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SUMMARY

Hhex is expressed in developing and mature pancreatic
ductal cells. Embryonic Hhex ablation leads to chronic
pancreatitis, yet Hhex is not required for mature exocrine
compartment maintenance. Hhex represses G-protein
coupled receptor Npr3, and thus likely ductal cell secretion.

BACKGROUND & AIMS: Perturbations in pancreatic ductal
bicarbonate secretion cause chronic pancreatitis. The physio-
logic mechanism of ductal secretion is known, but its tran-
scriptional control is not. We determine the role of the
transcription factor hematopoietically expressed homeobox
protein (Hhex) in ductal secretion and pancreatitis.

METHODS: We derived mice with pancreas-specific, Cre-
mediated Hhex gene ablation to determine the requirement
of Hhex in the pancreatic duct in early life and in adult
stages. Histologic and immunostaining analyses were used to
detect the presence of pathology. Pancreatic primary ductal
cells were isolated to discover differentially expressed
transcripts upon acute Hhex ablation on a cell autonomous
level.

RESULTS: Hhex protein was detected throughout the em-
bryonic and adult ductal trees. Ablation of Hhex in pancre-
atic progenitors resulted in postnatal ductal ectasia
associated with acinar-to-ductal metaplasia, a progressive
phenotype that ultimately resulted in chronic pancreatitis.
Hhex ablation in adult mice, however, did not cause any
detectable pathology. Ductal ectasia in young mice did not
result from perturbation of expression of Hnf6, Hnf1b, or
the primary cilia genes. RNA-seq analysis of Hhex-ablated
pancreatic primary ductal cells showed mRNA levels of the
G-protein coupled receptor natriuretic peptide receptor 3
(Npr3), implicated in paracrine signaling, up-regulated by
4.70-fold.

CONCLUSIONS: Although Hhex is dispensable for ductal cell
function in the adult, ablation of Hhex in pancreatic progenitors
results in pancreatitis. Our data highlight the critical role of Hhex
in maintaining ductal homeostasis in early life and support
ductal hypersecretion as a novel etiology of pediatric chronic
pancreatitis. (Cell Mol Gastroenterol Hepatol 2015;1:550–569;
http://dx.doi.org/10.1016/j.jcmgh.2015.06.007)
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he exocrine pancreas, composed of acinar and ductal
Tcells, plays a crucial role in digestion by delivering
alkaline, isotonic pancreatic juice containing digestive en-
zymes to the duodenum. Pancreatic zymogens, released
from acini in response to postprandial enterohormonal and
neural signals, traverse an intricate network of ducts of
increasing size.1–3 Rather than merely serving as conduits,
the pancreatic ducts actively aid in digestion by secreting
bicarbonate against an immense concentration gradient.4

Similar to acinar cells, ductal cells are stimulated to
secrete in response to enterohormonal and neural inputs via
the cyclic adenosine 50-monophosphate/protein kinase A
and calcium/phospholipase C-b signaling pathways.5–9

Additionally, various paracrine factors released from
acinar cells have been identified that augment ductal
cell stimulation, ensuring a coordinated pancreatic
response.10,11

Bicarbonate secretion serves to solubilize intraluminal
zymogens and neutralize acidic chyme in the duodenum.12

Impairment of ductal cell functioning, such as what is
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Table 1.Primers Used for Genotyping Analysis

Primer Sequence (50/30) Product Size (bp)

Hhex-F ATTGACGGAAATGTTGCCATA WT: 473
loxP: 605Hhex-R CCAAGTGACACGATCCAGAAC

CreERT2-F TTTCAATACCGGAGATCATGC 550

CreERT2-R ATTCCTGTCCAGGAGCAAGTT

Cre-F GCGGCATGGTGCAAGTTGAAT 232

Cre-R CGTTCACCGGCATCAACGTTT

YFP1 AAGACCGCGAAGAGTTTGTC WT: 600
YFPþ: 320YFP2 GGAGCGGGAGAAATGGATATG

YFP3 AAAGTCGCTCTGAGTTGTTAT
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frequently observed in patients harboring mutations in the
cystic fibrosis transmembrane conductance regulator
(CFTR), contributes to the pathogenesis of pancreatic
insufficiency and chronic pancreatitis, an important risk
factor for pancreatic ductal adenocarcinoma.13–15 Although
the mechanism by which bicarbonate is transported across
the pancreatic ductal epithelium has been elucidated, the
transcriptional control governing this process remains
poorly understood.

Recently, we reported that the transcription factor Hhex
(hematopoietically-expressed homeobox protein), initially
described as Prh (proline-rich homeodomain) in chicken, is
expressed in the pancreatic ductal epithelium;16,17 however,
its function in this cell type and its potential contribution to
pancreatic disease pathogenesis have not been determined.
Previous studies indicate that Hhex is critical for proper
development of structures derived from all three germ
layers, including liver, thyroid, forebrain, heart, hematopoi-
etic progenitors, and endothelium.18–20 In the endoderm,
Hhex is first expressed throughout the primitive endoderm
but is later restricted to the visceral endoderm before
gastrulation.21,22 At embryonic development day 7 (E7.0),
Hhex transcripts are localized to the anterior endoderm and
the ventral-lateral foregut, the site of ventral pancreatic and
liver organogenesis. Hhex mRNA is expressed at E10.0 in
precursors of the thymus, liver, thyroid, dorsal pancreatic
bud, and gallbladder.23 By E13.5, endodermal Hhex
expression is limited to the thyroid, liver, epithelial cells of
the pancreas and extrahepatic biliary ducts, and most cell
types of the lung, and it is notably high in the epithelia of the
extrahepatic bile ducts and pancreas at E16.5.23 In the adult
mouse, Hhex gene activity has been previously described in
the lung, thyroid, and liver;23 moreover, Hhex has been
shown to regulate directly functional genes in various
mature cell types, such as somatostatin in d-cells.17

The expression pattern of Hhex in the ventral-lateral
foregut prior to pancreas specification suggests that it
may serve an essential function in pancreatic development.
Indeed, Hhex�/� mice fail to specify the ventral pancreatic
bud, and they exhibit variable forebrain truncation, thyroid
hypoplasia, and cannot expand the hepatic primor-
dium.20,24,25 Importantly, the failure of ventral pancreatic
morphogenesis was determined to be the result of lack of
proliferation of the definitive endoderm, thus compromising
cell migration and subjecting these cells to morphogenetic
inhibition by signaling from the cardiac mesoderm.24 This
cell-extrinsic mechanism was confirmed by the proper in-
duction of the pancreatic progenitor gene Pdx1 and the
proendocrine genes Isl1, Ngn3, and NeuroD when Hhex�/�

endodermal explants were grown away from the cardiac
mesoderm.24 Embryonic lethality of Hhex�/� mice, however,
precluded any further analysis of the role of Hhex in
pancreatic development or function.

