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In this paper, we address the system identification problem in the context of

biological modelling. We present and demonstrate a methodology for

(i) assessing the possibility of inferring the unknown quantities in a

dynamic model and (ii) effectively estimating them from output data. We

introduce the term Full Input-State-Parameter Observability (FISPO) analy-

sis to refer to the simultaneous assessment of state, input and parameter

observability (note that parameter observability is also known as identifia-

bility). This type of analysis has often remained elusive in the presence of

unmeasured inputs. The method proposed in this paper can be applied to

a general class of nonlinear ordinary differential equations models. We

apply this approach to three models from the recent literature. First, we

determine whether it is theoretically possible to infer the states, parameters

and inputs, taking only the model equations into account. When this analy-

sis detects deficiencies, we reformulate the model to make it fully

observable. Then we move to numerical scenarios and apply an optimiz-

ation-based technique to estimate the states, parameters and inputs. The

results demonstrate the feasibility of an integrated strategy for (i) analysing

the theoretical possibility of determining the states, parameters and inputs

to a system and (ii) solving the practical problem of actually estimating

their values.
1. Introduction
Many biological processes can be adequately described by dynamic models

consisting of a set of ordinary differential equations (ODEs) [1]. The com-

ponents of the model equations can be classified according to their

dependence on time (constant or time-varying) and to the knowledge that

the modeller or user possesses about them (known or unknown). The system

identification problem is to determine the unknown quantities present in the

model equations from measured data. Several subproblems and methodo-

logies can be considered as part of the general reverse engineering problem

[2–4].

Identifiability analysis assesses the possibility of determining the parameter

values from output measurements [1,4,5]. A parameter is defined as an

unknown constant appearing in the model equations. Likewise, observability
describes the ability to infer the model states from the model output [1,6,7].

A state is a dynamic variable whose time dependence is described by one of

the differential equations of the model. Finally, a model may have unknown
inputs, which can also be seen as external disturbances or time-varying parameters.

The possibility of inferring them is sometimes called input observability [8,9],

input reconstructibility [10] or system invertibility [11–14].

These properties can be analysed from structural and practical viewpoints.

Structural identifiability refers to the theoretical possibility of determining
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parameter values. It is completely defined by the model

equations and the input–output mapping, and it does not

take into account limitations arising from data quantity or

quality; symmetries in model equations are common sources

of structural unidentifiability [6,7,15,16]. By contrast, practical

or numerical identifiability (sometimes also called estimabil-

ity) refers to the quantification of the uncertainty in

parameter estimates taking into account the actual data

used for calibration [1,4]. Structural identifiability is a necess-

ary but not sufficient condition for practical or numerical

identifiability. The previous sentences have discussed the

structural and practical viewpoints for the parameter iden-

tifiability property; a similar distinction between structural

and practical can be made for state observability and input

reconstructibility.

The analysis of structural properties must be performed a
priori, i.e. before attempting to calibrate or to use a model in

any way, in order to detect any structural issues and dis-

tinguish them from numerical problems, which should be

dealt with differently. This analysis is important not only

because the biological interpretations of structurally unidenti-

fiable parameters are not valid, but also because predictions

about unmeasured states and inputs of the system may also

be wrong if the model has structural deficiencies [7,17–19].

Such errors can have serious consequences; for example, in

the context of biomedical applications, they may lead to

wrong diagnoses or sub-optimal treatments [20–22].

It should be noted that the three aforementioned proper-

ties are sometimes simply called observability (i.e. state

observability, parameter observability, input observability).

In fact, a model parameter can be considered as a state vari-

able whose time derivative is zero, so identifiability can be

simply considered as a subcase of observability [6,7,23].

This use of the term observability is common in the systems

and control literature. However, in biological sciences the use

of the term identifiability is more common than parameter

observability. Historically, the biological modelling commu-

nity has paid considerable attention to the problem of

parametric identifiability, and many techniques for identifia-

bility analysis have been developed in this community,

despite being applicable in other contexts [1,4,5,15,24–26].

This is due to the challenging nature of the parameter identi-

fication problem in biology compared to many engineering

applications, which has motivated the development of new

methods in this area. Thus, although we can use the term

observability to refer to all the aforementioned properties,

we also mention identifiability and reconstructibility to

avoid confusion. To make the distinction explicit, in this

paper we introduce the term Full Input-State-Parameter

Observability (FISPO). We use it for characterizing the prop-

erty of a model for which it is theoretically possible to

determine the values of its unknown parameters, inputs

and states, without requiring assumptions about the know-

ledge of some variables in order to determine the others.

This is emphasized here because, if a model has unknown

parameters and unmeasured states and unknown inputs, the

three aforementioned properties (identifiability, observability

and reconstructibility) are interrelated, and it is not possible

to study one independently of the others.

The question of unknown input observability, also called

reconstructibility or invertibility, was initially studied in the

literature for linear systems [8–11]. A number of works

have addressed the problem of analysing parameter
structural identifiability and input observability jointly. The

differential algebra approach [27] has been applied to the

analysis of certain nonlinear models containing the so-called

‘time-varying parameters’ [28,29]. The differential algebra

algorithms currently available for this analysis can be applied

to polynomial or rational models of relatively small size. As

an alternative, Martinelli has recently proposed to address

this problem from a differential geometry viewpoint [30–32],

presenting an extended observability rank condition [33]

that can be applied to systems with ‘unknown inputs’ (note

the different terminology). For this condition to be applicable,

the model dynamics can be nonlinear in the states but must

be linear with respect to the inputs, both known and

unknown. A related method was presented in [34]. The

algorithms in [33,34] analyse observability of states and

parameters in the presence of an unknown input, but not

the observability of the input itself (although they could

conceivably be modified for this purpose).

