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ABSTRACT

Long non-coding RNA (lncRNA) is emerging as an critical regulator in multiple 
cancers, including pancreatic cancer (PC). Recently, lncRNA SNHG15 was found 
to be up-regulated in gastric cancer and hepatocellular carcinoma, exerting 
oncogenic effects. Nevertheless, the biological function and regulatory mechanism 
of SNHG15 remain unclear in pancreatic cancer (PC). In this study, we reported 
that SNHG15 expression was also upregulated in PC tissues, and its overexpression 
was remarkably associated with tumor size, tumor node metastasis (TNM) stage 
and lymph node metastasis in patients with PC. SNHG15 knockdown inhibited 
proliferative capacities and suppressed apoptotic rate of PC cells in vitro, and 
impaired in-vivo tumorigenicity. Additionally, RNA immunoprecipitation (RIP) 
assays showed that SNHG15 epigenetically repressed the P15 and Kruppel-like 
factor 2 (KLF2) expression via binding to enhancer of zeste homolog 2 (EZH2), 
and chromatin immunoprecipitation assays (CHIP) assays demonstrated that EZH2 
was capable of binding to promoter regions of P15 and KLF2 to induce histone H3 
lysine 27 trimethylation (H3K27me3). Furthermore, rescue experiments indicated 
that SNHG15 oncogenic function partially involved P15 and KLF2 repression. 
Consistently, an inverse correlation between the expression of SNHG15 and traget 
genes were found in PC tissues. Our results reported that SNHG15 could act as an 
oncogene in PC, revealing its potential value as a biomarker for early detection and 
individualized therapy.
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INTRODUCTION

Pancreatic cancer (PC) is now one of the leading 
causes of cancer-related death, especially in the United 
States, with an estimation of 43,090 deaths in 2017 [1]. 
Compared with the steadily increasing survival rates in 
some cancers, colorectal cancer is characterized by a poor 
prognosis, which limits the 5-year relative survival to 
only 8 % [1]. The adverse outcome is largely due to the 
inability to diagnose PC in its early stages, with ~53% of 
patients expreiencing metastasis at the time of diagnosis 
[2]. Therefore, there is a critical need to increase the 
understanding of the underlying mechanisms associated 
with PC.

Current advances in bioinformatics and sequencing 
technology have led to the discovery of long non-coding 
RNAs (lncRNAs) [3, 4]. lncRNAs were once regarded 
as transcriptional “noise” due to their lack of protein-
encoding capability [5]; however, emerging evidence 
suggests that lncRNAs participate in multiple biological 
processes, including imprinting, epigenetic regulation, 
alternative splicing, RNA decay, cell differentiation, 
cell cycle control, and cancer-cell metastasis [6–8]. 
Furthermore, lncRNAs are dysregulated in many cancers 
[9, 10], and aberrant lncRNA expressions is significantly 
associated with carcinogenesis [11]. LncRNA may act 
as an oncogene [12, 13] or a tumor suppressor [14], and 
have potential as a cancer biomarker [15, 16]. LncRNA 
HOX transcript antisense RNA (HOTAIR) has been 
identified as an unfavourable prognostic indicator in 
patients with breast, liver, colon, and pancreatic cancer 
[17–21]. Additionally, we previously reported that 
lncRNA SPRY4-IT1 overexpression correlated with 
poor outcomes of patients with breast cancer and could 
promote breast cancer proliferation [22]. LncRNA 
HOXA transcript at the distal tip (HOTTIP) can mediate 
colorectal cancer (CRC) cell proliferative capacities by 
downregulating p21 expression [23]. Therefore, lncRNAs 
may serve as novel biomarkers for cancer diagnosis and 
molecular therapy.

Recently, lncRNAs dysregulations were reportedly 
involved in PC development and progression [24–26]. 
Elevtaed expression of long intergenic non-coding 
RNA ROR (lincRNA-ROR) and lncRNA nuclear 
paraspeckle assembly transcript 1 (NEAT1) promotes 
PC cell proliferation, invasion, and metastasis [27–30]. 
Furthermore, several lncRNAs, such as metastasis-
associated lung adenocarcinoma transcription 1 
(MALAT1), HOTTIP, and HOTAIR, have been 
characterized as negative prognostic factors in PC 
patients, indicating that they might exert pro-oncogenic 
roles in vitro and in vivo [10, 16, 19, 26, 31]. Our previous 
studies revealed that lncRNA IRAIN could inhibit PC cell 
apoptosis and increase its proliferative capacities with 
interaction with polycomb repressive complex 2 (PRC2) 
[32]. These results revealed the critical functions of 

lncRNAs in PC pathogenesis, highlighting the importance 
of further investigation and identification of lncRNAs.