Here, we characterized the expression dynamics of Hhex
within the ductal compartment of the pancreas and deter-
mined its requirement for ductal development and function
by employing conditional gene ablation in mice. Ablation of
Hhex in pancreatic progenitors resulted in postnatal ductal
ectasia that progressed to chronic pancreatitis later in life,
consistent with a published model of ductal hypertension.26

Moreover, we identified the G-protein coupled receptor
natriuretic peptide receptor 3 (Npr3), the activation of
which is reported to potentiate secretin signaling to increase
pancreatic flow rate, as regulated by Hhex and likely
contributing to the pathogenesis of chronic pancreatitis in
this genetic model.27
Materials and Methods
Mice

The derivation of the HhexloxP allele has been described
previously elsewhere.28 Pdx1-CreEarly mice were kindly
provided by Dr. Guoqiang Gu and Dr. Doug Melton, and
Sox9-CreERT2 mice were kindly provided by Dr. Maike
Sander.29,30 The mice were maintained on a 129SvEv/
C57BL/6 mixed background. Genotyping was performed by
polymerase chain reaction (PCR) analysis using genomic
DNA isolated from toe snips of newborn mice. The geno-
typing primers are provided in Table 1, and the thermo-
cycler conditions were as follows: HhexloxP and CreERT2:
94�C for 4 minutes [94�C for 35 seconds, 60�C for 35 sec-
onds, 72�C for 50 seconds] 33 times, 72�C for 7 minutes, 4�C
indefinitely; Cre: 94�C for 5 minutes [94�C for 30 seconds,
56�C for 45 seconds, 72�C for 60 seconds] 30 times, 72�C
for 10 minutes, 4�C indefinitely; and YFP: 94�C for 3 mi-
nutes, [94�C for 30 seconds, 50�C for 60 seconds, 72�C
for 60 seconds] 35 times, 72�C for 2 minutes, 4�C indefi-
nitely. Experimental mice were derived from crossing
HhexloxP/loxP animals with either HhexloxP/loxP;Pdx1-CreEarly or
HhexloxP/loxP;Sox9-CreERT2 mice; HhexloxP/loxP littermates
were used as controls for all experiments. For timed mat-
ings, the morning at which a vaginal plug was present was
considered day E0.5.

For experiments with tamoxifen induction, adult mice
(>9 weeks of age) were administered 5 mg of tamoxifen
(T5648, Lot SLBF8049V; Sigma-Aldrich, St. Louis, MO) per
40 g of body mass for 3 consecutive days by oral gavage.
Tamoxifen was suspended in a 10% ethanol/90% sunflower
seed oil (S5007; Sigma-Aldrich) (v/v) mixture at 20 mg/mL
and rotated at 42�C for 2 hours until completely dissolved.
All procedures involving mice were approved by the Uni-
versity of Pennsylvania Institutional Animal Care and Use
Committee.
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Histologic Analysis
For studies with adult mice, pancreata were dissected

and fixed in 4% paraformaldehyde/phosphate-buffered sa-
line (PBS) (w/v) for 16 hours at 4�C, followed by three 10-
minute washes with 1x PBS. Pancreata were laid flat in
tissue cassettes for paraffin embedding. The fixation times
for embryonic/perinatal mice were adjusted as follows:
E13.5–E18.5, 1 hour; postnatal day 3 (P3), 2 hours; P10,
4 hours; and P21, 10 hours. Paraffin sections with the
maximal footprint were used for all experiments.

For all histologic studies, slides were dewaxed/rehy-
drated in a xylene-ethanol series, followed by antigen
retrieval in citric acid buffer pH 6.0 in a 2100 Classic
Clinical Autoclave (Prestige Medical) if needed (Table 2).
After 2 hours of cooling, slides were rinsed for 10 minutes
in running tap water. For immunohistochemistry, endog-
enous peroxidase activity was blocked by placing slides in
3% hydrogen peroxide for 15 minutes, followed by a
5-minute wash in water. Slides were then blocked with
avidin D and biotin blocking reagents (SP-2001; Vector
Laboratories, Burlingame, CA) for 15 minutes each at room
temperature, with a quick rinse of PBS in between. Slides
were blocked with CAS-Block (008120; Invitrogen/Life
Table 2.Primary and Secondary Antibodies Used for Immunos

Primary A

Antigen Species Dilution Antigen R

Ac-Tub Mouse 1:1000 Yes

GFP Goat 1:500 Yes

Hhex Rabbit 1:250 Yes

Hnf1b Goat 1:100 Yes

Hnf6 Guinea Pig 1:1000 Yes

Muc1 Armenian Hamster 1:200 Yes

Ngn3 Guinea Pig 1:1000 Yes

Npr3 Rabbit 1:50 No

Phospho-p38 Mouse 1:200 Yes

SMA Rabbit 1:200 Yes

Sox9 Goat 1:100 Yes

Secondary

Raised against Raised in Conjugate

Goat IgG Horse Biotin

Guinea Pig IgG Goat Biotin

Mouse IgG Goat Biotin

Rabbit IgG Goat Biotin

Rabbit IgG Donkey Cy3

Armenian Hamster IgG Goat Cy2

Armenian Hamster IgG Goat Cy3

Mouse IgG Goat Cy2

Mouse IgG Goat Cy3

Guinea Pig IgG Donkey Cy2

Goat IgG Bovine Cy2

Goat IgG Bovine Cy5
Technologies, Carlsbad, CA) for 30 minutes at room
temperature.

Primary antibodies (see Table 2) were diluted in CAS-
Block and incubated overnight at 4�C, followed by
species-specific biotinylated secondary antibody (see Table 2;
1:200 in PBS/0.1% Triton X-100) incubation for 40 minutes
at 37�C. Signals were developed using the Vectastain
Elite ABC Kit (PK-6100; Vector Laboratories) and peroxi-
dase substrate 3,30-diaminobenzidine (DAB) Kit (SK-4100;
Vector Laboratories) according to the manufacturer’s
instructions.

For immunofluorescence, the slides were blocked with
CAS-Block for 30 minutes at room temperature after antigen
retrieval and then incubated with primary antibody (see
Table 2) diluted in CAS-Block overnight at 4�C, followed by
species-specific fluorescently conjugated secondary anti-
body (see Table 2; 1:500 in CAS-Block) for 2 to 4 hours at
room temperature. The slides were mounted with fluores-
cent mounting medium (71-00-16; KPL, Gaithersburg, MD)
or Vectashield mounting medium with 4,6-diamidino-2-
phenylindole (DAPI, H-1200; Vector Laboratories). All his-
tologic images were obtained using a Nikon Eclipse 80i
microscope (Nikon, Tokyo, Japan) with a Q-imaging Retiga
taining Analysis

ntisera

etrieval Source Lot No.

Sigma-Aldrich (T7451) 103M4772V

Abcam (ab6673) 10

Dr. Clifford Bogue75

Santa Cruz (sc-7411) E1010

Kind gift from Dr. Patrick Jacquemin40

NeoMarkers (MAbHM-1630-P1Abx) 1630X1210A

Kind gift from Dr. Maike Sander

Thermo Scientific (PA5-22080) PH1894881J

Santa Cruz (sc-7973) H2007

Abcam (ab5694) GR110346-1

Santa Cruz (sc-17340) L0408

Antisera

Dilution Source

1:200 Vector Laboratories (BA-9500)

1:200 Vector Laboratories (BA-7000)

1:200 Vector Laboratories (BA-9200)

1:200 Vector Laboratories (BA-1000)

1:500 Jackson ImmunoResearch (711-165-152)

1:500 Jackson ImmunoResearch (127-225-160)

1:500 Jackson ImmunoResearch (127-165-160)

1:500 Jackson ImmunoResearch (115-225-166)

1:500 Jackson ImmunoResearch (115-165-166)

1:500 Jackson ImmunoResearch (706-485-148)

1:500 Jackson ImmunoResearch (805-545-180)

1:500 Jackson ImmunoResearch (805-605-180)



Table 3.Primers Used for Gene Expression Analysis by Quantitative Reverse-Transcription Time Polymerase Chain Reaction

Transcript Forward Primer Sequence (50/30) Reverse Primer Sequence (50/30)