Once the FISPO of a model has been analysed, and

assuming that the model is fully observable, a question

naturally arises: how to effectively estimate its unknown par-

ameters and inputs? (Once the inputs and parameters are

determined, it is straightforward to obtain the model states

by simulation, as long as any unknown initial conditions

are included in the unknown parameter vector for estimation

purposes.) In other words, how to deal with the estimation
problem, once the observability problem (i.e. the FISPO analy-

sis) has been solved? In a previous work [35], we addressed

the estimation problem with an optimal tracking approach,

with which we inferred both the time-dependent inputs

and the time-invariant parameters simultaneously from

noisy dynamic data. We provided an implementation of

this approach along with examples, as an add-on for the

AMIGO2 toolbox [36]. An alternative open source software

for input reconstruction is Data2Dynamics/d2d [37]. We

remark that in [35] we did not consider the reconstructibility

problem, i.e. we did not assess the FISPO of the models used

as case studies, since we did not have the tools for such analy-

sis. Likewise, other related works have considered different

instances of input reconstruction problems addressing the

practical estimation problem [38–42]. In particular, Schelker

et al. [39] considered uncertainty in the input measurements

within the general parameter estimation (PE) formulation,

while Kaschek et al. [38] used a calculus of variations-based

approach and Trägårdh et al. [40] formulated the input recon-

struction as a Bayesian inference problem. Furthermore,

Engelhart et al. [41,42] formulated a more general reconstruc-

tion problem in order to estimate not only unknown inputs

but also missed and erroneous interactions. However, all

the aforementioned papers assumed or overlooked the theor-

etical reconstructibility of the full system without providing

any methodology to analyse it. As a notable exception,

Trägårdh et al. [43] analysed the input observability of a phar-

macokinetic model using the Taylor series expansion [44]

before estimating the input. Unlike in the FISPO analysis pro-

posed in the present work, Trägårdh et al. analysed input

observability and parameter identifiability independently,

without taking into account possible interaction effects.

In the present work, we address both the (theoretical)

observability and the (practical) estimation problem. We

first determine if it is possible to infer the unmeasured

states, inputs, and parameters of nonlinear models (that

is, the properties individually known as observability,
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reconstructibility and identifiability) from a structural point

of view. To perform this analysis, which we have called

FISPO, we adopt a differential geometry approach. To this

end, we have extended a recent computational tool [45] in a

way that is in principle applicable to any nonlinear ODE

model with unknown inputs, as long as its dynamic and

output equations are analytic. We demonstrate its use by

applying it to three case studies from physiology, viral

dynamics and synthetic biology. Analysing the FISPO a
priori allows detection of structural issues and distinguishing

them from other possible causes of failure in the estimation,

such as limitations of the optimization algorithm or insuffi-

cient information in the calibration data. Such types of

deficiencies can cause numerical or practical issues, which

are fundamentally different to structural ones and must be

dealt with in a different way. Thus, the FISPO analysis

yields a theoretical result that is necessary but not always suf-

ficient in practice. Hence after analysing it for each case study

we assess the possibility of actually estimating the unmea-

sured variables from output measurements. To this end, we

define numerical scenarios generating pseudo-experimental

data, covering different types of unmeasured inputs: piece-

wise constant, ramp and sinusoidal. Next, we apply a

hybrid optimization method to recover the values of the

model unknowns. For all case studies, the methodology man-

ages to estimate the unknown inputs without prior

knowledge about their shape, along with the parameters

and states. The workflow of the methodology, which

addresses both the theoretical and the practical identification

problems, is shown in figure 1. We finish the paper by dis-

cussing the strengths and limitations of our approach and

outlining future work.
2. Methods
2.1. Notation and definitions
In this paper, we consider nonlinear ODE models of the follow-

ing general form:

model M1:
_x(t) ¼ f (u(t), w(t), x(t), k, u),
y(t) ¼ g(u(t), w(t), x(t), k, u)

�
ð2:1Þ

where x(t) [ Rnx is the state variables vector, u(t) [ Rnu the

known inputs vector, w(t) [ Rnw the unknown inputs vector,

u [ Rnu the unknown parameter vector, k [ Rnk the known con-

stants vector, y(t) [ Rny the output vector, and f and g are

analytic vector functions. The input vectors u(t) and w(t) are in

principle assumed to be smooth, i.e. infinitely differentiable func-

tions. Figure 1 shows the components of the mathematical

models considered in this paper. Note that, in order to make

the distinction between known and unknown parameters expli-

cit, we have included a vector of known constants, k, in the

equations. In the remainder of this paper, we will drop this

dependency on k from the notation.

A parameter ui of a nonlinear model M1 (2.1) is structurally
locally identifiable (s.l.i.) if for almost any parameter vector

u� [ Rnu there is a neighbourhood N (u�) in which the following

holds:

û [ N (u�) and y(t, û) ¼ y(t, u�)) ûi ¼ u�i : ð2:2Þ

If this relationship does not hold in any neighbourhood of u*, ui

is structurally unidentifiable (s.u.). If all the parameters in a model

are s.l.i., the model is also said to be s.l.i. However, if a model has

one or more s.u. parameters, it is said to be s.u.
Similarly, a state xi(t) is said to be observable if it can be deter-

mined from the output y(t) and any known inputs u(t) of the

model in the interval t0 � t � t � tf, for a finite tf [1]. Otherwise,

it is unobservable. A model is observable if all its states are obser-

vable. We use a similar definition for unknown inputs: we say

that wi(t) is reconstructible if it can be determined from y(t) and

u(t) in t0 � t � t � tf, for a finite tf.

