel as they do when we have equal covari-
ance matrices and also the quadratic forms in the exponents of fi(x) do not combine. 
Therefore substituting multivariate normal densities with different covariance matrices 
into Eq. (1) and after taking the natural logarithms and simplifying, the likelihood of the 
density ratios gives the quadratic function (assuming equal misclassification cost). Allo-
cate x to �1 if

where

otherwise, x ∈ �2. Considering the Mahalanobis distance, the function is sometimes 
written as

The quantity D2
i (x) = (x − µi)

′�−1(x − µi) is the Mahalanobis square distance.
When �1 = �2 the function reduces to the linear classifier rule.
This function is easily extended to the three group classification where two cut off 

points are required for assigning observations to the three groups (Johnson and Wich-
ern 2007).
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Simulation design

We evaluated the performance of QDF in case of skewed training samples following non 
normal distribution. In the simulation procedure, multivariate normally correlated ran-
dom data was generated for three populations with their mean vector µ1 = (0, . . . , 0), 
µ2 = (0, . . . , δ) and µ3 = (0, . . . , 2δ) respectively using MatLab R2009a.

The covariance matrices, �i(i = 1, 2, 3), where k �= l, σkl = 0.7 for all groups except the 
diagonal entries given as σ 2

k = i, for i = 1, 2, 3 were obtained. Three different groups or 
populations which are normally correlated data were generated. Since the researchers 
were interested in evaluating the performance of the QDF under skewed uncorrelated 
data, the data was transformed from correlated normal to skewed data. In transforming 
the data, skewed data was generated by taking an exponents of the normally correlated/
log normal data.

QDF was then performed in each case and the leave-one-out method was used to esti-
mate the proportion of observations misclassified. Factors considered in this study were:

1.	 Mean vector separator which is set at δ from 1 to 5 where δ is determined by the dif-
ference between the mean vectors.

2.	 Sample sizes which are also specified. Here 14 values of n1 set at 30, 60, 100, 150, 
200, 250, 300, 400, 500, 600, 700, 800, 1000, 2000 and the sample size of n2 and n3 are 
determined by the sample ratios at 1:1:1, 1:2:2 and 1:2:3 and these ratios also deter-
mined the prior probabilities to be considered.

3.	 The number of variables were set at 4, 6 and 8 following (Murray 1977).
4.	 The size of population 1 (n1) was fixed throughout the study and the sizes of popula-

tions 2 and 3, n2 and n3 respectively are determined by the sample size ratio under 
consideration.

Evaluating the performance of the QDF 

Let r denote the classification rule obtained on individuals belonging to p-variate popu-
lations with mixture density F. The error rate can be defined as the overall probability 
of misclassification associated with the classification rule. The probability ejk(r,F) that r 
allocates a random observation vector X to Gj whiles it belongs to Gk and is computed as 
follows [McLachlan (1992) as cited in Kakaï and Pelz (2010)].

The overall error rate e(r,F) associated with r is computed as shown below.

where pk(k = 1, . . . , g) is the group prior probability of Gk

Results and discussion
This sections presents the outcome and discussion of the simulation results of the 
asymptotic performance of the QDF under skewed training samples.

ejk(r,F) = P((X,F) = P(r(X,F) = j|X ∈ Gk), (j, k = 1, . . . , g − 1; j �= k).
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Performance of QDF under varying sampling ratios

From the results, there was an increase in the average error rates of the sample size 
ratios 1:2:2 and 1:2:3 as the total sample size increased asymptotically in the skewed dis-
tribution for δ = 1–3 as shown in Figs. 1, 2 and 3. In Fig. 1 for δ = 1 the lowest error 
rates were reported for equal sample size ratios (1:1:1). The error rates reduced margin-
ally across the number of variables. Improvement in the performance was achieved with 
increased Mahalanobis distance and not asymptotically. The patterns of the error rates 
did not change significantly beyond δ = 3 as shown in Fig. 3. The average error rates for 

Fig. 1  Average error rates of skewed distribution: δ = 1

Fig. 2  Average error rates of skewed distribution: δ = 2
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δ = 5 were the lowest as compared to the other δs and they decreased as the total sample 
size increased.