Cys1 AAAGGCAACCCTGAAGACAG GCCATGAGCTCCTCTTCTGA

Hhex TCAGAATCGCCGAGCTAAAT CTGTCCAACGCATCCTTTTT

Hnf1b CATCTGCAATGGTGGTCACAG GGCTTGCAGTGGACACTGTTT

Hnf6 CAAATCACCATCTCCCAGCAG CAGACTCCTCCTCCTGGCATT

Kif3a GAGAAGGGACCAAGCAGGTAAA TCCTCGTCAATTTTCGCTTGC

Npr3 GCAAATCATCAGGTGGCCTA CCATTAGCAAGCCAGCACCTA

Pkd1 CAAGGAGTTCCGCCACAAAG AACTGGGGATGACTTGGAGC

Pkd2 CTGGATGTTGTGATTGTCGTGT TAGCAGCCCCTCTGCATTTG

Pkhd1 AAGTCAAGGGCCATCACATC ATGTTTCTGGTCAACAGCCC

Polaris AACAGCGCATAAAATCGGGC GGCACTCAGTCGTTCACTCT

Prkcsh CCACAGAGGATGAGAAGATGC TTTCAAGGACCGTTCGACTT

Sec63 GCTCTTCTGGAGACCAAGTCA AAAGCCACCACCACTCTTGT

Sst CCCAGACTCCGTCAGTTTCT GGGCATCATTCTCTGTCTGG

Tbp CCCCTTGTACCCTTCACCAAT GAAGCTGCGGTACAATTCCAG
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2000R camera (QImaging, Surrey, BC, Canada) using iVision
software (BioVision Research, Mountain View, CA). The
numerical apertures of the objectives were as follows (mag/
NA): 4�/0.13, 10�/0.30, 20�/0.50, 40�/0.75.

To determine the presence of pathology, a veterinary
anatomic pathologist assessed the histologic slides in a
blinded manner. For measurement of duct diameter, slides
were scanned, and all luminal diameters present on the
pancreatic footprint were measured; data are presented as
the mean of the average diameter of each animal for each
genotype. For luminal contents score, a pathologist assigned
Figure 1. Hhex is expressed throughout embryonic and matu
D, blue) pancreatic epithelium at E13.5, yet excluded from Ngn3
outlined (A–C). (E–G) Immunohistochemical staining for Hhex ex
(F) intralobular duct, (G) interlobar/main duct. Scale bars: 50 mm
each animal a single score in a blinded manner on a scale of
0–10, with 0 representing no luminal contents on average
and 10 representing virtually all ducts completely occluded
by inspissated, eosinophilic contents; data are presented as
the mean score of each genotype.
Cell Counting and Morphometry
To determine the ablation efficiency of Hhex in each

genetic model, >1000 ductal cells surrounding a lumen
from at least four mutant pancreata were scored as Hhexþ
re ducts. (A–D) Hhex (A, D, red) is expressed in the Sox9þ (C,
þ endocrine progenitors (B, D, green). Several Ngn3þ cells are
pression (brown) in the adult pancreas: (E) intercalated duct,
.



Figure 2. Ablation of Hhex in pancreatic progenitors results in chronic pancreatitis. (A, B) Representative H&E images of
18-week-old control (HhexloxP/loxP) and mutant (HhexloxP/loxP;Pdx1-CreEarly) pancreata (n ¼ 3). (A) Ducts of control pancreata
(arrows) are of typical caliber and consist of simple cuboidal epithelium (inset). (B) Mutant ducts display tortuous, ectatic ducts
(arrowheads and inset) with parenchymal fibrosis (red asterisks). (C) Average numbers of lymphocytes and neutrophils were
quantified from 20 random 40� fields (per animal) of control (HhexloxP/loxP, n ¼ 3) and mutant (HhexloxP/loxP;Pdx1-CreEarly, n ¼ 3)
pancreata based on cell morphology. Mutant pancreata averaged 11.9 lymphocytes and 2.1 neutrophils per field, compared
with 1.0 and 0.15, respectively, in controls. (D, E) Trichrome staining highlights periductal and interstitial fibrosis in mutant
pancreata (red asterisks). (F) Measurement of plasma elastase-1 levels by enzyme-linked immunosorbent assay indicate an
approximate 4.2-fold elevation in 8-week-old mutants (n ¼ 4, mean 2.8 ng/mL) compared with age-matched controls (n ¼ 3,
mean 0.65 ng/mL). Mean of each group is indicated. Scale bars: 400 mm; *P < .05, **P < .01, ***P < .001, Student t test. Insets:
magnification, 400�.
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or Hhex- based on immunohistochemical staining for Hhex.
For lymphocyte and neutrophil quantification, 20 random
H&E fields (magnification, 40�) from three animals of each
genotype were scored for the presence of these cell types
based on well-established morphologic criteria, and cells
within the vasculature, ductal lumina, or intrapancreatic
lymph nodes were excluded. Smooth muscle actin positive
(SMAþ) cells were quantified by scoring 20 random fields
(magnification, 20�) of SMA-immunostained sections from
three animals of each genotype. Data for neutrophil,
lymphocyte, and SMAþ cell number are presented as
average number per field.

To detect fibrillar collagens and quantify fibrosis, sec-
tions from P21 pancreata were stained with Sirius Red
(90461; Chondrex, Redmond, WA) according to the manu-
facturer’s instructions. Morphometric analysis was used to
determine the percentage area that was positive for Sirius
Red relative to the total pancreatic area as previously
described elsewhere, with the exception of using two sec-
tions per mouse spaced >100 mm apart.17 Each data point
represents the average relative Sirius Red-positive area for
each animal.
Elastase-1 Enzyme-Linked Immunosorbent
Assay

Approximately 220 mL of blood was collected from the
tail vein of each mouse using heparinized blood collecting
tubes (02-668-10; Thermo Fisher Scientific, Waltham, MA).
After centrifugation in plasma separator tubes with lithium
heparin (365958; BD Biosciences, San Jose, CA), plasma was
diluted 1:1 with PBS, and 100 mL was used per well in the
elastase-1, Pancreatic (ELA1) BioAssay enzyme-linked
immunosorbent assay kit (mouse) according to the manu-
facturer’s instructions (024760; United States Biological,
Salem, MA). The assay was performed in technical duplicate
for each animal. Absorbance at 450 nm was measured using
a Multiskan FC Microplate Photometer (51119000; Thermo
Fisher Scientific).

RNA Extraction, Quantitative Reverse-
Transcriptase Polymerase Chain Reaction, and
Transcriptome Analysis

For animal studies, dorsal pancreata were dissected in
ice-cold PBS and homogenized in TRIzol (15596-026;



Figure 3. Efficient Hhex ablation in HhexloxP/loxP;Sox9-CreERT2 mice. (A) Schematic of tamoxifen induction in 9- to 12-
week-old mice. (B–D) Representative Hhex immunohistochemistry at 2 weeks after induction. (B) Littermate controls
(HhexloxP/loxP, n ¼ 4) exhibit ducts with nuclear Hhex expression (black arrow). (C, D) In mutant mice (HhexloxP/loxP;Sox9-CreERT2,
n ¼ 6), rare escape cells were detected (black arrow); 95.7% ± 0.8% of duct cells do not express Hhex (black arrowheads)
whereas Hhex expression was retained within d-cells (red arrowheads). Scale bars: 50 mm.
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Ambion/Life Technologies, Austin, TX). For in vitro studies,
cells were washed twice with ice-cold PBS and scraped in
1 mL of PBS. After brief centrifugation at maximum speed,
cells were lysed in TRIzol. Total cellular RNA was extracted
using the RNeasy Mini Kit (74104; QIAGEN, Valencia, CA).
Quantitative reverse-transcriptase PCR was performed as
previously described elsewhere.31 Expression levels were
normalized to those of TATA-box binding protein (Tbp) as
an internal control. Primer sequences for quantitative PCR
are provided in Table 3.