To refer to the joint property of structural identifiability of all

parameters, observability of all states and reconstructibility of all

unknown inputs, we use the term Full Input-State-Parameter
Observability, and abbreviate it as FISPO. We use this acronym

both as a noun (to name the property) and as an adjective (to

refer to the model that fulfils this property); in the latter case, it

stands for Full Input-State-Parameter Observable. The FISPO

property is formally defined as follows:

Definition 2.1. FISPO. Consider a model M1 given by (2.1). Let

z(t) ¼ [x(t), u, w(t)] be the vector of unknown model quantities

(i.e. states, parameters and inputs), with z(t) [ Rnxþnuþnw, and

let us denote each element of z(t) at time t as zi(t). We say that

M1 has the FISPO property if every zi(t) can be determined

from the output y(t) and any known inputs u(t) of the model

in the interval t0 � t � t � tf, for a finite tf. Thus, M1 is FISPO if,

for every zi(t), for almost any vector z*(t) there is a neighbourhood

N (z�(t)) in which the following holds:

ẑ(t) [ N (z�(t)) and

y(t, ẑ(t)) ¼ y(t, z�(t))) ẑi(t) ¼ z�i (t): ð2:3Þ

2.2. Structural identifiability and observability: the
differential geometry framework

State observability and parametric structural identifiability can

be jointly studied from a differential geometry viewpoint. In

this approach, the parameters are considered as constant state

variables. Observability of said state variable is equivalent to

structural local identifiability of the corresponding parameter.

By recasting, the parameters as state variables whose dynamics

are zero [23,46,47] we obtain an augmented state ~x of dimension

n~x ¼ nx þ nu:

~x(t) ¼ x(t)
u

� �
and _~x(t) ¼ f (~x(t), u(t), w(t))

0

� �
: ð2:4Þ

We can now use extended Lie derivatives to build an obser-

vability–identifiability matrix. To illustrate the approach, let us

consider first the case without unknown inputs, i.e.

model M2:
_x(t) ¼ f (~x(t), u(t)),
y(t) ¼ g(~x(t), u(t)):

�
ð2:5Þ

The extended Lie derivative of a function g(~x, u) with respect to

f (~x, u) is defined by [48]

Lf g(~x, u) ¼ @g(~x, u)

@~x
f (~x, u)þ

Xj¼1

j¼0

@g(~x, u)

@u(j) u(jþ1), ð2:6Þ

where u( j ) is the jth time derivative of the input u. The Lie

derivatives of order higher than one are obtained as

Li
f g(~x, u) ¼

@Li�1
f g(~x, u)

@~x
f (~x, u)þ

Xj¼1

j¼0

@Li�1
f g(~x, u)

@u(j) u(jþ1): ð2:7Þ

Since the output may depend on the input, but not on its

derivatives, the partial derivatives of the output with respect to

input derivatives are zero, and the infinite summation in

equation (2.6) can actually be truncated in j ¼ 0. Likewise, the

ith Lie derivative, Li
fg, may contain input derivatives only up
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(w(t)), parameters (u) and states (x(t)) can be inferred and (2) a numerical estimation procedure recovers the values of the inferrable variables via optimization. The
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and final results of the methodology. The lower part of the figure shows the model structure components: dynamic states x(t), measured outputs y(t) (typically a
subset of the states, but may also be a function of them), known constants k (either taken from the literature or previously measured), unknown constant par-
ameters u, known inputs u(t) and unknown inputs w(t). The model unknowns (unknown inputs, parameters and states) are coloured in red. Note that a state may
be actually known if it is being measured, but this knowledge is included in the model as an output, yi(t) ¼ xj (t), hence states are coloured in red. (Online version
in colour.)
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to order i, if the output depends directly on the input, and up to a

lower order otherwise. Therefore, it is not necessary to calculate

the infinite summation in equation (2.7), but instead

Li
f g(~x, u) ¼

@Li�1
f g(~x, u)

@~x
f (~x, u)þ

Xj¼i

j¼0

@Li�1
f g(~x, u)

@u(j) u(jþ1): ð2:8Þ

The observability–identifiability matrix, OI(~x, u), is

OI(~x, u) ¼

@
@~x g(~x, u)

@
@~x (Lf g(~x, u))
@
@~x (L2

f g(~x, u))

..

.

@
@~x (Ln~x�1

f g(~x, u))

0
BBBBBBBB@

1
CCCCCCCCA
: ð2:9Þ

Theorem 2.2. Nonlinear Observability–Identifiability Condition
(OIC). If a model M2 defined by (2.5) satisfies rank(OI(~x0, u)) ¼
nx þ nu, with OI(~x0, u) given by (2.9) and ~x0 being a (possibly gen-
eric) point in the augmented state space, then the model is locally
observable and locally structurally identifiable in a neighbourhood
N (~x0) of ~x0 [48].

It should be noted that OI may have full rank even when

built with less than (nx þ nu 2 1) Lie derivatives. In practice,

this means that it is often more efficient to build OI recursively

and calculate rank(OI) after adding each Lie derivative, which

allows for an early termination of the procedure if full rank is
achieved (in which case the OIC is fulfilled) or if the rank stops

increasing (the OIC is not fulfilled).

If the OIC does not hold, there is at least one unobservable

state (or an unidentifiable parameter). They can be found by

removing each of the columns of OI and recalculating its rank.

If the rank does not change after removing the ith column, the

ith variable (which may be a parameter or a state) is structurally

unidentifiable (or unobservable) [49].