The lncRNA SNHG15 is 837bp in length, and 
located on chromosome 7p13 (https://www.ncbi.nlm.
nih.gov/nuccore/NR_003697.1). It was firstly reported 
to exhibit significant upregulation in gastric cancer (GC) 
tissue samples and cell lines. Functional studies suggested 
the involvement of SNHG15 in GC cell proliferation and 
invasion [33]. Moreover, lncRNA SNHG15 was found 
to be associated with histological grade, tumor node 
metastasis stage (TNM) stage, and poor overall survival in 
hepatocellular carcinoma (HCC), suggesting its potential 
role as a novel biomarker in HCC patients [34]. However, 
the expression pattern, functional role and underlying 
mechanism of SNHG15 are completely unknown in PC. 
According to previous reports, we observed that pro-
oncogenic lncRNAs exhibit significant upregulation in 
PC tissues and cell lines, with their aberrant expressions 
potentially influencing cancer cell growth, survival and 
migration/invasion. Furthermore, HOTAIR knockdown in 
PC cells could alter cell cycle, impair cell proliferation, 
and promote apoptosis in vitro, and inhibit tumorigenesis 
abilities in vivo [19].

Here, we report, for the first time, the expression 
pattern, function and regulatory mechanism of SNHG15 
in PC. Quantitative reverse transcription polymerase 
chain reaction (qRT-PCR) assays demonstrated that 
SNHG15 expression was significantly increased in PC 
tissue samples and cell lines, suggesting pro-oncogenic 
functions similar to those reported for HOTAIR. 
Furthermore, our findings indicated that lncRNA SNHG15 
promoted pancreatic cancer cell proliferation through 
epigenetic repression of P15 and Kruppel-like factor 2 
(KLF2). Although SNHG15 and HOTAIR exhibit similar 
pro-oncogenic roles, our findings suggested that the 
downstream targets and regulatory pathways associated 
with both lncRNAs differed.

RESULTS

LncRNA SNHG15 is increased in PC tissues, and 
significantly associated with tumor size, TNM 
stage, and lymph node metastasis in patients 
with PC

We analyzed the expression of SNHG15 in a cohort 
of 48 PC tissue samples and matched non-tumor samples 
using qRT-PCR analysis, with our resuts showing that 
SNHG15 was remarkly increased in PC tissue samples 
relative to levels observed in adjacent normal tissues 
(Figure 1A). To study the correlation between SNHG15 
levels and the clinicopathologic characteristics of PC 
patients, we classified 48 PC patients into two groups: 
the high (n=24, fold change ≥ median value) and the low 
SNHG15 group (n=24, fold change ≤ median value) based 
on the median value of SNHG15 expression (Figure 1B). 



Oncotarget84155www.impactjournals.com/oncotarget

We observed that tumor size (p = 0.017), TNM stage (p 
= 0.009), and lymph node metastasis (p = 0.001) were 
positively associated with increased SNHG15 expression 
(Figure 1C–1E). As shown in Table 1, no significant 
relationships were found between increased SNHG15 
expression and other clinicopathologic factors, such as 
gender (p = 0.771) and age (p = 0.562). These findings 
indicate that SNHG15 is an unfavourable factor for PC 
patients and have potential as a novel biomarker for PC 
patients.

Manipulation of SNHG15 expression in PC cells

To test SNHG15 expression levels in PC cells, we 
performed qPCR assays and found that the expression 
levels of SNHG15 was upregulated in PC cell lines 
compared with that of the normal human pancreatic ductal 
epithelial cell (HPDE6). In this study, we select AsPC-1 
and BxPC-3 cells due to their higher expression among 
three PC cell lines (Figure 2A). Then, SNHG15 expression 
was knocked down in AsPC-1 and BxPC-3 cells by 
transfection with small interfering RNAs (siRNAs) or a 
short hairpin RNA (shRNA) vector and overexpressed 
by transfection with a pcDNA-SNHG15 vector. qPCR 

analysis was performed at 48-h post-transfection, with the 
data revealing that SNHG15 expression was significantly 
reduced by siRNA-SNHG15 infection as compared with 
results observed in control cells. Furthermore, transfection 
with si-SNHG15 2# and si-SNHG15 3# exhibited more 
efficient interference relative to that observed with 
si-SNG15 1# transfection (Figure 2B); therefore, we 
selected the si-SNHG15 2# and si-SNG15 3# for use in the 
subsequent experiments. qPCR assays were also used to 
test SNHG15 expression in pcDNA-SNHG15-transfected 
AsPC-1 and BxPC-3 cells. Compared with the negative 
control, SNHG15 expression exhibited a remarkable 
increase in AsPC-1 and BxPC-3 cells following pcDNA-
SNHG15 transfection (Supplementary Figure 1A).