For high throughput RNA sequencing, total RNA
quantity and quality were assayed with an Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA). Li-
braries were prepared using the TruSeq RNA sample
prep kit v2 (Illumina, San Diego, CA). Single-read
sequencing was performed on an Illumina hiSeq2000
(100-bp reads) with Casava1.7 software used for base-
calling (Illumina). Low-quality reads as well as ribo-
somal and repeat sequences were filtered out. Remaining
reads were aligned to the mouse reference genome (NCBI
build 37, mm9) using RNA-Seq unified mapper (RUM)
alignment software (University of Pennsylvania School of
Medicine, Philadelphia, PA).32 Differential expression
analysis was carried out using EdgeR software (Walter
and Eliza Hall Institute of Medical Research, Parkville,
Australia).33
Pancreatic Ductal Cell Sorting and Culture
Isolation of pancreatic duct cells and culture conditions

have been described previously elsewhere.34 Briefly,
pancreata of uninduced 9-week-old HhexloxP/loxP and
HhexloxP/loxP;Sox9-CreERT2 mice were digested in collage-
nase, and duct cells were isolated via ductal-specific Doli-
chos biflorus agglutinin lectin labeling followed by magnetic
bead separation. For recombination experiments, 4-
hydroxytamoxifen (H7904; Sigma-Aldrich) was solubilized
in ethanol and added to the growth medium at a final
concentration of 500 nM.
Cloning of HHEX Overexpression Construct and
Lentiviral Transduction

HHEX (Myc-DDK-tagged) ORF (RC204815, Origene
Technologies, Rockville, MD; accession number
NM_002729) was PCR amplified for subcloning into the
pLU.1-IRES-eGFP lentiviral vector using BamHI and AgeI
restriction sites. The primers were BamHI-HHEX-F: 50-CAC
GGATCCGGTACCGAGGAGATC-30 and AgeI-DDK-R: 50-GTG
ACCGGTTTAAACCTTATCGTCGTCATCCTTG-30. The thermo-
cycler conditions were as follows: 96�C for 2 minutes, [96�C
for 30 seconds, 63�C for 30 seconds, 72�C for 60 seconds]
30 times, 72�C for 10 minutes, and 4�C indefinitely. The
final construct was confirmed by sequencing at the NAP-
Core Facility at the Children’s Hospital of Philadelphia.
Lentiviral particles were prepared at the Protein Expres-
sion Facility at the Wistar Institute (Philadelphia, PA) and
concentrated by ultracentrifugation. Primary ductal cells
were transduced by spin transduction at a multiplicity of
infection of 1000.34 Green fluorescent protein positive
(GFPþ) cells were sorted by fluorescence-activated cell
sorting (FACS) 72 hours after transduction at the Flow



Figure 4.Hhex is not required for maintenance of exocrine compartment homeostasis in the mature pancreas. (A–D)
Representative H&E images from littermate control (HhexloxP/loxP, n � 4 animals for each time point) and mutant pancreata
(HhexloxP/loxP;Sox9-CreERT2, n � 6 animals for each time point) display indistinguishable histology at 2 weeks (A, B) and 12
weeks (C, D) after induction. Scale bars: 100 mm. (E) Control (n ¼ 4, mean 16.4 ± 3.1 mm) and mutant (n ¼ 6, mean 20.9 ± 4.1
mm) pancreata exhibit similar ductal diameter 2 weeks after induction (P ¼ .454, Student t test). Data are presented as the
mean of the average diameter of each animal for each genotype ± standard error of the mean. (F) Grading of luminal contents
(0–10) indicated no statistically significant difference between control (n ¼ 4, mean 3.25 ± 1.70) and mutant (n ¼ 6, mean 5.5 ±
2.01) pancreata 2 weeks after induction (P ¼ .453, Student t test). (G) Similar levels of elastase-1 were detected by enzyme-
linked immunosorbent assay in serum of control (n ¼ 8, mean 0.74 ng/mL) and mutant (n ¼ 6, mean 0.83 ng/mL) male mice 10
weeks after induction (P ¼ .588, Student t test). The mean of each group is indicated. (H) Control (n ¼ 8) and mutant (n ¼ 6)
male mice were weighed for 12 weeks after induction, with no statistically significant differences in body mass observed at any
time point (P > .05, Student t test).
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Cytometry and Cell Sorting Resource Laboratory at the
University of Pennsylvania.
Data Access
All RNA-seq data has been deposited to the National

Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) and can be retrieved using accession number
GSE63526.
Statistical Analysis
At least three animals of each genotype were used for all

statistical analyses, as indicated in each experiment. To
determine differences between groups, a two-tailed



Figure 5. Perinatal ductal ectasia and acinar-to-ductal metaplasia (ADM) in HhexloxP/loxP;Pdx1-CreEarly mice. (A–J)
Representative H&E images at several developmental time points. Insets: High-magnification view of an acinus from control
pancreas at specific age. (A, B) At embryonic development day 18.5 (E18.5), control (HhexloxP/loxP, n � 3 animals) and mutant
(HhexloxP/loxP;Pdx1-CreEarly, n � 3 animals) pancreata displayed similar histology. (C, D) Soon after birth at postnatal day 3 (P3),
however, mutants (D, n � 3 animals) showed ectatic ducts (black asterisk) with associated periductal fibrosis (red asterisk).
Moreover, these regions were associated with ADM (arrowheads, D, G, I, J), a finding only observed in mutants. (E–G) The
histologic features of periductal fibrosis, ductal ectasia, and ADM in mutants became more prominent at P10. (H–J) At P21,
severely affected mutant mice exhibited an exacerbated phenotype with concomitant interstitial fibrosis. (K) Fibrotic area was
measured by Sirius Red staining in P21 mutant (HhexloxP/loxP;Pdx1-CreEarly, n ¼ 5) and control (HhexloxP/loxP, n ¼ 3) pancreata,
and each animal is plotted as a percentage of the total area of the pancreatic footprint. Sirius Red positivity averaged 1.82% in
controls and 3.79% in mutants. *P < .05. Scale bars: 100 mm; insets: magnification, 400�; is, islet.
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homoscedastic Student t test was performed using Excel
software (Microsoft, Redmond, WA). P < .05 was consid-
ered statistically significant. Variation measurements are
given as standard error of the mean. All authors had access
to the study data and reviewed and approved the
manuscript.



Figure 6. Mosaic Hhex expression in HhexloxP/loxP;Pdx1-CreEarly mice at P10. (A) Representative Hhex immunohisto-
chemical staining in control pancreata (HhexloxP/loxP, n � 3 animals) highlights nuclear Hhex expression in ductal cells (black
arrows). (B) Hhex expression in mutant pancreata (HhexloxP/loxP;Pdx1-CreEarly, n � 3 animals) was predominantly a pattern of
regional mosaicism in that specific ducts either expressed (black arrow) or did not express (black arrowheads) Hhex. Similar
patterns of mosaicism were observed at postnatal days P3 and P21; 82.8% ± 3.4% of duct cells at P21 (n ¼ 4 mice) lacked
Hhex expression. Scale bars: 100 mm. Insets: magnification, 400�.
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Results
Hhex Is Expressed Throughout Developing and
Mature Ducts

To determine the function of Hhex in the pancreatic duct,
we first characterized its expression dynamics and locali-
zation. At E13.5–E18.5, Hhex protein was present in nuclei
within Sox9þ cells of the epithelium yet was excluded from
Ngn3þ endocrine progenitors during the secondary transi-
tion (n � 3 animals for each time point were examined)
(Figure 1A–D and data not shown). These data indicate that
Hhex is expressed in ductal progenitors throughout devel-
opment, as the Sox9þ domain becomes progressively more
restricted to ductal progenitors during the secondary tran-
sition.30 In postnatal and adult pancreata, Hhex was
expressed in all segments of the ductal tree, including cen-
troacinar cells, intercalated ducts, intralobular ducts, inter-
lobular ducts, and interlobar/main ducts, as well as
endocrine d-cells (see Figure 1E–G and data not shown).
Ablation of Hhex in Pancreatic Progenitors, but
Not Mature Ductal Cells, Results in Chronic
Pancreatitis