Some models may require the inputs to be sufficiently excit-

ing in order to be identifiable. The necessary input can be

characterized to a certain extent by setting to zero in OI the

derivatives of the input u of order higher than a given one and

recalculating the rank [50]. This enables, for example, detection

of whether a model is unidentifiable with a constant input but

becomes identifiable with a ramp. In some cases, several exper-

iments performed under different conditions can yield better

observability properties than a single experiment. This scenario

can be analysed with the multi-experiment setting described in

[50]. In it, the model is modified to include as many replicates

of the state, output and input vectors as experiments, increasing

the dimension of the (OI) matrix. It may also be convenient to

perform a single experiment with several intervals, in each of

which the input is infinitely differentiable. Such piecewise infi-

nitely differentiable inputs may also be approximated by the

multi-experiment setting for the purpose of observability analy-

sis. To this end, each of the time intervals in which the input is

infinitely differentiable is considered as a different experiment.

Note however that, since the instantaneous transitions between

differentiable intervals cannot be included in such analysis, this

approximation might lead to errors of unknown magnitude.

The differential geometry approach yields results that are

valid almost everywhere, i.e. for all values of the system
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variables except for a set of measure zero. Therefore, this type of

analysis does not consider inputs such as delta functions, which

are zero everywhere except in discrete time points. In any case, it

should be noted that delta functions are not frequently used in

biological systems modelling.

2.3. Extending the generalized observability analysis to
account for unknown inputs

Let us now consider the case in which there are unmeasured

inputs to the system, w(t), the value of which is unknown.

These inputs can also be seen as external disturbances or, alterna-

tively, as unknown, time-varying parameters. That is, we wish to

study models such as M1 (2.1), which requires extending the for-

mulation presented in §2.2, since it is only applicable to models

such as M2 (2.5). To this end, we augment the state vector so as to

include also the unknown inputs

~x(t) ¼
x(t)
u

w(t)

2
4

3
5 and _~x(t) ¼

f (~x(t), u(t))
0

_w(t)

2
4

3
5: ð2:10Þ

This transforms a model of the form (2.1) in another of the

form (2.5), making it seemingly amenable to the technique

described in §2.2. However, there is an obvious caveat: the

expression of _w(t) is of course unknown and, as Lie derivatives

are calculated to build OI , the order of derivatives of w(t) that

may appear in OI increases; the ith Lie derivative, Li
f g(~x, u),

may contain derivatives up to w(i). To account for this, we also

include those derivatives in the augmented state vector, that is

~x(t) ¼

x(t)
u

w(t)
_w(t)
€w(t)

..

.

w(i�1)(t)
w(i)(t)

2
6666666666664

3
7777777777775

and _~x(t) ¼

f (~x(t), u(t))
0

_w(t)
€w(t)
w...(t)

..

.

w(i)(t)
w(iþ1)(t)

2
6666666666664

3
7777777777775

, ð2:11Þ

with ~x [ Rn~x , n~x ¼ nx þ nu þ nw � (iþ 1).

Theorem 2.3. Full Input, State, and Parameter Observability Con-
dition: a model M1 given by (2.1) is FISPO according to definition
2.1 if, adopting the state augmentation of equation (2.11), the resulting
generalized observability matrix (2.9) is such that
rank(OI(~x, u)) ¼ n~x.

Proof. A model M1 of the form (2.1) can be recast into a model of

the form (2.5) using the state augmentation (2.11). The augmen-

ted state vector of this model includes the original state variables,

the parameters and the unknown inputs as well as their first i
time derivatives. Thus, it is possible to build the generalized

observability matrix as in (2.9), with n~x ¼ nx þ nu þ nw � (iþ 1).

Then the proof of theorem 2.3 follows directly from the

application of the OIC of theorem 2.2. B

Remark 2.4. Note that, in order to build OI with i Lie derivatives,

the augmented state vector ~x must include w(i). As can be noticed

from (2.8) and (2.9), its time derivative, w(iþ1), will not appear in

OI (for details, see electronic supplementary material, subsection

S2.1). Hence this approach enables the calculation of rank(OI)

and the assessment of the FISPO condition of theorem 2.3.

In practice, we have found that the result of this test can be

inconclusive, if the OI matrix does not have full rank after

reaching the maximum number of Lie derivatives that is compu-

tationally feasible or convenient to calculate. In such cases, we
may adopt an idea similar to the one introduced in the previous

subsection for the characterization of the sufficiently exciting

inputs, that is, set to zero the derivatives of w(t) of order

higher than a given one (i), introducing the following

assumption:

Assumption 2.5. The time derivatives of the unknown input

vector of the system under consideration vanish above a given

order i, that is, w( j )(t) ¼ 0, 8 j � i.

In principle, this assumption introduces a restriction on the

type of allowed inputs. The assumption that there is a finite

number of non-zero input derivatives is equivalent to assuming

that the unknown inputs are polynomial functions of time,

w(t) ¼
Pi

k¼0 ak � tk, in which case the analysis of their observabil-

ity could be performed by assessing the identifiability of the

coefficients ak. However, in practice the method may still provide

informative suggestions about generic inputs even if assumption

2.5 is made: on the one hand, if the method determines that the

OIC holds for w(i)(t) ¼ 0, with i ¼ f1, 2, 3, . . .g, and rank(OI )

grows uniformly as more Lie derivatives are included in OI ,

this suggests that the same result holds in the limit i! 1, and

thus the model can be assumed to be FISPO for any infinitely dif-

ferentiable input. On the other hand, if the OIC does not hold for

w(i)(t) ¼ 0, with i ¼ f1, 2, 3, . . .g, it can be taken as an indication

that the model is not FISPO for a generic unknown input w(t).
We have created a new version of the MATLAB toolbox

STRIKE-GOLDD [45] that incorporates the capability of analys-

ing models with unmeasured inputs w(t) in this way. The new

version, STRIKE-GOLDD 2.1, includes as examples the models

analysed in this paper and documentation for running them. It

is available at GitHub (https://github.com/afvillaverde/strike-

goldd_2.1) and Zenodo (https://zenodo.org/record/2649224).