The effect of SNHG15-mediated proliferation in 
PC cells

To identify the function of SNHG15 in PC, we 
performed loss-of-function and gain-of-function assays. 
MTT assays showed that growth of AsPC-1 and BxPC-
3 cells transfected with si-SNHG15 2# and si-SNHG15 
3# was inhibited relative to control cells (Figure 2C), 
whereas SNHG15 overexpression promoted AsPC-1 and 

Figure 1: SNHG15 expression is upregulated in PC tissues and its clinical significance. (A) Relative expression of SNHG15 
in human PC tissues (n=48) compared with corresponding adjacent normal tissues (n=48). SNHG15 expression was examined by qPCR 
and normalized to GAPDH expression (shown as ΔCT). (B) The patients were classified into two groups according to SNHG15 expression. 
(C-E) The results are presented as relative expression levels in tumor tissues. SNHG15 expression was significantly higher in patients with 
a larger tumor size, a higher pathological stage, and lymph node metastasis (shown as ΔCT). Bars: s.d, *P<0.05, **P<0.01.
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BxPC-3 cells proliferation (Supplementary Figure 1B). 
Similarly, decreased SNHG15 impaired colony-formation 
capacities of PC cells (Figure 2D), whereas SNHG15 
overexpression increased AsPC-1 and BxPC-3 colon 
formation (Supplementary Figure 1C). These findings 
were confirmed by results of EdU staining assays (Figure 
2E), and highlighted SNHG15 as an oncogene in PC cell 
lines.

SNHG15 downregulation induces PC cell 
apoptosis and alters cell cycle progression 
in vitro

The involvement of cell cycle and apoptosis is 
required for regulating cell proliferative abilities. To 
evaluate SNHG15-mediated impact on PC cell cycle 
and apoptosis, flow cytometric assays and terminal 
deoxynucleotidyl transferase dUTP nick-end labeling 
(TUNEL) staining analysis were conducted. We observed 
a significant increase at G1/G0 phase in AsPC-1 or BxPC-
3 cells transfected with si-SNHG15 2# and si-SNHG15 3#, 
compared with respective controls (Figure 3A). Moreover, 
AsPC-1 and BxPC-3 cells transfected with SNHG15 

siRNAs exhibited higher levels of apoptosis as compared 
with control cells (Figure 3B-3C). Additionally, western 
blot assays found remarkable alteration of CDK2 (cyclin-
dependent kinase 2) and CDK4 (cyclin-dependent kinase 
4) in AsPC-1 and BxPC-3 cells of SNHG15 knockdown, 
confirming that SNHG15 involvement in cell cycle 
regulation (Figure 3D). Furthermore, protein expression 
levels of cleaved caspase-3 and cleaved caspase-9 genes 
exhibited significant increases in AsPC-1 and BxPC-3 
transfected with SNHG15 siRNAs (Figure 3D). These data 
suggest that SNHG15 knockdown could promote G1/G0 
arrest and increase apoptotic rate in PC cells in vitro.

SNHG15 knockdown inhibits PC cell 
tumorigenesis in vivo

To investigate the impact of SNHG15 in vivo, we 
inoculated empty vector or sh-SNHG15-transfected 
BxPC-3 cells into nude mice. Compared with control, the 
tumor derived from sh-SNHG15-transfected BxPC-3 cells 
was obviously smaller (Figure 4A, 4C). Consistently, the 
tumor weight from sh-SNHG15 group was remarkably 
lighter than control group (Figure 4D). Then, qPCR 

Table 1: Correlations between SNHG15 expression and clinicopathological characteristics of PC patients (n=48)

Characteristics
SNHG15 expression P

Chi-squared test
P-valueLow High 

Age(years)    