Because the embryonic lethality of Hhex�/� mice pre-
cluded analysis at later stages, we derived two genetic
models for conditional Hhex ablation to assess the require-
ment for Hhex in the maintenance of pancreatic duct func-
tion at different time points. The pancreata of 18-week-old
mice with Hhex ablated in pancreatic progenitors (HhexloxP/
loxP;Pdx1-CreEarly, n ¼ 3) exhibited severe diffuse chronic
pancreatitis (40%–85% of footprint affected) with duct
ectasia, interstitial and periductal fibrosis, acinar dropout,
acinar-to-ductal metaplasia (ADM), and numerous aggre-
gates of lymphocytes, plasma cells, and some neutrophils
(Figure 2B versus A). Quantification of these immune cell
types confirmed a predominantly lymphocytic infiltrate in
mutants (P ¼ .004 for lymphocytes and P ¼ .03 for neu-
trophils; n ¼ 3 for each genotype) (see Figure 2C). Ducts
were severely ectatic and tortuous, with luminal eosino-
philic proteinaceous granular material and cellular debris.
The remaining acini were separated into variably sized
lobules dissected by variably dense fibrous connective tis-
sue (see Figure 2E). Consistent with these histologic find-
ings of chronic pancreatitis, plasma levels of elastase-1 were
elevated 4.2-fold in 8-week-old HhexloxP/loxP;Pdx1-CreEarly

mice (n ¼ 4) relative to age-matched controls (n ¼ 3; P <
.001) (see Figure 2F), reflective of acinar cell injury. These
data indicate that Hhex is required for proper functioning of
the exocrine pancreas.

Given the striking pathology of HhexloxP/loxP;Pdx1-CreEarly

mice, we next tested the hypothesis that Hhex is required for
maintenance of homeostasis of the exocrine pancreas in the
adult. We treated 9- to 12-week-old HhexloxP/loxP;Sox9-
CreERT2 and HhexloxP/loxP littermate control mice with
tamoxifen for 3 consecutive days to induce CreER-mediated
deletion of the Hhex gene and then analyzed for pancreatic
pathology 2 or 12 weeks later (Figure 3A). Quantification of
Hhex expression in HhexloxP/loxP;Sox9-CreERT2 mice 2 weeks
after induction indicated that 95.7% ± 0.8% (n ¼ 6 mice) of
ductal cells had lost Hhex expression as intended, with
similar ablation efficiency at 12 weeks after induction (n ¼
5 mice) (see Figure 3B–D). Analysis of H&E stained sections
yielded no overt pancreatic pathology at either time point in
HhexloxP/loxP;Sox9-CreERT2 mice compared with littermate
controls (Figure 4A–D). Moreover, no statistically significant
difference in average duct diameter or luminal contents was
detected at 2 weeks after induction (see Figure 4E and F;
P ¼ .454 and P ¼ .453, respectively). Finally, measurement
of plasma elastase-1 levels by enzyme-linked immunosor-
bent assay at 10 weeks after induction showed similar levels
between HhexloxP/loxP;Sox9-CreERT2 (n ¼ 5) and littermate
control mice (n ¼ 8; P ¼ .588) (see Figure 4G), and no
differences in body mass were detectable between these



Figure 7.Hhex is not required for expression of primary cilia. (A–C) Immunofluorescence staining for acetylated-tubulin, a
marker of primary cilia, in the ductal epithelium. (A, B) Acetylated-tubulin (red) is visualized within the ductal lumina of both
control (HhexloxP/loxP) and mutant (HhexloxP/loxP;Pdx1-CreEarly) pancreata at embryonic developmental day 18.5 (E18.5) and
postnatal day P10 (n � 3 animals for each genotype at each time point). Mucin-1 (green) was stained to mark the luminal
surface of acinar and ductal cells. (C) A similar expression pattern of acetylated-tubulin (green) was observed between adult
control (HhexloxP/loxP) and mutant (HhexloxP/loxP;Sox9-CreERT2) pancreata 2 weeks after induction (n � 3 animals for each
genotype). Mucin-1 (red) highlights ductal lumina. (D, E0) Acetylated-tubulin immunofluorescence in P21 control
(HhexloxP/loxP;R26-YFP, n ¼ 3) and mutant (HhexloxP/loxP;Pdx1-CreEarly;R26-YFP, n ¼ 4) pancreata indicate the presence of
primary cilia intraluminally. Primary cilia were detected on the surface of YFPþ ductal cells (E0, white arrows) within affected
parenchyma, evident on the lower power image of this region (E, DAPI only). Scale bars: 25 mm unless noted otherwise.
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Figure 8. Expression analysis of genes necessary for pri-
mary cilia function. Quantitative reverse-transcription poly-
merase chain reaction gene expression analysis of dorsal
pancreata at embryonic developmental day 18.5 (E18.5) (A)
and postnatal day P10 (B) show similar levels between
littermate control mice (HhexloxP/loxP, n � 3 animals, black
bars) and mutant mice (HhexloxP/loxP;Pdx1-CreEarly, n � 3
animals, white bars) for an array of genes previously impli-
cated in primary cilia formation and function. Somatostatin
(Sst) was used as a positive control for down-regulation of an
established Hhex target gene in the pancreas. Tbp levels
were used to quantify relative gene expression, and the
mean of the control group for each gene was normalized to a
value of 1. Data are presented as mean ± standard error of
the mean. **P < .01, ***P < .001, Student t test.
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groups for the duration of the study (see Figure 4H).
Together, these data demonstrate that Hhex is not required
to maintain homeostasis of the mature pancreatic ductal
tree.
Embryonic Loss of Hhex Leads to Rapid
Postnatal Ductal Ectasia Associated With
Periductal Fibrosis and Acinar-to-Ductal
Metaplasia

Chronic pancreatitis is a final manifestation of multiple
causes of exocrine dysfunction. Therefore, we analyzed
HhexloxP/loxP;Pdx1-CreEarly mice at earlier time points to
determine the most proximal defect, which we reasoned
would uncover the specific function(s) of Hhex in ductal
epithelial cells. At E18.5, pancreata of HhexloxP/loxP;Pdx1-
CreEarly mice appeared histologically indistinguishable
from those of littermate HhexloxP/loxP controls (n � 3 animals
for each genotype) (Figure 5A and B). At P3, however, focal
areas of ectatic ducts with periductal fibrosis were evident
only in mutants (n � 3 animals for each genotype) (see
Figure 5D versus C). Moreover, these regions were associ-
ated with the presence of ADM (see Figure 5D, G, I, and J), a
finding never observed in control animals. The focal nature
of this phenotype is likely resultant of the mosaic pattern of
Hhex ablation in HhexloxP/loxP;Pdx1-CreEarly mice (Figure 6);
Hhex was observed to be ablated in 82.8% ± 3.4% of duct
cells at P21 in mutants (n ¼ 4 animals).