2.4. Simultaneous input and parameter estimation
problem

In a nonlinear system of ODEs, PE is usually treated as a

dynamic optimization problem. In the frequentist approach, the

optimal values for the unknown parameters are computed by

minimizing the difference between the model’s predicted

output and its corresponding experimental measurements. This

type of problem is often formulated as a nonlinear programming

problem (NLP) subject to possible differential and algebraic

constraints, i.e.:

Find u to minimize

L(~y ju) ¼
Ynexp

k¼1

Yny

j¼1

Yns

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

ijk

q e
(�(yijk (x(ti),u,u(ti))�~yijk )2=2s2

ijk )
: ð2:12Þ

Subject to:

dx(t)
dt
¼ f (x(t), u(t), u, t), ð2:13Þ

x(t0) ¼ x0, ð2:14Þ
y(t) ¼ g(x(t), u(t), u), ð2:15Þ
z(x(t), u(t), u) � 0 ð2:16Þ

and uL � u � uU , ð2:17Þ

where L is the cost function to be minimized, u is the vector of

unknown parameters and ~y are the experimental measurements

corresponding to the model’s predictions on the observed vari-

ables y(t). The known time-dependent inputs are represented

by u(t), whereas x are the state variables and s is the standard

deviation of the measurements. Note that u includes any

unknown initial conditions present in the vector x0. Moreover, f
is the set of ordinary differential equations (2.13) describing the

https://github.com/afvillaverde/strike-goldd_2.1
https://github.com/afvillaverde/strike-goldd_2.1
https://github.com/afvillaverde/strike-goldd_2.1
https://zenodo.org/record/2649224
https://zenodo.org/record/2649224
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system dynamics, and z are the algebraic inequality constraints

(2.16). Finally, u is subject to upper and lower bounds acting as

inequality constraints (2.17).

However, the above classical formulation of PE problems is

assuming that the model’s inputs are always known (or accurately

measured). As such, it fails to take into account any uncertainty in

the input measurements or the complete lack of such measure-

ments. In order to take into account the estimation of not only

the unknown model parameters but also any unknown inputs,

the above PE formulation can be generalized into an optimal track-
ing problem. This type of problem, as a special case of nonlinear

optimal control problem (described in [35] as IOCP-1), defines

the simultaneous estimation problem of both unknown time-

dependent inputs w(t) and unknown time-invariant parameters u.

In contrast with the classical PE problem where the time-

dependent inputs are treated as known (measured) quantities,

in an optimal tracking problem there can be an unknown subset

of inputs that is estimated, along with the model’s parameters,

directly from the experimental measurements. The resulting

mathematical formulation of the optimal tracking problem needs

to account for the dependencies on the unknown inputs w(t),
therefore (2.12)–(2.17) are redefined as follows:

min
u,w(t)

L(~yj{u, w(t)}): ð2:18Þ

Subject to:

dx(t)
dt
¼ f (x(t), u(t), w(t), u, t), ð2:19Þ

x(t0) ¼ x0, ð2:20Þ
y(t) ¼ g(x(t), u(t), w(t), u), ð2:21Þ
z(x(t), u(t), w(t), u) � 0 ð2:22Þ

and uL � u � uU : ð2:23Þ

Additionally, we consider bounds for the unknown inputs of the

form:

wL � w(t) � wU , ð2:24Þ

where L in (2.18) with standard deviation s is the likelihood

function:

L(~yj{u, w(t)}) ¼
Ynexp

k¼1

Yny

j¼1

Yns

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

ijk

q e
(�(yijk(x(ti),u,u(ti),w(ti))�~yijk)2=2s2

ijk)
:

ð2:25Þ

In the special case where Gaussian noise can be assumed,

(2.18) can be expressed in the classical weighted least-squares

format, with weights v:

min
u,w(t)

Xnexp

k¼1

Xny

j¼1

Xns

i¼1

vijk(yijk(x(ti), u, u(ti), w(ti))� ~yijk)2: ð2:26Þ

To avoid any confusion, we remark that in the optimal track-
ing problem stated above we do not seek the inference of the

underlying optimality principles, as considered in the more gen-

eral inverse optimal control formulation (see [35] and references

therein). In other words, the problem considered here is

restricted to estimating the unknown inputs and parameters of

the model that best explain (fit) the available data.

Here we solved this optimal tracking problem using the con-

trol discretization method for nonlinear optimal control

proposed in [35]. In the electronic supplementary material, we

provide a brief overview of the numerical methods available to

solve this class of problems, along with implementation details

and remarks about our numerical strategy. The code to repro-

duce the estimation results presented in this work is available

at https://zenodo.org/record/2542798 and is implemented
using the methodology introduced in [35] as part of the AMIGO2

toolbox [36] for MATLAB.

3. Results and discussion
3.1. Two-compartment model (C2M)
In [50], the following two-compartment model of a physio-

logical system was analysed

_x1(t) ¼ �(k1e þ k12) � x1(t)þ k21 � x2(t)þ b � u(t),
_x2(t) ¼ k12 � x1(t)� k21 � x2(t)

and y(t) ¼ x1(t),

9>=
>; ð3:1Þ

where each state (x1, x2) corresponds to a compartment, u ¼

(k1e, k12, k21, b) is the unknown parameter vector, and the

initial condition of the unmeasured state, x2(0), is also

unknown. It was shown in [50] that this model is structurally

identifiable and observable for a known input such that

_u(t) = 0.