Effects of number of variables on the performance of the QDF 

The QDF performs differently with increasing number of variables. For sample size ratio 
1:1:1, the average error rates of the variables reduced and curved upward as the total sam-
ple size increased for all δs, as shown in Fig. 4. The average error rates of sample ratios 
1:2:2 and 1:2:3 were different as shown in Figs. 5 and 6. Also from Figs. 5 and 6 the average 

Fig. 3  Average error rates of skewed distribution: δ = 3

Fig. 4  Average error rates of skewed distribution: n1 : n2 : n3 = 1 : 1 : 1
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error rate of the QDF for the respective populations increased as the total sample size 
increased and reduced with increasing number of variable for δ = 1 and 2 . In δ = 3 and 4 
of ratios 1:2:2 and 1:2:3, as the number of variables increased the average error rate of the 
QDF dropped from the total sample size of 150–300 and increased as the sample size also 
increased respectively while that of δ = 5 decreased marginally. In general the average 
error rate increased as the number of variables increased with increasing δ.

Fig. 5  Average error rates of skewed distribution: n1 : n2 : n3 = 1 : 2 : 2

Fig. 6  Average error rates of skewed distribution: n1 : n2 : n3 = 1 : 2 : 3
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Effects of group centroid separator on the performance of QDF

The average error rate of the skewed distribution for sample size ratio 1:1:1 in Fig.  7 
revealed that, as the sample size increases, the average error rates of the individual δs 
generally reduces. Also from Fig. 8, the error rates increased marginally for the individ-
ual deltas (centroids separators) as the sample sizes increases. However the performance 
of the QDF was quite abysmal when the centroid separator was set at δ = 1 as compared 
to the other deltas since it recorded the highest error rates with respect to each of the 
variable selections as 0.20. Also as clearly indicated in Fig. 8, the error rates of the QDF 

Fig. 7  Average error rates of skewed distribution for δ: n1:n2:n3 = 1:1:1

Fig. 8  Average error rates of skewed distribution for δ: n1:n2:n3 = 1:2:2
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was minimised when the group centroid separator was set at δ = 5. Hence increasing the 
group centroid separators minimizes the misclassification rates thereby enhancing the 
performance of the QDF under the sample ratio of 1:2:2. Finally the performance of the 
QDF was evaluated under the sampling ratio of 1:2:3 with respect to the three groups/
populations, π1,π2,π3 with different selections of group centroids as shown in Fig.  9. 
From Fig.  9, similar results were obtained and the performance of the QDF was bet-
ter under increasing group centroid separators, irrespective of the number of variables 
considered at a particular instance but was also dependent on the sample size selection.

Conclusion
This paper investigated the asymptotic performance of QDF on skewed training data for 
three populations (πi, i = 1, 2, 3) with increasing group centroid (δ), with chosen vari-
ables and sample size ratios. Results from the study indicates that, the QDF performed 
quite poorly with an increase in error rates under sample ratios 1:2:2 and 1:2:3 for δ = 1

–δ = 3. Other results also indicates that, the QDF performs better under an equal sam-
ple size ratio (1:1:1) resulting in a reduced misclassification rate with minimized error 
rates. The group centroid separators increased with decreasing group error rates and 
sample sizes. In other words, the QDF performed better in classifying the observations 
into their respective groups when the group centroid separators were increased. Also 
with increasing number of variables, from 4 to 8, the average error rate for evaluating the 
performance of the QDF dropped under δ = 3, 4 for sample ratios 1:2:2 and 1:2:3.

Generally, the study found that, there is always a pronouncement in the reduction of 
misclassification error rates as the group centroid separator increases as compared to an 
increasing sample size ratios. The results obtained from this study (skewed distribution) 
shows some conformity with Lachenbruch et al. (1977). Lachenbruch et al. (1977) gen-
erated random samples through simulations under non-normal distribution. Johnson’s 

Fig. 9  Average error rates of skewed distribution for δ: n1:n2:n3 = 1:2:3
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system of transformation was used to transform the generated random samples into 
components by components. After the transformation, the QDF was derived and its per-
formance was evaluated by the estimated mean error rates, standard deviation and sam-
ple variability. From their study the QDF recorded very high and increasing error rates, 
standard deviation under non-normality compared with the performance of the func-
tion under normally distributed data/training samples. In other words, they discovered 
that the QDF under non normal samples generally performs quite poorly as compared to 
when their performance are evaluated under normal distribution.
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