Analysis of pancreata at P10 and P21 (n � 3 animals for
each genotype at each time point) indicated that dilation of
the exocrine system and extracellular remodeling in mutant
mice became progressively more severe (see Figure 5E–J).
HhexloxP/loxP;Pdx1-CreEarly mice (n ¼ 5) at P21 displayed a
2.08-fold increase in fibrotic area measured by Sirius Red
stain relative to littermate HhexloxP/loxP controls (n ¼ 3; P ¼
.014) (see Figure 5K). This progressive pattern of ductal
ectasia with concomitant fibrosis in mutants likely accounts
for the exocrine dysfunction that leads to chronic pancrea-
titis in adults.
Hhex Does Not Cell Autonomously Regulate
Expression of Hnf6, Hnf1b, or Primary Cilia in
Ductal Cells

Analysis of HhexloxP/loxP;Pdx1-CreEarly pancreata in early
life indicated that ductal ectasia was likely a primary cause
of subsequent exocrine dysfunction. We therefore reasoned
that ectasia was a direct consequence of Hhex ablation.
Conditional ablation of Hhex in embryonic liver has been
reported to result in dilated ducts and polycystic liver dis-
ease in adulthood.28 Moreover, expression of the genes
encoding the transcription factors Hnf6 and Hnf1b, both of
which are known to regulate the elaboration of primary cilia
in the pancreas and other organs, was down-regulated in
the Hhex-ablated liver.28,35–37 Because pancreas-specific
disruption of primary cilia in genetic mouse models re-
sults in severe ductal ectasia and subsequent chronic
pancreatitis, we hypothesized that Hhex may regulate a
transcription factor cascade that includes Hnf6, Hnf1b, and
the genes necessary for functioning of primary cilia.38,39

Typically, primary cilia are present exclusively on ductal
and islet cells in the pancreas from midgestation onward.
Therefore, we determined the presence of primary cilia both
before (E18.5) (n ¼ 3 for each genotype) and after (P10)
(n ¼ 3 for each genotype) the emergence of ductal ectasia
(Figure 7A and B). At both time points, primary cilia were
clearly evident on the luminal surface of ductal cells in our
Hhex ablation model.

Additionally, we assayed for the presence of primary
cilia in the adult model of Hhex ablation and observed
similar numbers of primary cilia between HhexloxP/loxP;Sox9-
CreERT2 and HhexloxP/loxP littermate control mice (n ¼ 3 for
each genotype) (see Figure 7C). To ensure that expression of



Figure 9. Hhex is not required for expression of Hnf6 or Hnf1b. (A) Representative immunohistochemical analysis for Hnf6
(A, B) and Hnf1b (C, D) indicates similar levels of protein between controls (HhexloxP/loxP, n¼ 3 animals) and mutants (HhexloxP/loxP;
Sox9-CreERT2, n¼ 3 animals) 2 weeks after induction in the ductal epithelium. Scale bars: 50 mm. (E–L) Similar levels of Hnf6 were
expressed in ductal cells of control (HhexloxP/loxP;R26-YFP, n ¼ 3) and mutant (HhexloxP/loxP;Pdx1-CreEarly;R26-YFP, n ¼ 3) pan-
creata at postnatal day P21. Hnf6 was detected in YFPþ cells (F, H, L, white arrows). Scale bars: 25 mm.
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primary cilia is indeed not cell-autonomously regulated by
Hhex, we derived an additional mouse model, HhexloxP/loxP;
Pdx1-CreEarly;R26-YFP, in which Cre recombinase activity
indelibly marks a pancreatic progenitor cell and its prog-
eny with yellow fluorescent protein (YFP) expression.
Primary cilia were clearly expressed by YFPþ cells in
HhexloxP/loxP;Pdx1-CreEarly;R26-YFP mutants (n ¼ 4) at P21,
including in areas of ductal ectasia (see Figure 7E and E0).

Although primary cilia were present on ductal cells of
mutant pancreata in both genetic models of Hhex ablation,
the possibility remained that the functioning of these or-
ganelles was compromised. To address this possibility, we
performed gene expression analysis at E18.5 and P10 for an
array of genes that have previously been implicated in pri-
mary cilia formation and/or function in both the pancreas
and other organs.35,37 At both ages, no significant decrease
in the mRNA levels of any of these genes was detected
(Figure 8).

Notably, transcript levels of Hnf6 and Hnf1b were similar
between mutants and littermate controls at both E18.5
and P10 (see Figure 8), in contrast to what has been re-
ported for protein expression in embryonic liver-specific
Hhex ablation.28 It is important to note that these two
factors are nearly duct-specific in the P10 pancreas,
excluding the possibility that residual expression in other
cell types accounted for the lack of alteration in gene
expression.30,40–42 To confirm that these factors are indeed
not cell-autonomous targets of Hhex in the pancreas, we
analyzed their expression pattern in induced adult HhexloxP/
loxP;Sox9-CreERT2 pancreata (n ¼ 5). Similar levels of each
protein were detected in mutants and controls 2 weeks after
induction (Figure 9A–D). The expression pattern of Hnf6 in
HhexloxP/loxP;Pdx1-CreEarly;R26-YFP mutant pancreata (n ¼ 3)
appeared similar to that of littermate controls (n ¼ 3) at
P21 (see Figure 9E and F). Notably, Hnf6 was clearly
detectable in YFPþ cells (see Figure 9L). Together, these
data show that Hhex ablation in the pancreas does not affect
expression of Hnf6, Hnf1b, or primary cilia genes in a cell-
autonomous manner, which points toward a different
function of Hhex in the pancreas compared to the liver.
Hhex Ablation Results in Changes Consistent
With Ductal Hypertension

Given the coincident onset of ductal ectasia with post-
natal exocrine activation in HhexloxP/loxP;Pdx1-CreEarly mice,
and the fact Hhex regulates functional genes in a variety of
mature cell types, we next hypothesized that Hhex directly
contributes to the regulation of ductal cell function—that is,
secretion. Importantly, the progressive manner of the
pathologic changes of HhexloxP/loxP;Pdx1-CreEarly mice closely
resembles that of the primary pancreatic ductal



Figure 10. Activated pancreatic stellate cells (PSCs) are present in pancreata of HhexloxP/loxP;Pdx1-CreEarly mice. (A–C)
Immunostaining for smooth muscle actin (SMA) was used as a marker for activated PSCs. (A) In postnatal day P21 control
mice (HhexloxP/loxP, n ¼ 3), SMA expression was evident exclusively in the vasculature of the pancreas (arrowheads). Black
asterisks: ducts. (B, C) P21 mutant pancreata (HhexloxP/loxP;Pdx1-CreEarly, n ¼ 3), however, exhibited significant smooth muscle
actin (SMA) expression (black arrows) within the parenchyma surrounding ectatic ducts (red asterisks) and histologically normal
acini. Inset: Fibroblastic-type SMAþ cell abutting an acinus. (D) The number of SMAþ cells was quantified in 20 random
magnification 20� fields of mutant (HhexloxP/loxP;Pdx1-CreEarly, n ¼ 3) and control (HhexloxP/loxP, n ¼ 3) pancreata, and the
average number of SMAþ cells per magnification 20� field is plotted for each animal. Mutant pancreata demonstrated a
significantly increased average number of SMAþ cells (mutant genotype average 7.55) relative to littermate controls (control
genotype average 0.65). ***P < .001, Student t test; bars indicate mean of genotype. (E–H) Immunostaining for phosphorylated
p38 (p-p38) stress kinase in P21 pancreata. (E, F) p-p38 parenchymal reactivity was not observed within control tissue (n ¼ 2).
Inset: Immune cells within an intrapancreatic lymph node were used as an internal positive control. (G, H) p-p38 immunore-
activity within mutant pancreata (n ¼ 2) demonstrated a similar pattern as that for SMA in that p-p38þ fibroblastic-type cells
(black arrows) were observed surrounding ectatic ducts and adjacent acini. Scale bars: 100 mm.
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hypertension model.26 In this model, the pancreatic duct of
rats is cannulated and attached to a pump to cause primary
ductal hypertension by physical means, and the common
bile duct is diverted directly to the duodenum to avoid he-
patic hypertension. The first-observed pathologic changes in
the pancreas in this model were ectatic ducts with peri-
ductal fibrosis, which ultimately proceeded to interstitial
fibrosis and chronic pancreatitis, an overall pathogenesis
similar to that seen in Hhex-deficient mice (see Figure 5).
Therefore, we hypothesized that Hhex ablation in the ductal
epithelium results in hypersecretion and its sequelae.

