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1  | INTRODUC TION

Lung cancer is the most common cause of cancer-related death 
worldwide.1 About 85% of lung cancers are non–small-cell lung car-
cinomas,2 which can be divided into 3 histological subtypes, with 
lung adenocarcinoma (LUAD) being the most common.3 Major risk 

factors for LUAD include smoking, genetic factors, diet, alcohol 
consumption, and exposure to ionizing radiation and environmental 
pollutants.4,5 As the early symptoms of LUAD are not obvious, most 
patients with LUAD are diagnosed with advanced stages, though 
metastasis occurs earlier, and the 5-year overall survival (OS) rate is 
less than 20%.6 Although progress has been made in terms of early 
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Abstract
Due to the high heterogeneity of lung adenocarcinoma (LUAD), molecular subtype 
based on gene expression profiles is of great significance for diagnosis and prog-
nosis prediction in patients with LUAD. Invasion-related genes were obtained from 
the CancerSEA database, and LUAD expression profiles were downloaded from The 
Cancer Genome Atlas. The ConsensusClusterPlus was used to obtain molecular 
subtypes based on invasion-related genes. The limma software package was used 
to identify differentially expressed genes (DEGs). A multi-gene risk model was con-
structed by Lasso-Cox analysis. A nomogram was also constructed based on risk 
scores and meaningful clinical features. 3 subtypes (C1, C2 and C3) based on the ex-
pression of 97 invasion-related genes were obtained. C3 had the worst prognosis. A 
total of 669 DEGs were identified among the subtypes. Pathway enrichment analysis 
results showed that the DEGs were mainly enriched in the cell cycle, DNA replication, 
the p53 signalling pathway and other tumour-related pathways. A 5-gene signature 
(KRT6A, MELTF, IRX5, MS4A1 and CRTAC1) was identified by using Lasso-Cox analy-
sis. The training, validation and external independent cohorts proved that the model 
was robust and had better prediction ability than other lung cancer models. The gene 
expression results showed that the expression levels of MS4A1 and KRT6A in tumour 
tissues were higher than in normal tissues, while CRTAC1 expression in tumour tis-
sues was lower than in normal tissues. The 5-gene signature prognostic stratification 
system based on invasion-related genes could be used to assess prognostic risk in 
patients with LUAD.
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diagnostic methods, chemotherapy, radiotherapy, and surgical diag-
nosis and treatment options in recent years, the prognoses of pa-
tients with LUAD remain poor.7

At present, lung cancer treatment mainly depends on histological 
type and clinical stage, but due to the high heterogeneity of LUAD, 
even patients with the same histological type and clinical stage of 
LUAD have different prognoses, so the classification of LUAD based 
on high-throughput sequencing data is of great significance for indi-
vidualized and accurate LUAD treatment.

In recent years, the use of high-throughput sequencing technol-
ogy to detect a large number of gene expression changes, combined 
with the use of bioinformatics methods to systematically analyse 
tumour-related genes and their regulatory mechanisms, has be-
come an important research means in functional genomics, and it 
has been widely used to screen potential tumour biomarkers.8-10 In 
their research of LUAD, Krzystanek et al11 identified a 7-gene sig-
nature (ADAM10, DLGAP5, RAD51AP1, FGFR10P, NCGAP, KIF15 and 
ASPM) by analysing microarray data of early LUAD from the Gene 
Expression Omnibus (GEO) database, and they found significant 
differences in survival and prognosis among these genes. Li et al12 
constructed a 5-gene signature, which was closely related to the tu-
mour microenvironment, by using the GSE10​3584 data set. The 13-
gene signature constructed by He et al13 with metabolism-related 
genes was helpful to predict the prognoses of patients with LUAD. 
Han et al14 constructed a multi-gene signature based on tumour-
infiltrating B lymphocyte–specific genes to predict the clinical out-
come of radiotherapy and immunotherapy in patients with LUAD. Li 
et al15 used a 6-gene signature to predict the prognoses of patients 
with LUAD.

In this study, we identified molecular subtypes of LUAD based 
on tumour invasion–related genes by using gene expression 
data from public databases, such as The Cancer Genome Atlas 
(TCGA) and GEO, for the first time. We evaluated the relation-
ships between the molecular subtypes and prognosis and clin-
ical features. The prognostic risk model based on differentially 
expressed genes (DEGs) between the LUAD subtypes could be 
used to evaluate LUAD prognosis. In addition, the nomogram we 
constructed could be used to help clinical decision-making and 
prognosis judgement.