Let us now consider the unknown input case. If both b
and u(t) are unknown, obviously only their product can be

estimated. Thus, we reformulate the model by introducing

w(t) ¼ b . u(t) as the unknown input to estimate:

C2M:

_x1(t) ¼ �(k1e þ k12) � x1(t)þ k21 � x2(t)þ w(t),
_x2(t) ¼ k12 � x1(t)� k21 � x2(t),
y(t) ¼ x1(t):

8><
>: ð3:2Þ

The FISPO analysis of model C2M (3.2) yields that it is not

observable. In fact, neither u ¼ (k1e, k12, k21), nor x2(t), nor

w(t) are observable. To obtain an observable model, we

need to fix one of the parameters (k1e, k12, k21). Thus, if we

assume that the degradation constant k1e is known, the

FISPO analysis determines that the model is fully observable:

the unmeasured state x2(t) is observable, the unknown par-

ameters (k12, k21) are structurally identifiable, and the

unknown input w(t) is reconstructible.

Next, we validate this result by showing that it is indeed

possible to infer these values from y(t) using the optimization

procedure described in §2.4. To this end, we generate

pseudo-experimental datasets, both without and with the

addition of noise. In the noisy case, we considered the

standard deviations (s) present in the likelihood function of

equation (2.25) as known. In the noiseless case, we used a

least-squares cost function (2.26). To improve the numerical

conditioning of our problem, we use a multi-experimental

(six experiments) scheme for the estimation of the noisy

subcase. More details on the experimental scheme and the

problem set-up can be found in the electronic supplementary

material.

A comparison between the reconstruction of the system in

these two simple subcases can provide useful insight. The

noiseless data represent an almost ideal estimation scenario,

where practical or numerical conditioning is almost perfect.

As a result, the reconstruction of the noiseless subcase

should approximate the theoretically possible level. There-

fore, we consider the full system reconstruction from

noiseless data a numerical validation of the FISPO results.

On the other hand, the inclusion of noise in the data can

transform and possibly even deform the solution space.

This could result in the true solution no longer coinciding

with the global optimal solution, making it harder or even

impossible to identify the true solution without assuming

any prior knowledge about it. This effect is common in

https://zenodo.org/record/2542798
https://zenodo.org/record/2542798
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realistic scenarios, although it is often overlooked. Compar-

ing the performance of our methodology with and without

noise in the data, we attempt to illustrate the possible

issues of practical reconstructibility in a more realistic

scenario.

In figure 2, the results of the full system reconstruction for

both subcases are presented. For the noiseless subcase (a), we

verify that the reconstruction of all the problem unknowns is

perfect, with the two unknown parameters as well as the

unobserved initial condition and the ramp-like input accu-

rately recovered. The inference becomes more challenging

with the addition of noise, yet not impossible. On the one

hand, the unknown input is still reliably reconstructed. On

the other hand, the noisy readings of the output (y(t) ¼
x1(t)) lead to a slight overestimation of the measured state,

x1(t), which is compensated by underestimations of the

unmeasured state, x2(t), as well as the two unknown par-

ameters, k12 and k21. The decreased accuracy of the

estimations of these quantities suggests a certain degree of

correlation among them that prevents their perfect identifi-

cation in the presence of noise-corrupted data. However,

even in this noisy scenario the methodology achieves good

system reconstruction without the use of any prior knowl-

edge. The figures showing the reconstruction in the rest of

the six experiments are given in the electronic

supplementary material.

3.2. Genetic toggle switch
The second case study is the genetic toggle switch that was

recently presented in [51] and further analysed in [52]:

TS:

_x1(t)¼ k01þ
k1

1þ (x2(t)=(1þ (atc(t)=uatc)natc ))nTetR
�x1(t),

_x2(t)¼ k02þ
k2

1þ (x1(t)=(1þ (IPTG(t)=uIPTG)nIPTG ))nLacI
�x2(t),

y1(t)¼x1(t),
y2(t)¼x2(t):

8>>>>>>>>><
>>>>>>>>>:

ð3:3Þ

Here, the states x1(t) and x2(t) are dimensionless variables

defined from the protein concentrations, and the inputs are

the inducer molecules aTc(t) and IPTG(t). For details on the

derivation of equations (3.3), see [52].

If both inputs are known, the OIC test reveals that the

model is structurally identifiable as long as neither input is

constant, i.e. the inputs must consist of a ramp to enable iden-

tifiability. Specifically, if u1 ¼ aTc is constant, naTc and uaTc

are structurally unidentifiable, and if u2 ¼ IPTG is constant,

nIPTG and uIPTG are structurally unidentifiable. It has been

recently noted that in some cases a time-varying input is

equivalent, for observability purposes, to a piecewise con-

stant input with several steps, or to several experiments

with constant input [53]. For the application of this idea in

STRIKE-GOLDD, see [50]. Since this is the case for this

example, in the numerical experiments with noisy data

we illustrated this possibility using four constant input

experiments instead of an experiment with a ramp input.

If the inputs are unknown, a simple visual inspection of

the equations reveals that they are also unobservable, and

at least the aforementioned parameters are unidentifiable.

In such scenario, the model is overparametrized, and it is

not possible to infer aTc, naTc, uaTc, IPTG, nIPTG and uIPTG.
Therefore, we redefine the (unknown) inputs so as to incor-

porate these parameters:

w1(t) ¼ atc(t)
uatc

� �natc

and w2(t) ¼ IPTG(t)
uIPTG

� �nIPTG

: ð3:4Þ

The resulting model is

TS:

_x1(t) ¼ k01 þ
k1

1þ (x2(t)=(1þ w1(t)))nTetR
� x1(t),

_x2(t) ¼ k02 þ
k2

1þ (x1(t)=(1þ w2(t)))nLacI
� x2(t),

y1(t) ¼ x1(t),
y2(t) ¼ x2(t),

8>>>>>>>>><
>>>>>>>>>:

ð3:5Þ

where the unknown parameter vector is u ¼ [k01, k1, nTetR, k02,

k2, nLacI]. The FISPO analysis of the TS model in (3.5)

yields that it is fully observable, both with constant and

time-varying unknown inputs.