To test this hypothesis directly, we attempted to can-
nulate the ampulla of Vater for direct volumetric assessment
of pancreatic secretions; unfortunately, these attempts were
unsuccessful due to the extremely small diameter of the
ampulla in mice. As a surrogate for barostress, we therefore
assayed for the presence of activated pancreatic stellate
cells (PSCs). One of several mechanisms by which PSCs are
activated is direct pressure, leading to a signaling cascade
via phosphorylation of the stress kinase p38.26,43 Consistent
with this finding, widespread activation of PSCs had been
observed in the ductal hypertension model by staining for
SMA.26,43 Concordantly, pancreata of P21 HhexloxP/loxP;Pdx1-
CreEarly mice (n ¼ 3) exhibited SMAþ cells most prominently
within fibrotic areas of ectatic ducts (Figure 10B and C),
abutting histologically normal-appearing acini adjacent to
affected regions (see Figure 10B), and within areas of
interlobar fibrosis (data not shown). In contrast, control
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pancreata (n ¼ 3) showed SMA immunoreactivity only in
the vasculature (see Figure 10A). Quantification of the
average SMAþ cell number per field indicated a 11.6-fold
increase in mutants (n ¼ 3 for each genotype, P < .001)
(see Figure 10D). Moreover, immunostaining for phos-
phorylated p38 (p-p38) in P21 tissue showed a similar
pattern as that for SMA, in that only mutant pancreata had
p-p38þ fibroblastic-type cells within areas of periductal
fibrosis and surrounding acini (see Figure 10E–H). These
data are consistent with widespread activation of PSCs as a
consequence of ductal hypertension, although other mech-
anisms cannot be excluded.

Hhex Cell-Autonomously Represses Npr3 in
Ductal Cells

To determine the molecular basis of ductal ectasia, we
performed transcriptome analysis using Hhex-ablated pri-
mary ductal cells (PDCs). Due to the numerous secondary
effects evident in HhexloxP/loxP;Pdx1-CreEarly mice, such as
inflammatory infiltrates, PSC activation, and remodeling of
extracellular matrix, we elected to use an ex vivo system to
ablate Hhex acutely in PDCs to ascertain the most proximal
gene expression changes. PDCs were isolated from unin-
duced control HhexloxP/loxP and mutant HhexloxP/loxP;Sox9-
CreERT2 mice to establish PDC lines (Figure 11A; n ¼ 2 for
each genotype). Upon 4-hydroxytamoxifen administration
in vitro, both HhexloxP/loxP;Sox9-CreERT2 mutant lines
showed dramatically reduced levels of Hhex transcript
relative to control lines, as expected (see Figure 11B). High-
throughput sequencing of RNA-derived libraries yielded a
total of 216 differentially expressed transcripts (152 up-
regulated, 64 down-regulated; FDR <0.10) in Hhex-ablated
PDCs versus controls. Of these, we focused on genes that
could be implicated in ductal secretion (ie, G-protein
coupled receptors, ion transporters/channels, and regula-
tors of G-protein coupled receptor downstream signaling)
(see Figure 11C).

We selected the gene natriuretic peptide receptor 3
(Npr3) for follow-up analysis because it showed a 4.70-fold
increase in Hhex-ablated PDCs, is expressed at a higher level
Figure 11. (See previous page). Hhex regulates Npr3 expr
Schematic of approach to identify cell autonomous targets of
isolated from pancreata of 9-week-old control mice (HhexloxP/lo

two animals) to establish primary ductal cell (PDC) lines. Treat
nation in vitro. (B) Gene expression analysis for Hhex transcript le
of the 216 transcripts identified to be differentially regulated in
Genes were selected based on their potential to regulate duc
transduction capability. The fold change is presented as muta
values of the two control lines were averaged to give an indicati
was performed to validate gene expression changes identified
4-hydroxytamoxifen treatment. Hhex and Npr3 expression leve
cence staining for Npr3 shows higher levels specifically within th
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than other differentially regulated G-protein coupled re-
ceptors in PDCs (see Figure 11C) and has previously been
shown to potentiate secretin signaling to enhance pancre-
atic flow in vivo.27 Increased levels of Npr3 transcript were
detected in an independent experiment, validating results
from the transcriptome analysis (see Figure 11D). Immu-
nostaining for Npr3 in both genetic models confirmed
increased Npr3 protein levels specifically in the Hhex-abla-
ted ductal epithelium while Npr3 levels within the acinar
cells remained unchanged (see Figure 11E and F). To sup-
port the hypothesis that Hhex functions to repress the Npr3
locus, we performed the converse experiment to our
aforementioned approach, reasoning that Hhex over-
expression should reduce Npr3 levels. Thus, PDCs were
transduced with a HHEX-IRES-GFP lentiviral construct and
sorted by FACS to establish HHEX-overexpressing PDC lines
(see Figure 11G). Gene expression analysis indeed showed a
reduction of Npr3 levels relative to control lines (0.104 and
0.029 for HHEX overexpressers, versus 0.173 and 0.155 for
controls) (see Figure 11H). Intriguingly, overexpression
lines showed a concomitant, dramatic reduction of murine
Hhex transcript (0.0349 and 0.0212 versus 0.722 and
0.859), suggesting that Hhex may participate in an autor-
egulatory feedback loop in pancreatic ductal epithelial cells.

Discussion
The results presented above support a model in which

the homeobox transcription factor Hhex serves an essential
role in maintenance of exocrine homeostasis in early life by
dampening the response of ductal cells to stimulatory sig-
nals, thus preventing hypersecretion (see model in
Figure 12). According to our model, Hhex ablation in
pancreatic progenitors results in increased expression of the
G-protein coupled receptor Npr3 specifically in ductal cells;
this raises the effective concentration of paracrine natri-
uretic peptide signals, which produces a primary hyperse-
cretion defect of the ductal epithelium. The resultant ductal
hypertension leads not only to ductal ectasia but also to
activation of pancreatic stellate cells, which can mediate the
processes of periductal fibrosis, inflammation, and immune
ession cell-autonomously in pancreatic ductal cells. (A)
Hhex. Dolichos biflorus agglutinin positive ductal cells were
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Hhex-ablated PDCs by RNA-seq (false discovery rate <0.10).
tal secretion via receptor signaling, ion transport, or signal
nt/control. The reads per kilobase per million mapped reads
on of relative expression level. (D) An independent experiment
by transcriptome analysis. RNA was collected 48 hours after
ls are both presented relative to Tbp. (E, F) Immunofluores-
e ductal epithelium of mutants. (E) Postnatal day P21 mutant
ice (HhexloxP/loxP, two animals). DAPI was used to visualize

dult mutant mice (HhexloxP/loxP;Sox9-CreERT2, n ¼ 2) versus
moxifen. DAPI was used to visualize nuclei. Ductal epithelium
pression approach. Two primary ductal cell lines were trans-
GFPþ cells were sorted by fluorescence-activated cell sorting
DC lines. (H) Gene expression analysis of control (n ¼ 2) and
pr3 is presented relative to Tbp.



Figure 12. Model of Hhex molecular function in the
pancreatic ductal epithelium. (A) In control pancreata, Hhex
functions to repress expression from the Npr3 locus.
Signaling pathways in the ductal cell contribute to physio-
logically appropriate secretion that maintains homeostasis of
the exocrine pancreas. (B) When Hhex is ablated in pancre-
atic progenitors, however, Npr3 protein levels are increased
specifically in ductal cells. Upon postnatal activation of the
exocrine pancreas, the effective concentration of natriuretic
peptide ligand at the ductal cell surface is raised, resulting in
hypersecretion. Consistent with primary ductal hypertension,
ectatic ducts with periductal fibrosis are evident, and
disruption of exocrine homeostasis results in acinar-to-ductal
metaplasia. Ultimately, destruction and remodeling of pa-
renchyma will manifest as chronic pancreatitis.
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cell recruitment.44,45 The interstitial pressure within pan-
creata from human patients with chronic pancreatitis has
been reported to be over 10-fold higher than normal;46 thus,
we contend that the fibrotic process exhibited in perinatal
life initiates a cascade of events that serve as a positive
feedback loop, further increasing intraductal pressure and
extracellular remodeling, ultimately manifesting as chronic
pancreatitis later in life.