 >60 12 14 0.562

 ≤60 12 10  

Gender    

 Male 13 14 0.771

 Female 11 10  

Differentiation    

 Well/moderate 10 7 0.365

 Poor 14 17  

Tumor size    

 ≤2cm 13 5 0.017*

 >2cm 11 19  

TNM Stage    

 I/II 15 6 0.009**

 III/IV 9 18  

Lymph node metastasis    

 Positive 9 20 0.001**

 Negative 15 4  

*P < 0.05, **P < 0.01.
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Figure 2: SNHG15 knockdown inhibits PC cell proliferation in vitro. (A) SNHG15 expression levels of PC cell lines (AsPC-
1, BxPC-3 and PANC-1), compared with that in human pancreatic ductal epithelial cells (HPDE6). (B) qRT-PCR analysis of SNHG15 
expression in AsPC-1 and BxPC-3 cell lines transfected with SNHG15 siRNAs or the negative control. (C) MTT assays were performed to 
detect the viability of si-SNHG15 transfected AsPC-1 and BxPC-3 cells. (D) Colony-forming growth assays were performed to determine 
the proliferation of PC cells. The colonies were counted and captured. (E) Proliferating AsPC-1 and BxPC-3 cells were labeled with Edu. 
The Click-it reaction revealed Edu staining (red). Cell nuclei were stained with DAPI (blue). The images are representative of the results 
obtained. *P<0.05 and **P<0.01.
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Figure 3: Knockdown of SNHG15 promotes cell cycle arrest and induces apoptosis in PC cells in vitro. (A) Flow cytometry 
assays were performed to analysis the cell cycle progression when PC cells transfected with si-SNHG15. The bar chart represented the 
percentage of cells in G0/G1, S, or G2/M phase, as indicated. All experiments were performed in biological triplicates with three technical 
replicates. (B) Flow cytometry was used to detect the apoptotic rates of cells. LR, early apoptotic cells; UR, terminal apoptotic cells. (C) 
Apoptosis in AsPC-1 and BxPC-3 cells after SNHG15 knockdown was detected through TUNEL staining. (D) Western blot analysis of 
CDK2, CDK4 and cleaved caspase-3 and cleaved caspase-9 after si-NC, si-SNHG15 2#, or si-SNHG15 3# transfection in AsPC-1 and 
BxPC-3 cells. GAPDH protein was used as an internal control.
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experiments determined an obvious decrease of SNHG15 
in the tumor tissues derived from sh-SNHG15-transfected 
BxPC-3 cells, compared with that of respective control 
groups (Figure 4B). Immunohistochemistry (IHC) results 
found that the tumor tissues derived from sh-SNHG15-
transfected BxPC-3 cells displayed lower Ki-67 staining 
than those formed from the control cells (Figure 4E). 
These findings indicated that SNHG15 downregulation 
suppressed PC cells tumor growth in vivo.

SNHG15 epigenetically silences P15 and KLF2 
transcription by binding to EZH2

Mounting studies indicated that lncRNA was 
capable of regulating target-gene expression through 
interactions with RNA binding proteins [10, 35–39]. For 
example, lincRNA00511 suppresses p57 expression via 
interaction with EZH2 in non-small-cell lung carcinoma 
(NSCLC). LncRNA SNHG15 was initially found to be 
overexpressed in GC and mediated GC cell proliferation 
and invasion [33]; however, the molecular mechanism 
and downstream targets of SNHG15 involved in PC cell 
proliferation remains unknown.

To investigate the regulatory mechanism of 
SNHG15, we performed subcellular fractionation assays 
and found that SNHG15 expression was much higher in 
nucleus than cytoplasm (Figure 5A). Then, RIP experiment 
confirmed that SNHG15 interacted with EZH2 in AsPC-

1 and BxPC-3 cells (Figure 5B). Similarly, endogenous 
SNHG15 exhibited enrichment in anti-SUZ12 RIP 
fraction. Thus, SNHG15 may downregulate the expression 
of target genes through binding to PRC2 at epigenetical 
levels.