2  | METHODS AND MATERIAL S

2.1 | Data download and preprocessing

RNA-sequencing data and clinical follow-up information for LUAD 
were downloaded from the TCGA database. The GSE31210 chip 
data set containing survival time information was downloaded from 
the GEO database.

Invasion-related genes were obtained from the CancerSEA web-
site,16 which contains 97 genes (Table S1).

The TCGA-LUAD RNA-sequencing data were preprocessed as 
follows: (1) the samples with no clinical follow-up information were 

removed; (2) the samples with no survival time information were re-
moved; (3) the samples with no status information were removed; (4) 
the Ensemble IDs were transformed into gene symbols; and (5) the 
median expression of multiple gene symbols was obtained.

The GEO data were preprocessed as follows: (1) the samples with 
no clinical follow-up information were removed; (2) the samples with 
no survival time or status information were removed; (3) the probes 
were converted into gene symbols; (4) the probes were mapped to 
multiple genes, and the probes were deleted; and (5) the median ex-
pression of multiple gene symbols was obtained.

After preprocessing, there were 500 TCGA-LUAD samples and 
126 GSE31210 data set samples. The clinical statistics of the sam-
ples can be found in Table 1.

TA B L E  1   Sample information

Clinical features TCGA-LUAD GSE31210

OS

0 318 191

1 182 35

Gender

Female 270 121

Male 230 105

Age

≤60 157 0

>60 343 226

T Stage

T1 167

T2 267

T3 45

T4 18

N Stage

N0 324

N1 94

N2 69

N3 2

M Stage

M0 332

M1 24

Stage

I 268 168

II 119 58

III 80 0

IV 25 0

Smoking history

1 71

2 119

3 129

4 163

5 4

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103584
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
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2.2 | Consistent clustering

The expression levels of 97 invasion-related genes were extracted 
from the TCGA expression profiles, and genes related to LUAD prog-
nosis were obtained by univariate Cox analysis using the coxph func-
tion in R (P < .01). ConsensusClusterPlus (V1.48.0) was used to cluster 
the samples consistently according to significant genes from the single-
factor Cox analysis (parameters: reps = 100, pItem = 0.8, pFeature = 1, 
distance = Minkowski). Pam and Minkowski distances were used as the 
clustering algorithm and distance measure, respectively.

2.3 | Identification of differentially expressed genes

The DEGs of different molecular subtypes were calculated by using 
the limma package in R.17 The DEGs were filtered according to the 
threshold of FDR <0.01 and |log2fc|  >  1, and then, volcano maps 
were plotted.

2.4 | GO and KEGG enrichment analyses

The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) functional enrichment analyses using the DAVID 
database showed that P < .05 was statistically significant. The results 
were visualized by using the ggplot2 package in R (V3.5.3).

2.5 | Calculation of immune scores

Stromal, immune and estimate scores were calculated by using the 
ESTIMATE package in R. Ten immune cells were evaluated by using 
MCPcounter, and 28 immune cells were evaluated by using single-
sample gene set enrichment analysis (ssGSEA) with the GSVA pack-
age in R.18

2.6 | Construction of prognostic risk model

The 500 samples in the TCGA data set were divided into training and 
validation cohorts. To avoid the influence of random assignment bias 
on the stability of subsequent modelling, all samples were put back 
into the random grouping 100 times in advance, and the group sam-
pling was carried out according to the training cohort-to-validation 
cohort ratio of 1:1. The final training cohort contained 250 samples, 
and the final validation cohort contained 250 samples.

2.7 | Univariate and multivariate Cox 
regression analyses

The survival coxph function in R was used to analyse the DEGs among 
the molecular subtypes and the survival data through univariate Cox 

proportional hazard regression. We selected P <  .001 as the filter 
threshold, and genes related to prognosis were obtained. The R 
package glmnet was used to perform Lasso regression on the DEGs 
and prognosis-related genes to compress the risk model to reduce 
the number of genes.19 The step method in the stats package in R 
starts from the most complex model and reduces the number of pa-
rameters by deleting 1 variable in turn. The smaller the step value, 
the more superior the model. This means that the fitting degree of 
the model is better with fewer parameters. The number of genes in 
the risk model was further reduced by using the Akaike information 
criterion (AIC) algorithm.