Natriuretic peptide signaling is best characterized for its
role in cardiovascular homeostasis;47,48 however, most of
the gastrointestinal tract has been described as a site of
production of atrial natriuretic peptide (ANP).49,50 Fluctua-
tions of ANP expression in the gastrointestinal tract in
fed versus fasted states support its role as a paracrine
signaling mediator.51 In the pancreas, ANP is most highly
expressed in acinar and centroacinar cells.52,53 Intravenous
administration of ANP in rats results in decreased chloride
and increased bicarbonate concentrations in pancreatic
juice.27 Consistent with these molecular studies, ANP
signaling, mediated via the phosphatidylinositol pathway
downstream of Npr3, synergizes with secretin signaling to
increase pancreatic flow rate, a physiologic metric that is
contingent upon active transport of bicarbonate across the
ductal epithelium.27 Our transcriptome analysis of primary
ductal cells is the first to indicate that Npr3 is the most
highly expressed natriuretic peptide receptor in this cell
type, thus likely accounting for the aforementioned physi-
ologic functions (average normalized expression [reads per
kilobase per million mapped reads] values of control PDCs:
Npr1 0.16; Npr2 0.94; Npr3 2.86).

Identifying paracrine signaling molecules released from
acinar cells and determining their relevance to pancreatic
function and pathology is an ongoing effort. Proteomic
analysis of pancreatic acinar zymogen granules identified
371 proteins, many of which are secreted and/or have un-
known function.54 In addition to peptides, an extensive list
of other signaling molecules has been described; among
these are Ca2þ and adenosine-50-triphosphate (ATP),
capable of mediating signals on ductal cells via luminal
calcium-sensing G-protein coupled and iono-/metabotropic
purinergic receptors, respectively.55,56 Moreover, Behren-
dorff et al57 reported that exaggerated intraluminal acidifi-
cation caused by proton release from secretory granules of
acinar cells in response to supraphysiologic activation
directly contributes to pancreatitis via perturbation of tight
junctions. Although the function of intraluminal acinar
acidification is not entirely clear at this time, it may serve as
a negative feedback mechanism to prevent acinar hyperse-
cretion by inhibiting acinar cell endocytosis;58 thus, this
report highlights a direct link between paracrine mediators
and disease pathogenesis. To the best of our knowledge, our
study is the first to describe a pathogenic mechanism in the
exocrine pancreas implicating a paracrine signaling pathway
as the primary defect.

It is important to note that our study does not exclude
formally the possibility of either a primary morphologic
defect of the ductal tree or a functional requirement for
Hhex outside the ductal lineage not detected by simple
histology at E18.5. We believe these possibilities to be less
likely for several reasons. First, genetic ablation of loci
encoding transcription factors, such as Sox9 or Hnf6, that
result in morphological phenotypes often manifest in early
or mid-pancreatic development.35,59 Second, our data indi-
cate that ductal ectasia in Hhex-deficient mice occurs only
after birth, and thus is coincident with exocrine activation
upon feeding. Hezel et al60 described a similar scenario in
which conditional pancreatic ablation of Lkb1 resulted in
apparently normal pancreata at birth; however, mice rapidly
developed pancreatic inflammation and acinar degeneration
only after birth due to defective acinar cell polarity and tight
junctions. Likewise, in our study, a phenotype contingent
upon paracrine signaling would manifest only after activa-
tion of the exocrine system postnatally. Finally, the overall
progression of pancreatic pathology we observed is
consistent with the primary ductal hypertension model.26
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Together, these data establish a role for Hhex and highlight
the importance of paracrine signaling in maintaining normal
pancreatic duct secretion, particularly in neonates.

Although Hhex is crucial for maintenance of exocrine
homeostasis in early life, it is dispensable in the mature
duct. It remains unclear, however, why elevated Npr3 levels
in the ductal epithelium of adult HhexloxP/loxP;Sox9-CreERT2

mice do not result in ductal ectasia or fibrosis. We propose
at least four possibilities to account for the discrepancy
between our genetic models. 1) Newborn animals are fed a
diet consisting exclusively of milk, which has a much higher
fat content than normal rodent chow. Cholecystokinin lev-
els—and thus acinar paracrine signals—would presumably
be increased on a high-fat diet, thereby exacerbating Npr3-
mediated ductal hypersecretion. 2) The smaller average
caliber of the perinatal ductal tree relative to that of the
adult mouse may predispose younger mice to the sequelae
of hypersecretion. Resistance to flow, and thus pressure, is
inversely related to the fourth power of the radius of a tube;
therefore, minor increases in the volume of secretion in
early life may lead to a more drastic increase in pressure
compared to adulthood, and this increase may pass a critical
threshold for activation of pancreatic stellate cells. 3) The
extracellular matrix of perinatal ducts may not be able to
safeguard against increased pressure compared to a mature
duct, and/or the adult duct is more responsive to adapt to
pressure fluctuations by altering extracellular matrix
through posttranslational modification (such as collagen
crosslinking). More compliant ducts in perinatal mice would
become ectatic in response to intraductal hypertension
caused by Hhex ablation, and this force would be more
readily transmitted to the interstitial space, thus resulting in
PSC activation. 4) The mature exocrine pancreas, including
both acinar and ductal cells, may contain a negative feed-
back control mechanism lacking in the immature pancreas
that is responsive to the volume of secretions. Of course,
these possibilities are not mutually exclusive, and some or
all may contribute to the propagation of ductal ectasia and
fibrosis in early life only.

Given the early onset and progressive nature of the
phenotype in Hhex-ablated pancreata, it is tempting to
speculate whether mutations in HHEX, or possibly other loci
that result in ductal hypersecretion, are plausible etiologies
of hereditary or idiopathic chronic pancreatitis in humans.
Often, hereditary chronic pancreatitis (HCP) presents in
childhood or adolescence, and a majority of patients with
hereditary pancreatitis possess a mutation (or rarely an
amplification) in the cationic trypsinogen gene (PRSS1).61–63

Gain-of-function mutations in PRSS1 lower the threshold for
autoactivation of trypsinogen into active trypsin within the
pancreas, thus resulting in pancreatitis.64 Mutations of
PRSS1, however, are found only in 52% to 68% of patients
with HCP, leaving a large contingent of patients with un-
explained etiology.61–63

Since the discovery of PRSS1 mutations as a cause of HCP,
other loci have been implicated as genetic modifiers of both
HCP and idiopathic chronic pancreatitis (ICP), most notably
those encoding cystic fibrosis transmembrane conductance
regulator (CFTR), serine protease inhibitor Kazal type 1
(SPINK1), and chymotrypsin C (CTRC).64–70 Sequencing
analysis has determined that 40% to 50% of adults with ICP
have a mutation in PRSS1, SPINK1, and/or CFTR, and the
prevalence is as high as 79% in a pediatric cohort.71–74 This
raises the possibility that these risk loci may in fact be
causative in some cases of ICP, especially when two or more
loci carry mutations. Based on these epidemiologic studies
and the established role of trypsinogen autoactivation in
pancreatitis pathogenesis, it is believed that dysfunction of
either ductal secretion or the inhibition of trypsinogen
autoactivation predisposes individuals to pancreatitis. These
studies employed targeted sequencing of risk loci, precluding
the discovery of novel mutations in other genes; therefore, as
genomewide approaches in HCP and ICP patient cohorts
become more commonplace, risk loci related to ductal hy-
persecretion may indeed be identified and may include
HHEX.
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