To discover key downstream targets of SNHG15, 
we selected potential EZH2 and SUZ12 targets and 
determined their involvement in SNHG15-related 
PC development. Result of qPCR assays showed that 
P15 and KLF2 expression levels were elevated in AsPC-1 
and BxPC-3 cells following transfection of si-SNHG15 
2# and si-SNHG15 3#; however, there were no significant 
differences in the expressions of other genes following 
SNHG15 knockdown (Figure 5C). Additionally, the 
protein levels of P15 and KLF2 exhibited significant 
alterations in si-SNHG15-treated cells (Figure 5D). 
Furthermore, AsPC-1 and BxPC-3 cells transfected with 
EZH2 siRNAs effectively decreased EZH2 expression 
and an obvious increase of P15 and KLF2 expression was 
observed (Figure 5E). Consistently, SUZ12 inhibition 
leads to upregulation of P15 and KLF2 in AsPC-1 and 
BxPC-3 cells (Supplementary Figure 2). Our findings 
showed that P15 and KLF2 were the most up-regulated 
mRNAs in SNHG15-depleted PC cells, EZH2-depleted 
PC cells, and SUZ12-depleted PC cells. These results 
suggested that P15 and KLF2 may be novel downstream 
targets of SNHG15.

Figure 4: Knockdown of SNHG15 inhibits PC cell tumorigenesis in vivo. (A) Empty vector or sh-SNHG15 were transfected 
into BxPC-3 cells, which were injected in the nude mice (n = 7), respectively. Tumors formed in sh-SNHG15 group were dramatically 
smaller than the control group. (B) qRT-PCR was performed to detect the average expression of SNHG15 in xenograft tumors (n = 7). (C) 
Tumor volumes were calculated after injection every four days. Points, mean (n = 7); bars indicate SD. (D) Tumor weights were represented 
as means of tumor weights±SD. (E) The tumor sections were under H&E staining and IHC staining using antibodies against ki-67. Error 
bars indicate mean ± standard errors of the mean. *P < 0.05, **P < 0.01.
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To determine whether SNHG15 suppresses the 
expression of P15 and KLF2 by binding to EZH2, we 
performed chromatin immunoprecipitation (CHIP) 
assays. The results found that EZH2 bound the promoter 
regions of P15 and KLF2, and mediated histone H3 lysine 
27 trimethylation (H3K27me3) modification. However, 
SNHG15 knockdown reduced this binding activity and 
H3K27me3 levels (Figure 5F). These results illustrated 
that SNHG15 could regulate the expression of P15 and 
KLF2 partially via interaction with EZH2 in PC cells.

P15 and KLF2 involvement in SNHG15-
mediated oncogenic role

Gain-of-function analysis was conducted to study 
P15 and KLF2 involvement in SNHG15-mediated PC cell 
proliferation. Compared with control group, the protein 
levels of P15 and KLF2 were found to be upregulated 
in BxPC-3 cells following transfection with pcDNA-P15 
and pcDNA-KLF2 (Figure 6A, 6B). Additionally, MTT 
results demonstrated that cell proliferation was inhibited 
upon P15 and KLF2 overexpression, and EdU assays 

showed the same results (Figure 6C, 6D). Furthermore, 
we found that aberrant expression of P15 and KLF2 also 
induced G1/G0 phase arrest (Figure 6E). These findings 
indicated that SNHG15 exhibited oncogenic effects in 
PC cells partially through repression of P15 and KLF2 
expression.

Moreover, we conducted rescue assays to determine 
P15 and KLF2 involvement in SNHG15 contributions to 
PC cell proliferation. BxPC-3 cells were co-transfected 
with pcDNA-SNHG15 and pCNDA-P15 or pCDNA-
KLF2. We observed that pcDNA-P15 or pcDNA-
KLF2 transfection partially rescue pcDNA-SNHG15-
transfection-mediated decreases in P15 or KLF2 
expression, and the co-transfection could partly reverse 
pcDNA-SNHG15-induced growth (Figure 7A-7D). 
Furthermore, we detected correlations between SNHG15 
and P15 and KLF2 expression in 40 pairs of PC tissues, 
revealing a significantly negative correlation between 
SNHG15 and P15 or KLF2 expression (Figure 7E). These 
findings indicated that SNHG15 exhibited oncogenic 
effects in PC cells partially through repression of P15 and 
KLF2 expression.