2.8 | Gene set enrichment analysis

To observe the relationships between risk scores and biological 
functions in different samples, the gene expression profiles of these 
samples were selected for ssGSEA using the GSVA R software pack-
age. The ssGSEA scores of each function corresponding to each 
sample were obtained by calculating the scores of different func-
tions for each sample. The correlations between these functions and 
risk scores were further evaluated. Functions with correlations >0.4 
were selected.

2.9 | Construction and verification of nomogram

Nomograms can show the results of risk models intuitively and 
effectively, and they are convenient to use to predict outcome. A 
nomogram uses line length to indicate the degree of influence of 
different variables and different values of variables on outcome. 
Based on the results of single- and multi-factor analyses, a nomo-
gram model was constructed.20

2.10 | Gene expression in pan-carcinoma

We downloaded 6 immune-infiltrating cell scores from 33 cancers in 
the TIMER database (https://cistr​ome.shiny​apps.io/timer/), and we 
analysed the expression of 5 genes in these 33 cancer tissues.

2.11 | Clinical expression of genes in the 
Oncomine and GEO cohorts

Oncomine (http://www.oncom​ine.org) is a gene chip-based data-
base and integrated data-mining platform. In this study, we set the 
screening criteria as follows: (a) cancer type: LUAD; (b) analysis 
type: cancer vs normal analysis; and (c) threshold criteria: P < .05, 
fold change >1.5 and gene rank = top 10%. The LUAD cohort was 
downloaded from the GEO database, and the ggplot2 R package 
was used to visualize the expression levels of 5 genes in the LUAD 
data set.

https://cistrome.shinyapps.io/timer/
http://www.oncomine.org
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2.12 | Immunohistochemistry and protein-
level validation

The Human Protein Atlas (HPA) provides information on the tissue 
and cell distributions of 26 000 human proteins. We explored pro-
tein levels relating to the 5 genes in normal lung and tumour tissues.

3  | RESULTS

3.1 | Study flow chart

To make the research easier for readers to understand, we drew a 
methodology flow chart (Figure 1).

F I G U R E  1   Flow chart of prognosis- and invasion-related features in lung adenocarcinoma samples
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3.2 | Molecular typing of LUAD based on invasion-
related genes

Through univariate Cox analysis of the 97 invasion-related genes 
in the TCGA expression profile data, 19 genes were found to be 
associated with LUAD prognosis (P  <  .01; Table  S2). Consistent 
cluster analysis showed that the samples could be clustered at 
k  =  3 (Figure  2A). The expression levels of the invasion-related 
genes in the 3 subtypes are shown in Figure 2B. These levels were 
different among the C1, C2 and C3 subtypes. Most of the genes 
were highly expressed in the C3 subtype and lowly expressed in 
the C2 subtype. We further analysed the relationships between 
the 3 subtypes and prognosis. The results showed that there 
were significant differences between the 3 subtypes. The prog-
noses of patients with the C2 subtype were the best, and those 
of patients with the C3 subtype were the worst (log-rank P < .05; 
Figure 2C,D).

3.3 | Identification and functional analysis of DEGs 
among subtypes

The DEGs between C1, C2 and C3 were identified by using the limma 
package in R. The volcano map of the DEGs between C1 and C3 
is shown in Figure S1A; there were 98 up-regulated genes and 123 
down-regulated genes. The volcano map of the DEGs between C1 
and C2 is shown in Figure S1B; there was 1 up-regulated gene and 
4 down-regulated genes. The volcano map of the DEGs between C2 
and C3 is shown in Figure S1C; there were 389 up-regulated genes 
and 267 down-regulated genes.

A total of 669 DEGs between C1/C2, C2/C3 and C1/C3 were 
obtained, and these DEGs were further analysed by KEGG path-
way and GO functional enrichment analyses using the WebGestaltR 
(V0.4.2) software package in R. The biological functions of the top 
10 genes enriched in biological processes (Figure S1D), cellular com-
ponents (Figure S1E) and molecular functions (Figure S1F) were vi-
sualized. The KEGG pathway analysis results showed that the DEGs 
were significantly enriched in the cell cycle, DNA replication, p53 
signalling pathway, microRNAs in cancer, small-cell lung cancer and 
other tumour-related pathways (Figure S1G).

3.4 | Clinical correlations of molecular subtypes and 
comparison with existing subtypes

The distributions of different clinical features among the C1, C2 and 
C3 subtypes were compared. The results showed that there were 
significantly more C2 patients than C1 and C3 patients in the T1, 
N0 and Stage I samples, while there were significantly fewer C2 pa-
tients than C1 and C3 patients in the T2, N1 and Stage II samples 
(Figure 2E-G). The number of survivors in the C2 group was signifi-
cantly higher than in the C1 and C3 groups (Figure 2H). These results 
confirmed that patients with the C2 subtype had the best prognoses.