In order to numerically test these theoretical results, we

generated pseudo-experimental data and used them in

order to reconstruct all six model parameters as well as the

two inputs. We considered noiseless and noisy datasets as

two subcases of the estimation problem. In a similar way as

for the C2M model of §3.1, we used a multi-experimental

scheme (four experiments) to improve the numerical con-

ditioning of the noisy estimation problem. Details of the

experimental scheme and the estimation problem’s set-up

can be found in the electronic supplementary material.

Figure 3 shows the system reconstruction results for both

the noiseless and the noisy subcases. The same remarks made

in §3.1 apply here. The perfect reconstruction in the noiseless

subcase (figure 3a) can be considered as validation of the

FISPO analysis of the system, since it corresponds to a

quasi-ideal scenario. The reconstruction of the system in the

presence of noise is shown in figure 3b. Despite the addition

of noise, it was possible to achieve a very accurate reconstruc-

tion of all the problem unknowns. Note that these

results correspond to one of the four experiments used in

the reconstruction. The figures corresponding to the rest of

the multi-experimental scheme considered can be found in

the electronic supplementary material.

3.3. HIV infection
Our third case study is the model of HIV dynamics analysed

in [15,54], which is given by

HIV:

_TU(t) ¼ l� rTU(t)� h(t)TU(t)V(t),

_TI(t) ¼ h(t)TU(t)V(t)� dTI(t),

_V(t) ¼ NdTI(t)� cV(t),
y1(t) ¼ V(t),
y2(t) ¼ TI(t)þ TU(t),

8>>>>>>>><
>>>>>>>>:

ð3:6Þ

where TU and TI are the concentrations of uninfected and

infected cells, respectively, and V is the viral load. The

time-varying infection rate, h(t), as well as the constant par-

ameters (l, r, d, N, c), are unknown. The FISPO analysis of

this model reveals that it is fully observable even with

unknown inputs, both constant and time-varying.

In order to numerically test the FISPO results, we solved

the synthetic optimal control problem. We used the nominal

parameter values and the h cosine profile taken from the lit-

erature (values provided in the electronic supplementary
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material) to generate pseudo-experimental data with and

without noise. We then tried to reconstruct the system by

approximating h with a number of equidistant piece-wise

linear elements (ramps), assuming that no prior knowledge

on the true h profile is available. Detailed information regard-

ing the experimental scheme considered and the problem

set-up are given in the electronic supplementary material.

Note that, as we have seen in the previous case studies, the

use of a multi-experimental scheme can be very helpful in the
estimation of global unknown variables (i.e. parameters that

are the same in all different experiments) if there are practical

identifiability issues. However, in this case study, we refrained

from considering a multi-experimental scheme in the esti-

mation. The reason is that considering multiple experiments

in this case would represent the inclusion of samples from

different patients in the same model calibration, which would

not allow the estimation of patient specific parameters.

Therefore, in this case study we used only one experiment.
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Despite this pseudo-experimental constraint, it was poss-

ible to obtain good results. Starting from one piece-wise

linear element and iteratively re-optimizing and duplicating

the number of elements, a good inference of all problem

unknowns was already obtained with four piece-wise linear

elements in both the noiseless and noisy subcases, as

shown in figure 4. It is interesting to note that, due to

the large differences in magnitude between the input

and the states, the input is reconstructed with less accuracy

than the states, in relative terms. In addition to validating
the results of the FISPO analysis, this example illustrates the

ability of the optimal tracking methodology to reconstruct

inputs of arbitrary shape without any prior knowledge and

with great accuracy, even in a large search space.
4. Conclusion
An important desirable feature of a dynamic model is the

ability to infer the values of its unknown variables indirectly,
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by measuring its output. In mechanistic models, the

unknowns typically correspond to biologically meaningful

quantities, thus this inference can yield biological insight.

Historically, the biological modelling community has

devoted many efforts to a particular instantiation of this pro-

blem: the estimation of parameters (i.e. unknown constant

values in the model) from output measurements. Other
aspects of the general inverse problem are the determination

of unknown inputs and unmeasured states. These three

aspects have seldom been addressed jointly.

In this paper, we have described an integrated method-

ology that considers the general problem of determining

the values of all unknown model variables, either external

or internal, and constant or time-varying. We call this
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property Full Input-State-Parameter Observability, or FISPO

for short. Our methodology begins by analysing FISPO,

that is, assessing the possibility of determining the model

unknowns from the model output. This first part of the meth-

odology is of a structural nature, and its calculations are

performed symbolically. Therefore, it yields theoretical

results: it detects any insufficiencies of the model structure

that prevent some of the model unknowns from being deter-

mined. A positive result at this stage (i.e. that it is

theoretically possible to determine the value of a particular

unknown) does not guarantee that the unknown will be accu-

rately estimated from the existing data. This question is

addressed in the second part of the methodology, which

deals with the actual determination of the quantities that

were found to be inferable in the first part. The latter part

is numerical, and yields practical results for a given exper-

imental set-up and dataset, using optimization techniques

to estimate all the parameters, states and unmeasured

inputs of the model.

We have demonstrated the use of this approach with three

case studies from different areas of biological modelling: a

two-compartment physiological system model, a genetic

toggle switch and a viral infection model. We first analysed

the FISPO of these models symbolically, and then used

pseudo-experimental data to show that it is indeed possible

to recover the values of the observable unknowns. For each

case study, a different type of unmeasured input was

chosen: piecewise constant, ramp and sinusoidal. In all

cases, the methodology managed to estimate the unknown

inputs accurately without knowing their shape, along with

the parameters and states.