Figure 5: SNHG15 epigenetically silences P15 and KLF2 transcription by binding to EZH2. (A) qRT-PCR analysis of 
SNHG15 nuclear and cytoplasmic expression levels in AsPC-1 and BxPC-3 cells. U6 was used as a nucleus marker, and GAPDH was 
used as a cytosol marker. (B) RIP experiments were performed in AsPC-1 and BxPC-3 cells, and the coprecipitated RNA was subjected to 
qRT-PCR for SNHG15. The fold enrichment of SNHG15 in EZH2/SUZ12 RIP is relative to its matched IgG control. (C) The levels of p15, 
p16, p21, p27, p57, KLF2 and PTEN mRNA were determined by qRT–PCR when knockdown of SNHG15. (D) The p15 and KLF2 protein 
levels were determined by western blot in SNHG15 knockdown in AsPC-1 and BxPC-3 cells. (E) The p15 and KLF2 expression levels 
were determined by qRT-PCR in AsPC-1 and BxPC-3 cells transfected with si-EZH2 1# or 2#. (F) ChIP-qRT-PCR of EZH2 occupancy 
and H3K27me3 binding in the p15 and KLF2 promoters in AsPC-1 and BxPC-3 cells treated with si-SNHG15 3# (48 h) or si-NC; IgG as 
a negative control. Error bars indicate mean ± standard errors of the mean. *P < 0.05, **P < 0.01.
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DISCUSSION

With advances in sequencing technologies, hundreds 
of lncRNAs in human cancers have been discovered. 
Current evidence has highlighted lncRNAs as crucial 
modulators and key players in multiple malignancies, 
including PC [12, 29, 40, 41]. LncRNA SPRY4-IT1 
increases proliferative abilities of breast cancer cells 
through upregulation of zinc finger protein 703 (ZNF703) 
expression [22]. Additionally, lncRNA growth-arrest-
specific 5 (GAS5) plays tumor-suppressive roles in PC 
cells [42], whereas NEAT1, MALAT1, HOTTIP and 
HOTAIR exert oncogenic roles in PC cells [26]. Our 

previous study also reported that lncRNA IRAIN could 
serve as an oncogene in PC cells and promote proliferation 
through silencing P15 and KLF2 [32].

A growing body of evidence suggests that lncRNA 
can silence downstream target expression through 
binding to RNA-binding proteins (RBPs) or competing 
for binding to microRNAs [10, 35–37]. Sun et al. [43] 
reported that lncRNA HOXA11-AS could interact with 
EZH2, LSD1 and DNA methyltransferase 1 (DNMT1) 
to exert oncogenic functions in GC. Additionally, ~20% 
of lncRNAs are capable of binding to PRC2 to regulate 
target gene expression [44]. LncRNA HOTAIR interacts 
with PRC2 to induce H3K27me3, thus silencing the 

Figure 6: Effect of P15 and KLF2 of overexpression on BxPC-3 cell in vitro. (A, B) The mRNA levels and protein levels of 
P15 and KLF2 in BxPC-3 cells transfected with pCDNA-P15 or pCDNA-KLF2 was detected by qPCR analysis. (C, D) MTT assays and 
Edu staining assays were used to determine the cell viability. Values represent the mean ± s.d. from three independent experiments. (E) 
Cell cycle was analyzed by flow cytometry. The bar chart represents the percentage of cells in G1–G0, S, or G2–M phase, as indicated. 
*P < 0.05 and **P < 0.01.
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expressions of downstream targets [19, 45]. Understanding 
HOTAIR activity helps elucidate the mechanism 
associated with lncRNA binding to PRC2, resulting in 
transcriptional repression through direct silencing of 
specific loci. EZH2, a catalytic component of PRC2 
[46], can induce H3K27me3 to repress gene transcription 
with specificity [47, 48]. More importantly, EZH2 is 
involved in multiple pathological processes related to 
carcinogenesis, proliferation, apoptosis and metastasis 
[49–51]. Kyounghyun et al. [10, 19] found that decreased 
HOTAIR expression enriched expression of cell-cycle-
related genes, and that HOTAIR activities in PC are partly 
dependent on interaction of HOTAIR with EZH2, which 
induces H3K27me3 to silence expressions of multiple 
genes.

HOTAIR has been reported to exert pro-oncogenic 
functions in many cancers, including PC [19, 45, 52-55] 
and is significantly overexpressed in PC tissues, with 
HOTAIR knockdown impairing cell growth, blocking 
cell cycle progression, and inducing apoptosis in PC 
cells [19]. Additionally, gene-set-enrichment analysis 
(GSEA) analysis revealed a critical role for HOTAIR in 
cell cycle progression and proliferation. In this study, we 
investigated SNHG15 expression and function in PC cell 
lines. In-vitro assays revealed that decreased SNHG15 

inhibited PC cell proliferative capacities, promoted G1/
G0 phase arrest, and activated apoptosis, whereas in-
vivo assay demonstrated that SNHG15 downregulation 
suppressed PC cell tumorigenesis. SNHG15 exhibits 
functions similar to those reported for HOTAIR and 
exerts pro-oncogenic roles in PC progression; however, 
the downstream targets and regulatory pathways differ 
between HOTAIR and SNHG15. HOTAIR-mediated 
suppression of genes in PC is partly EZH2-dependent [10, 
19], and HOTAIR knockdown affects genes involved in 
cell cycle progression and proliferation, including growth/
differentiation factor 15 (GDF15), which inhibits cell 
growth and activates apoptosis [56, 57] and is co-regulated 
by HOTAIR and EZH2 [19].