Previous studies have analysed 33 cancers in the TCGA data-
base. These studies clustered non-blood tumours into 6 immune 
subtypes based on the distributions of various features, such as 
macrophages, immune-infiltrating lymphocytes, transforming 
growth factor-beta response, interferon-γ response and wound 
healing; these subtypes include C1 (wound healing), C2 (INF-γ 
predominance), C3 (inflammation), C4 (lymphocyte depletion), 
C5 (immunological silencing) and C6 (transforming growth factor-
beta predominance), among which C1 and C6 have been associ-
ated with poor prognosis.21 By comparing the molecular subtypes 
with these immune subtypes, it was found that most LUAD pa-
tients in the TCGA data set belonged to the C1, C2 and C3 immune 
subtypes (about 89.5%), and there were no patients with the C5 
immune subtype in the LUAD TCGA data set (Figure 2I). By com-
paring the distributions of the molecular and immune subtypes, it 
was found that patients with the C3 molecular subtype showed 
the highest proportion of the C2 immune subtype, reaching 54% 
(Figure 2J). The proportion of the C2 immune subtype among the 
C2 molecular subtype was lower, and the proportion of the C3 
immune subtype was higher than that of the C3 molecular sub-
type. The survival curve analysis results showed that there were 
significant differences in OS among the immune subtypes (P < .05; 
Figure 2K). These results suggested that the prognosis of the C3 
immune subtype was better than that of the C2 immune subtype.

3.5 | Comparison of immune scores among subtypes

The relationships between the molecular subtypes of the TCGA 
data set and immune scores were identified by using the ESTIMATE 
software package in R, MCPcounter, and the ssGSEA method in the 
GSVA package. The results showed that there were significant differ-
ences in immune scores among the different subtypes (Figure 3A-C). 
The heat map of immune scores among the 3 subtypes is shown in 
Figure 3D.

3.6 | Construction of risk model

The 500 samples in the TCGA data set were grouped according 
to the training set-to-validation set ratio of 1:1, and the univari-
ate Cox proportional hazard regression model method was used to 
evaluate the 669 DEGs between the molecular subtypes. A total 
of 29 genes were found to be associated with prognosis (Table S3). 
Lasso regression was used to further compress the 29 genes. The 
trajectory of each independent variable is shown in Figure  S2A. 
As lambda decreased, the number of independent variable coef-
ficients tending to 0 increased. We used 10-fold cross-validation 
to build the model and analysed the confidence interval (CI) under 
each lambda (Figure  S2B). When lambda equalled 0.003518527, 
the model was considered optimal, and 12 genes (KRT6A, MELTF, 
IL20RB, PLEK2, LOXL2, IRX5, SLC16A11, FAM189A2, ITGA6, PKP2, 
MS4A1 and CRTAC1) were selected as target genes. The AIC 
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algorithm was used to further compress these 12 target genes, 
and 5 target genes (KRT6A, MELTF, IRX5, MS4A1 and CRTAC1) were 
finally obtained.

The Kaplan-Meier curves of the 5 genes are shown in Figure 
S2C-G. The 5 genes could be divided into 2 groups with high and 
low risk (P  <  .05). The final 5-gene signature formula was as fol-
lows: RiskScore  =  0.08073881 * KRT6A  +  0.18237095 * MELTF  − 
0.17903164 * IRX5 − 0.26862737 * MS4A1 − 0.09946249 * CRTAC1.

Risk scores were further converted into Z-scores. Samples with 
scores >0 were divided into the high-risk group, and samples with 
scores < 0 were divided into the low-risk group. A total of 119 sam-
ples were divided into the high-risk group, and 131 samples were 

divided into the low-risk group. The survival curve results showed 
that there was a significant difference in prognosis between the 2 
groups (P < .0001; Figure 4A).

The risk score distributions of the samples were calculated ac-
cording to expression levels and then plotted (Figure 4B). The sur-
vival times of the samples with high-risk scores were significantly 
shorter than those of the samples with low-risk scores, suggesting 
that samples with high-risk scores had worse prognoses. The tim-
eROC software package in R was used to analyse the prognostic 
classification efficiency of risk scores. The model had a large area 
under the curve (AUC) at 1, 3 and 5 years; the 1-year AUC was 0.72, 
and the 5-year AUC was 0.74 (Figure 4C).