A known potential limitation of the symbolic analysis

approach used in the first part of the methodology is that

its computational complexity increases steeply with model

size, hampering its applicability to large models. This issue

is also present in other symbolic methods that may be

explored as an alternative, such as the differential algebra

approach. Numerical approaches such as profile likelihoods

could in principle be applied to provide an indication of par-

ameter identifiability, input reconstructibility and state

observability. Besides computational cost, another aspect of

the symbolic analysis that deserves further exploration is

the handling of unmeasured inputs. The solution adopted

in this paper—i.e. including the unmeasured inputs and

their derivatives as additional state variables—often requires

setting an upper bound to the number of non-zero
derivatives of the input. While it could be argued that this

is a useful feature, since it allows assessment of how the

time dependence of the inputs affects the results, it requires

introducing a (mild) assumption about the shape of the

input. Furthermore, the algorithm may sometimes yield

inconclusive results. In future work, we will explore modifi-

cations of the algorithm to improve this aspect. We expect

that it might be possible to obtain more powerful results by

introducing assumptions such as linear dependence on the

inputs. However, this would come at the expense of a loss

of generality, and our approach is currently meant to be

applicable to any analytic nonlinear system. A promising

step in this direction is the algorithm by Maes et al. [55],

which has been recently proposed for mechanical systems

that are affine in all inputs.

Regarding the numerical part of the methodology, it is

known that the computational cost of this type of optimiz-

ation problem also increases rapidly with size. However,

the increase is in practice less steep than that of the symbolic

step. We did not encounter significant optimization issues

with the case studies considered: all computation times

were of the order of minutes using a standard personal

computer.
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17. Muñoz-Tamayo R, Puillet L, Daniel JB, Sauvant D,
Martin O, Taghipoor M, Blavy P. 2018 To be or not
to be an identifiable model. Is this a relevant
question in animal science modelling? Animal 12,
701 – 712. (doi:10.1017/S1751731117002774)

18. Janzén DL, Bergenholm L, Jirstrand M, Parkinson J,
Yates J, Evans ND, Chappell MJ. 2016 Parameter
identifiability of fundamental pharmacodynamic
models. Front. Physiol. 7, 590. (doi:10.3389/fphys.
2016.00590)

19. Villaverde AF, Banga JR. 2017 Dynamical
compensation and structural identifiability of
biological models: analysis, implications, and
reconciliation. PLoS Comput. Biol. 13, e1005878.
(doi:10.1371/journal.pcbi.1005878)

20. Saccomani MP, Thomaseth K. 2018 The union
between structural and practical identifiability
makes strength in reducing oncological model
complexity: a case study. Complexity 2018,
2380650. (doi:10.1155/2018/2380650)

21. Chin S, Chappell M. 2011 Structural identifiability
and indistinguishability analyses of the Minimal
Model and a Euglycemic Hyperinsulinemic Clamp
model for glucose – insulin dynamics. Comput.
Methods Programs Biomed. 104, 120 – 134. (doi:10.
1016/j.cmpb.2010.08.012)

22. Ryser MD, Gulati R, Eisenberg MC, Shen Y, Hwang
ES, Etzioni RB. 2018 Identification of the fraction of
indolent tumors and associated overdiagnosis in
breast cancer screening trials. Am. J. Epidemiol. 188,
197 – 205. (doi:10.1093/aje/kwy214)

23. Tunali ET, Tarn TJ. 1987 New results for
identifiability of nonlinear systems. IEEE Trans.
Autom. Control 32, 146 – 154. (doi:10.1109/TAC.
1987.1104544)

24. Raue A, Karlsson J, Saccomani MP, Jirstrand M,
Timmer J. 2014 Comparison of approaches for
parameter identifiability analysis of biological
systems. Bioinformatics 30, 1440 – 1448. (doi:10.
1093/bioinformatics/btu006)
25. Hong H, Ovchinnikov A, Yap C, Pogudin G. 2019
SIAN: software for structural identifiability analysis
of ODE models. Bioinformatics, bty1069.

26. Zhu S, Verdière N, Denis-Vidal L, Kateb D. 2018
Identifiability analysis and parameter estimation of
a chikungunya model in a spatially continuous
domain. Ecol. Complex. 34, 80 – 88. (doi:10.1016/j.
ecocom.2017.12.004)

27. Ljung L, Glad T. 1994 On global identifiability for
arbitrary model parametrizations. Automatica 30,
265 – 276. (doi:10.1016/0005-1098(94)90029-9)

28. Audoly S, Bellu G, D’Angió L, Saccomani MP, Cobelli
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40. Trägårdh M, Chappell MJ, Ahnmark A, Lindén D, Evans
ND, Gennemark P. 2016 Input estimation for drug
discovery using optimal control and Markov chain Monte
Carlo approaches. J. Pharmacokinet. Pharmacodyn. 43,
207 – 221. (doi:10.1007/s10928-016-9467-z)
41. Engelhardt B, Frohlich H, Kschischo M. 2016
Learning (from) the errors of a systems biology
model. Sci. Rep. 6, 20772. (doi:10.1038/srep20772)
(doi:10.1038/srep20772)

42. Engelhardt B, Kschischo M, Fröhlich H. 2017 A
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of Technology and Göteborg University.

50. Villaverde AF, Evans ND, Chappell MJ, Banga JR.
2019 Input-dependent structural identifiability of
nonlinear systems. IEEE Control Syst. Lett. 3,
272 – 277. (doi:10.1109/LCSYS.7782633)

51. Lugagne JB, Carrillo SS, Kirch M, Köhler A, Batt G,
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