In this study, we reported that SNHG15 could 
promote PC cell proliferation by interacting with EZH2, 
but the genes mediated by HOTAIR or SNHG15 are 
different. The tumor suppressors P15 and KLF2 were the 
most highly upregulated genes in SNHG15-depleted PC 
cells, EZH2-depleted PC cells, and SUZ12-depleted PC 
cells. Chip assays confirmed that SNHG15 can recruit 
EZH2 to P15 and KLF2 promoter regions and represses 
transcriptions of P15 and KLF2 through H3K27me3 
modification in PC cells. To our knowledge, there is no 
report concerning the regulatory mechanism between 

Figure 7: SNHG15 negatively regulates expression of P15 and KLF2 by rescue assays. (A, B) MTT and colony formation 
assays were used to determine the cell proliferation ability for BxPC-3 cells transfected with pCDNA-SNHG15 and pCDNA-P15 and 
pCDNA-KLF2 and co-transfected with pCDNA-SNHG15 and pCDNA-P15 or pCDNA-SNHG15 and pCDNA-KLF2. (C) qPCR analyzed 
the P15 and KLF2 mRNA levels in 40 pairs PC tissues and found that there was a significantly negative correlation between SNHG15 and 
P15 or KLF2. Values represent the mean±s.d. from three independent experiments.
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HOTAIR and P15 or KLF2 now. Thus, although SNHG15 
and HOTAIR have similar functions in pancreatic cancer, 
they differ in terms of target genes and their mechanisms 
of action.

Cyclin-dependent protein kinase inhibitors 
(CKIs) regulate cell cycle progression and act as tumor 
suppressors in many cancers [58–60]. P15, one of the 
universal CDK inhibitors, can lead to cell cycle halted 
at G0/G1 checkpoint [61–63]. KLF2, a member of the 
Kruppel-like factor (KLF) family, also exerts tumor-
suppressive roles [64]. P15 and KLF2 have been 
implicated in various malignancies, including PC [65–70]. 
We showed here that SNHG15 epression was inversely 
correlated with that of P15 and KLF2 in PC tissue.

In conclusion, we firstly investigated the expression 
pattern of SNHG15 in PC tissues and cell lines. SNHG15 
may be an indicator of poor prognosis in patients with 
PC. Additionally, SNHG15 knockdown inhibited PC 
cell proliferation and tumorigenesis while inducing cell 
apoptosis. More importantly, there is no study that revealed 
the molecular mechanism and downstream targets of 
SNHG15 until now. Here, we demonstrated that SNHG15-
mediated oncogenic effect is partly through epigenetically 
repressing P15 and KLF2 expression. Additional studies 
are needed to determine whether SNHG15 modulates 
other targets in PC; however, our findings nonetheless 
provide novel insight into PC pathogenesis as well as a 
basis for the improvement of individualized treatment for 
PC patients.

MATERIALS AND METHODS

Tissue samples and cell lines

Forty-eight pancreatic cancer tissues and the 
corresponding matched non-tumor samples were collected 
between 2013 and 2016. These patients were performed 
with surgical resections with signed operation consents 
in the Second Affiliated Hospital of Nanjing Medical 
University, and they did not receive any local or systemic 
treatment before operation. The study design conforms 
with the regulations of Nanjing Medical University’s 
Ethics Committee. All cell lines used in the study 
are obtained from American Type Culture Collection 
(Manassas, VA, USA). The culture condition is set to 
grow in Dulbecco’s modified Eagle’s medium (DMEM; 
Invitrogen, Shanghai, China) with 10% fetal bovine serum 
(10% FBS) with 5% CO2 in humidified-air at 37 °C

Total RNA isolation and qRT-PCR assays

The assays of total RNA isolation and qRT-PCR 
were conducted as previously describled [71]. All the 
samples are examined three times. The sequences of 
primers used for the studies are shown in Supplementary 
Table 1.