F I G U R E  2   A, Cluster thermograms of samples with consistent clusters of k = 3. B, Cluster thermograms of prognosis-related invasion 
genes. C, Survival curves of TCGA lung adenocarcinoma samples with different molecular subtypes. D, TCGA lung adenocarcinoma samples 
according to different molecular subtypes. E-H, Distribution comparison of clinical features among the 3 subtypes of the TCGA data set. I, 
Sanki map of molecular subtypes compared with existing molecular immune subtypes. J, Distribution of molecular subtypes compared with 
existing immune subtypes. K, Survival curves of the molecular immune subtypes



6394  |     YU et al.

3.7 | Verification of risk model robustness in 
internal and external data sets

The robustness of the model was verified by the internal data 
set (TCGA validation set and all data sets) and external data set 
(GSE31210 data set). In all data sets, the same model and coefficients 
as those in the training set were used. The survival curve showed 
significant differences between the high- and low-risk groups in the 
verification set and all data sets (Figure 4D,G). The risk score of each 
sample was calculated according to gene expression, risk score dis-
tributions were plotted in TCGA internal validation set and all data 
sets in Figure 4E,H. The classification efficiencies of prognosis pre-
diction at 1, 3 and 5  years in the TCGA testing cohort and entire 
TCGA cohort are shown in Figure 4F,I, respectively. The 1-year AUC 
reached 0.73 in both data sets.

Z-score transformation of risk scores was performed in 
GSE31210 data set. Samples with risk scores >0 after Z-score trans-
formation were divided into the high-risk group, and samples with 
risk scores <0 after Z-score transformation were divided into the 
low-risk group. This resulted in 94 samples in the high-risk group 

and 132 samples in the low-risk group. The survival curve showed 
a significant difference between the high- and low-risk groups 
(P = .0028; Figure 4J).

The risk score distribution of the samples in the GSE31210 co-
hort was consistent with that of the training set (Figure 4K). Receiver 
operating characteristic (ROC) analysis showed that the 1-year AUC 
reached 0.79 (Figure 4L).

3.8 | Relationships among risk scores, clinical 
features and molecular subtypes

Survival analysis of different clinical subgroups was carried out 
based on risk scores. The results showed that the 5-gene signature 
could significantly distinguish between age, sex, tumour/node/
metastasis (TNM) stage, stage, recurrence, chemotherapy and 
smoking status (current smoker, never smoked, reformed smoker) 
samples into high- and low-risk groups (P < .05; Figure 5A-T). The 
5-gene signature could not divide the M1 samples into 2 groups 
with significant prognostic difference, which may be due to the 

F I G U R E  3   A, Comparison of the ssGSEA immune scores among the subtypes of the TCGA data set. B, Comparison of the MCPcounter 
immune scores among the subtypes of the TCGA data set. C, Comparison of the estimate immune scores among the subtypes of the TCGA 
data set. D, Comparison of all 3 immune score types among the molecular subtypes of the TCGA data set

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
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F I G U R E  4   A, Survival curves between the 2 risk groups based on the 5-gene signature classification. B, Distributions of risk scores and 
survival status based on the 5-gene signature in the TCGA training cohort. C, ROC curve of the 5-gene signature classification in the TCGA 
training cohort. D-F, Survival curves between the 2 risk groups, distributions of risk scores and survival status, and the ROC curve of the 
5-gene signature in the TCGA testing cohort. G-I, Survival curves between the 2 risk groups, distributions of risk scores and survival status, 
and the ROC curve of the 5-gene signature in the entire TCGA cohort. J-L, Survival curves between the 2 risk groups, distributions of risk 
scores and survival status, and the ROC curve of the 5-gene signature in the GSE31210 cohort

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
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F I G U R E  5   Prognostic performance of the 5-gene signature in terms of different clinical features
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small number of M1 samples (P >  .05; Figure 5J). In general, our 
model could be used as a prognostic marker for different clinical 
subgroups if the sample size was appropriate.

Risk score distributions in terms of different clinical features 
were also assessed. The results showed that there were no signif-
icant differences in terms of age or stage (P  >  .05; Figure  S3B,E). 
Risk scores showed significant differences in terms of sex (female, 
male), T stage (T1, T2, T3, T4), N stage (N0, N1, N2, N3), stage (Stage 
I, Stage II, Stage III, Stage IV) and smoking status (current smoker, 
never smoke, reformed smoker) (P <  .05; Figure S3A,C,D,F,G). We 
also compared risk scores among the 3 subtypes (C1, C2 and C3). 
The results showed that the risk scores of C3 subtype samples with 
poor prognosis were significantly higher than those of C2 subtype 
samples with good prognosis (Figure S3H), which further suggested 
that high-risk scores were associated with poor survival outcome.