Transfection of PC cell lines

SiRNAs were transfected into PC cell lines using 
Lipofectamine 2000 (Invitrogen, USA). Plasmid vectors 
(empty vector and sh-SNHG15) were transfected into PC 
cell lines using Fugene (Roche, USA). For all sequences, 
information on si-RNAs and sh-RNAs is listed in 
Supplementary Table 2. KLF2 and P15 sequences with 
full length were subcloned into the pcDNA3.1 vector 
(GENECHEM, Shanghai, China). We adopted qPCR 
assays to evaluate P15 and KLF2 expression in BxPC-3 
cells transfected with pcDNA-P15 or pcDNA-KLF2 and 
pcDNA3.1 vector was set to a control.

Cell viability analysis

Cell Proliferation Reagent Kit I (MTT) (Roche 
Applied Science) and EdU assay kit (Life Technologies 
Corporation Carlsbad, CA, USA) were used to examine 
proliferative capacities. Colony formation experiments 
were performed to monitor PC cells cloning capability.

Flow cytometry

Si-NC-transfected or siRNA-transfected PC 
cells were collected after 48h. After staining with 
PI by CycleTESTTM PLUS DNA Reagent Kit 
(BD Biosciences), a flow cytometer (FACScan®; 
BDBiosciences) was used to analyze cells. The cell-cycle 
results elucidate the exact distribution of cells in G0-G1, 
S, and G2-M phases. Cells for apoptosis analysis were 
processed with FITC-Annexin-V and propidium iodide 
(PI) and then FACScan® was used to discriminate cells 
into viable cells, dead cells, early apoptotic cells, or late 
apoptotic cells.

TUNEL staining assay

TUNEL staining assay was performed as previously 
reported [12]. All experiments were performed in 
triplicate.

Subcellular fractionation location

Based on the protocol of manufacturer, PARIS Kit 
(Life Technologies) was used to separate the nuclear part 
and cytosolic part in PC cell lines.

Western blot assay

12% sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) was used to separate protein 
lysates. Then, the protein lysates were transferred to 0.22 
mm nitrocellulose membranes (Sigma) with particular 
antibodies incubation. Antibodies aganist CDK2, CDK4, 
cleaved caspase-3, and cleaved caspase-9 were supplied 



Oncotarget84164www.impactjournals.com/oncotarget

by Cell Signaling Technology, Inc. (CST). Antibodies 
aganinst P15 and KLF2 were supplied by Sigma.

RNA immunoprecipitation (RIP)

RIP assay was used to investigate whether SNHG15 
could interact or bind with the potential binding protein 
(EZH2 and SUZ12) using EZMagna RIP kit (Millipore, 
Billerica, MA, USA). Antibodies against EZH2 and 
SUZ12 were from Millipore.

Chromatin immunoprecipitation (ChIP)

CHIP experiment was conducted using the EZ-CHIP 
KIT (Millipore, Billerica, MA, USA). The link between 
DNA and protein was built through PC cells’ incubation 
with formaldehyde. Anti-EZH2 and anti-H3K27me3 
antibodies (Millipore) were used to immunoprecipitate 
chromatin fragments. Finally, qRT-PCR assays were 
performed to analyze the precipitated chromatin DNA. The 
sequences of CHIP primers are shown in Supplementary 
Table 3.

In vivo tumor formation assay

Male nude mice of 4 weeks old are supplied 
by Animal Center of the Nanjing Medical University 
(Nanjing, China). BxPC-3 cells following stable 
transfection with empty-vector or sh-SNHG15 were 
colloected and the concentration of resuspended BxPC-3 
cells is 2 × 107 cells/mL. Then the suspended cells were 
injected into either side of the posterior flank of each 
mouse. The tumor weight and volumes were tested every 
4 days. Up to 24 days after injection, the mice were killed. 
Then, the tumors formed from empty-vector-transfected 
or sh-SNHG15-transfected BxPC-3 cells were removed 
from the mice and were kept for weight measuring and 
immunohistochemistry (IHC). The instruction conforms 
with regulations of Nanjing Medical University’s Animal 
Ethics Committee.

Statistical analysis

SPSS software, version 22.0 (SPSS, Chicago, IL, 
USA) was used to conduct data analysis. The significant 
differences between different groups are analyzed by t-test 
or a chi-square test. The level of P value lower than 0.05 
was identified to be statistically significant.
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