3.9 | Relationships between risk 
scores and pathways

To observe the relationships between the risk scores and biological 
functions of different samples, GSEA was used to calculate the scores 
of different functions for each sample and correlations between these 
functions and risk scores. Correlation scores >0.4 were considered to 
show positive correlations. Nine pathways were positively correlated 
with risk scores, and 10 pathways were negatively correlated with 
risk scores (Figure S4A). The 19 most relevant KEGG pathways were 
selected for cluster analysis (Figure S4B) based on their enrichment 
scores. Tumour-related pathways, such as KEGG_P53_SIGNALING_
PATHWAY, KEGG_CELL_CYCLE, KEGG_MISMATCH_REPAIR and 
KEGG_DNA_REPLICATION, were activated as risk scores increased, 
while others, such as KEGG_ARACHIDONIC_ACID_METABOLISM, 
KEGG_GLYCEROPHOSPHOLIPID_METABOLISM and KEGG_
ETHER_LIPID_METABOLISM, were deactivated as risk scores 
increased.

3.10 | Construction of nomogram

Univariate and multivariate Cox regression analyses were used to 
analyse the independence of the 5-gene signature model in terms 
of clinical applications. Univariate analysis results showed that TNM 
stage, stage and risk scores were significantly correlated with sur-
vival time; multivariate Cox regression analysis results showed that 
risk scores (HR = 1.63, 95% CI = 1.34-2.96, P < 1e−5) and N stage 
(HR = 1.99, 95% CI = 1.34-2.96, P < .001) were independent prog-
nostic risk factors (Figure  S5A,B). A nomogram was constructed 

based on the significant variables of multiple factors (Figure 6A), and 
the results showed that risk scores had the greatest effect on sur-
vival prediction, suggesting that the 5-gene signature was a good 
predictor of survival. Furthermore, by using calibration curves to 
evaluate the accuracy of the model (Figure 6B), it was observed that 
the calibration curves at 1, 3 and 5 years were close to the standard 
curve, suggesting that the model had good prediction performance. 
Moreover, decision curve analysis was used to evaluate the model's 
reliability (Figure 6C), and the results showed that the benefits of 
risk scores and the nomogram were significantly higher than those 
of the extreme curve, and the effect of the nomogram was higher 
than the effects of T stage, N stage and risk scores, which were close 
to the extreme curve, suggesting that risk scores and the nomogram 
had good clinical applicability.

3.11 | Comparison of risk model with other models

To prove the superiority of our model, 3 risk models, including an 
8-gene signature (Li),22 a 3-gene signature (Yue)23 and a 3-gene sig-
nature (Liu),24 were chosen to compare with our 5-gene signature. 
To make the models comparable, we calculated the risk score of 
each LUAD sample in the TCGA data set by the same method, and 
we evaluated the ROC curve of each model. Z-score transforma-
tion of risk scores was performed. The samples with risk scores >0 
after Z-score transformation were divided into the high-risk group, 
and samples with risk scores <0 after Z-score transformation were 
divided into the low-risk group. The survival curves were plotted. 
The results showed that all 3 models could significantly classify the 
high- and low-risk groups into prognostic categories (Figure 6E,G,I). 
However, the AUCs of the ROC curves of the 3 models were lower 
than those of the 5-gene signature at 1, 3 and 5 years in the TCGA 
data set (Figure 6D,F,H). These results showed that our model had 
good clinical predictive power.

3.12 | Expression and prognosis of 5 genes in 33 
pan-cancers

The box diagram showed that MS4A1 was significantly highly ex-
pressed in LUAD, HNSC and kidney renal clear cell carcinoma, while 
in bladder carcinoma, colon adenocarcinoma, KICH, and READ 
tumours, MS4A1 was significantly lowly expressed (Figure  S6A). 
Compared with normal samples, KRT6A and MELTF showed sig-
nificantly high expression in most cancer types, including LUAD 
(Figure  S6C), while CRTAC1 was expressed lowly in most cancer 
types, including LUAD (Figure  S6D, IRX5 was significantly highly 

F I G U R E  6   A, Construction of the nomogram model. B, Calibration curves at 1, 3 and 5 years using the nomogram. C, Decision curve 
analysis of age, M stage, clinical stage, risk score and nomogram results. D-E, ROC curve of the 8-gene signature risk model (Li) and the 
Kaplan-Meier curves of the high- and low-risk LUAD samples. F-G, ROC curve of the 3-gene signature risk model (Yue) and the Kaplan-
Meier curves of the high- and low-risk LUAD samples. H-I, ROC curve of the 3-gene signature risk model (Liu) and Kaplan-Meier curves of 
the high- and low-risk LUAD samples
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expressed in breast cancer, CHOL, colon adenocarcinoma, kidney 
renal papillary cell carcinoma, liver hepatocellular carcinoma and 
READ tumours, while in KICH, kidney renal clear cell carcinoma, lung 
squamous cell carcinoma and PRAD, IRX5 was significantly lowly ex-
pressed (Figure S6E).

Furthermore, we used forest plots to show the prognostic signif-
icance of 5 genes in 33 cancer types of tumour tissues. The results 
showed that MS4A1 gene is a protective gene in most cancer types, 
and the high expression of MS4A1 gene has a better prognosis. 
In addition, CRTAC1 and IRX5 are also protective genes in LUAD; 
MELTF gene is a risk gene in most cancer types, the prognosis of 
patients with high expression of MELTF gene is worse; at the same 
time, patients with high expression of KRT6A are also associated 
with poor prognosis (Figure S7A-E).

3.13 | Clinical validation of 6 genes in terms of 
protein and mRNA expression

The results showed that in the Oncomine database, CRAT1 was lowly 
expressed in 12 LUAD studies, MS4A1 and MELTF were highly ex-
pressed in 1 LUAD study, KRT6A was highly expressed in 2 LUAD 
studies, and IRX5 showed no significant expression in any LUAD 
study (Figure  7A-E). The GSE75037 and GSE18842 cohorts were 
used to verify the 5 genes’ expression levels in cancer and normal 
samples with the ggplot2 package in R. The box plots showed that 
KRT6A and MELTF had significantly high expression levels in the 
LUAD samples, and CRTAC1 was expressed lowly in the LUAD sam-
ples in both GEO cohorts (Figure 7F-G). In general, the results of the 
GEO and Oncomine databases were almost consistent.

In the HPA database, the immunochemistry results of the 5 genes 
were analysed, but only 4 genes (MS4A1, KRT6A, MELTF and CRTAC1) 
had protein expression data. The results showed that the expression 
levels of MS4A1, KRT6A and MELTF in tumour tissues were higher 
than in normal tissues, while CRTAC1 expression in tumour tissues 
was lower than in normal tissues (Figure 7H-K).

4  | DISCUSSION

In this study, we first genotyped the 500 LUAD samples of the TCGA 
data set based on 97 invasion-related genes, and we divided these 
samples into 3 subtypes, among which there were significant dif-
ferences in prognosis. The C3 subtype had poor prognosis, and this 
was closely related to the pathways of tumorigenesis and develop-
ment. A total of 669 DEGs were identified, and 5 target genes, in-
cluding KRT6A, MELTF, IRX5, MS4A1 and CRTAC1, were obtained by 

using Lasso regression and the AIC algorithm. A 5-gene prognostic 
risk model was constructed. The KRT6A protein is a type II cytoker-
atin, and the KRT6A gene is highly expressed in different types of 
cancer.25,26 Some studies have shown that KRT6A is overexpressed 
in LUAD, and the overexpression of KRT6A is positively correlated 
with positive lymph nodes and invasive tumours. High expression of 
KRT6A in LUAD may promote the proliferation and metastasis of lung 
cancer through epithelial-mesenchymal transformation and cancer 
cell transformation.27 The KRT6A protein is a potential biomarker 
for distinguishing LUAD from squamous cell carcinoma.28 The IRX5 
is a transcription factor that is closely associated with a variety of 
malignancies.29,30 IRX5 can promote the invasion and migration of 
colorectal cancer cells by inhibiting the RHOA-ROCK1-LIMK1 axis.31 
IRX5 expression has been shown to be positively correlated with OS 
in smokers and negatively correlated with OS in non-smokers with 
LUAD.32 MS4A1 can be used as an immune-related gene to predict 
the prognoses of patients with LUAD,33 and the dysregulation of the 
MS4A1 protein in interstitial lymphocytes may be involved in the pro-
gression of asbestos-related squamous cell carcinoma.34 Tissue and 
serum MELTF levels can be used as biomarkers of gastric cancer pro-
gression, and inhibition of MELTF expression can inhibit the invasive 
ability of gastric cancer cells.35 Cartilage acidic protein 1 (CRTAC1) is 
the extracellular matrix protein of human cartilage. CRTAC1 secreted 
by chondrocytes is the glycosylated extracellular matrix molecule of 
human articular cartilage.36 At present, there have been no studies 
of MELTF and CRTAC1 in LUAD, but such studies may provide new 
findings for prognostic markers of LUAD. We plan to further verify 
the mechanism of MELTF and CRTAC1 in LUAD.

We Z-scored the risk scores and divided the samples whose 
risk scores were >0 into the high-risk group and those whose risk 
scores were <0 into the low-risk group. The results showed that the 
high-risk score samples had significantly shorter survival times than 
the low-risk score samples. By analysing the relationships between 
risk scores and pathways, we found that the tumour-related path-
ways of KEGG_P53_SIGNALING_PATHWAY, KEGG_CELL_CYCLE, 
KEGG_MISMATCH_REPAIR and KEGG_DNA_REPLICATION in-
creased with increased risk scores. The main ways to repair DNA 
include base excision repair, mismatch repair, nucleotide excision 
repair and homologous recombination repair. DNA mismatch re-
pair defects are important biomarkers for predicting the efficacy 
of immune checkpoint inhibitors in the treatment of many malig-
nant tumours.37 Some genes, such as MCM4, MCM5 and MCM8, 
may affect LUAD prognosis by regulating the cell cycle, DNA rep-
lication and other biological processes and pathways.38 However, 
the relationships between KRT6A, MELTF, IRX5, MS4A1 and CRTAC1 
and the p53 signalling pathway, the cell cycle, DNA mismatch repair 
and DNA replication are still not obvious. Our study may provide 

F I G U R E  7   Expression box diagrams of gene expression in pan-cancer. Expression of MS4A1 (A), KRT6A (B), MELTF (C), CRTAC1 (D) and 
IRX5 (E) in different tumours. F, Expression box graph of the 5 genes in the GSE75037 cohort. G, Expression box graph of the 5 genes in the 
GSE18842 cohort. H, MS4A1 protein expression in cancer and normal control samples. I, KRT6A protein expression in cancer and normal 
control samples. J, MELTF protein expression in cancer and normal control samples. K, CRTAC1 protein expression in cancer and normal 
control samples

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75037
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18842
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75037
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18842
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new ideas for the study of the mechanism of LUAD progression 
and metastasis.

According to the significant clinical characteristics in the univar-
iate and multivariate regression analyses, T stage, N stage and risk 
scores were used to construct the nomogram. Calibration and decision 
curve analysis curves suggested that the model had good prediction 
performance. Both the internal and external data sets also confirmed 
that the 5-gene signature was robust, and it could perform well in 
the independent data set (GSE31210). Our model performed better 
than other models of LUAD. One advantage of our model is that tar-
geted sequencing based on particular genes reduces healthcare costs 
significantly compared with whole-genome sequencing. Second, we 
selected invasion-related genes as the target genes, which is very 
important for the early diagnosis and prognosis prediction of LUAD. 
More importantly, in the routine clinical diagnosis and treatment pro-
cess, patients’ treatment plans and prognoses are largely dependent 
on pathological stage, the determination of which currently depends 
on the anatomic location of LUAD, so the biological heterogeneity of 
patients with LUAD is not currently being fully reflected. The nomo-
gram we constructed can make up for this deficiency and provide a 
basis for the individualized treatment of patients with LUAD.

Gene expression was explored by using the Oncomine, GEO and 
HPA databases. The results showed that the expression levels of 
MS4A1 and KRT6A in tumour tissues were higher than in normal tis-
sues, while CRTAC1 expression in tumour tissues was lower than in 
normal tissues.

Our study has some limitations. First, the population in the 
TCGA database is predominantly White and Black, and our results 
need to be validated in other racial groups. Second, the construc-
tion of the alignment map was done retrospectively, so our re-
sults need to be further validated in multi-centre clinical trials and 
prospective studies. In the future, we will explore whether other 
regression modelling methods can further improve the prediction 
accuracy of the model.

In conclusion, we identified molecular subtypes of LUAD based 
on tumour invasion-related genes, and we developed a 5-gene sig-
nature prognostic hierarchical system. We recommend the use of 
this classifier as a molecular diagnostic test to assess the prognostic 
risk of LUAD.
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