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Cancer progression is marked by the infiltration of immunosuppressive cells, such as tumor-associated macro-
phages (TAMs), regulatory T lymphocytes (Tregs), and myeloid-derived suppressor cells (MDSCs). These cells
play a key role in abrogating the cytotoxic T lymphocyte-mediated (CTL) immune response, allowing tumor
growth to proceed unabated. Furthermore, targeting these immunosuppressive cells through the use of peptides
and peptide-based nanomedicine has shown promising results. Here we review the origins and functions of

immunosuppressive cells in cancer progression, peptide-based systems used in their targeting, and explore future
avenues of research regarding cancer immunotherapy. The success of these studies demonstrates the importance
of the tumor immune microenvironment in the propagation of cancer and the potential of peptide-based na-
nomaterials as immunomodulatory agents.

1. Introduction

Cancer is a leading cause of death worldwide, with an estimated 9.6
million deaths in 2018 [1]. The lethality of the disease is in part at-
tributed to the infiltration of immune-derived immunosuppressive cells,
such as tumor-associated macrophages (TAMs), regulatory T lympho-
cytes (Tregs), and myeloid-derived suppressor cells (MDSCs) into the
tumor microenvironment (TME). The recruitment of these cells into the
TME has been linked to poor patient outcomes in a variety of cancers,
such as skin, prostate, lung, and ovarian cancer [2-10]. These cells
support cancer progression by suppressing the body's tumoricidal im-
mune response, namely CD8* cytotoxic T lymphocytes (CTLs), and
such immunosuppression is mediated largely through the expression of
immune checkpoint molecules, as well as the secretion of anti-in-
flammatory cytokines [11]. For example, programmed death ligand 1
(PD-L1) and CD80/CD86 are expressed on the surfaces of TAMs and
interact with the immune checkpoints programmed death protein 1
(PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), re-
spectively, present on the surfaces of activated CTLs and impairs their
potency and proliferation [12].
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1.1. Brief overview of CTLs

CTLs are a major component of the adaptive immune system, along
with B lymphocytes. In contrast to the natural killer (NK) cells, mac-
rophages, and dendritic cells (DCs) that comprise the innate immune
system, CTLs must first be primed and expanded against a specific an-
tigen before exhibiting cytotoxicity. Tumor-associated antigens (TAAs)
are short peptide sequences (~8-11 amino acids) scavenged from
cancer cells by antigen-presenting cells (APCs) that then present these
peptides on a complex of surface proteins, called the major histo-
compatibility complex (MHC) [13]. Antigen-loaded MHCs are used to
activate naive CTLs through the T cell receptor (TCR), priming them to
react specifically to the presented antigen. The activation of CTLs oc-
curs in a co-stimulatory manner, contingent on the simultaneous acti-
vation of the TCR by the MHC, as well as the activation of another
surface protein, CD28, by CD80/CD86 also expressed by APCs. Fol-
lowing activation, CTLs undergo clonal expansion in the presence of IL-
2 and exhibit cytotoxicity towards antigen-expressing cells. The cyto-
toxic effector functions of CTLs are mediated by the release of cyto-
toxins such as granzymes, perforin, and granulysin that induce pore
formation and membrane lysis in target cells [14]. Additionally, CTLs
can directly induce apoptosis through cell-cell contact via the

* Corresponding author. Michelson Center for Convergent Bioscience, 1002 Childs Way, MCB 357, Los Angeles, CA, 90089, USA.

E-mail address: eunchung@usc.edu (E.J. Chung).

https://doi.org/10.1016/j.bioactmat.2020.01.006

Received 5 September 2019; Received in revised form 6 January 2020; Accepted 9 January 2020
2452-199X/ © 2020 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).


http://www.sciencedirect.com/science/journal/2452199X
http://www.keaipublishing.com/biomat
https://doi.org/10.1016/j.bioactmat.2020.01.006
https://doi.org/10.1016/j.bioactmat.2020.01.006
mailto:eunchung@usc.edu
https://doi.org/10.1016/j.bioactmat.2020.01.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bioactmat.2020.01.006&domain=pdf

N.T. Trac and E.J. Chung

expression of the FAS (FS-7-associated surface antigen) death ligand.
Following activation, CTLs exhibit downregulated expression of CD28
and upregulated expression of immune checkpoints such as PD-1 and
CTLA-4. Interaction of these checkpoints with their associated ligands
(PD-L1 and CD80/CD86, respectively) expressed on macrophages, DCs,
Tregs, and cancer cells can halt the immune response by impairing ef-
fector function and proliferation of CTLs. As CTLs comprise the bulk of
the adaptive immune response, re-stimulation of CTL-mediated tumor
immunity has been the major focus of the cancer immunotherapy field.

1.2. Current immunotherapeutic strategies

The field of immunotherapy has been developed in an effort to
stimulate the CTLs that are suppressed in cancer. Although the me-
chanisms behind cancer-driven immunosuppression have only been
discovered recently, the link between immune stimulation and therapy
has been empirically observed as far back as the nineteenth century.
The first study documenting this concept occurred in 1868 by Wilhelm
Busch, in which he observed tumor regression following a bacterial
infection mediated by Streptococcus pyogenes [15]. Twenty-five years
later, William Coley published a report corroborating the efficacy of
bacterial infections in treating cancer in 10 different patient cases [16].
A bacterial vaccine including this strain was named “Coley's toxin” in
homage of his work and was used for several decades as an anti-cancer
remedy [17]. The concept of immunotherapy was set aside in favor of
small-molecule cell cycle inhibitors and radiotherapies until the 1990s
when advances in immunology identified the crucial role of immune
cells in controlling cancer growth [18-20].

The use of monoclonal antibodies as immune checkpoint inhibitors
comprises most immunotherapies, with the first successful pre-clinical
application reported in 1996 by Allison et al. [21]. Results from a
clinical trial utilizing a CTLA-4-targeted monoclonal antibody (ipili-
mumab) was published in 2010, showing improved survival in patients
with metastatic melanoma compared to the standard of care gp100
peptide vaccine (10.1 months vs. 6.4 months) [22]. These results led to
ipilimumab gaining FDA-approval the following year under the trade
name Yervoy for use in metastatic melanoma [23]. Not long after, the
FDA also approved two PD-1 immune checkpoint inhibitors, pem-
brolizumab/lambrolizumab (Keytruda) and nivolumab (Opdivo), for
melanoma, non-small cell lung cancer, and renal cell carcinoma
[24,25]. Additionally, an anti-PD-L1 monoclonal antibody, atezoli-
zumab (Tecentriq), was approved in 2016 for use in bladder cancer, and
then again in 2019 for small cell lung cancer and triple-negative breast
cancer [26]. Notably, the 2018 Nobel Prize in Physiology or Medicine
was jointly awarded to Allison and Honjo, researchers who first de-
monstrated the efficacy of CTLA-4 and PD-1 immunotherapies [27,28].

While immune checkpoint inhibitors function by preventing the
premature shut-down of the immune response, other immunotherapies
focus on assisting the priming of CTLs to mount a greater immune re-
sponse. Peptide vaccines have been explored in both pre-clinical models
and clinical trials [29-31]. The purpose of peptide vaccines is to syn-
thesize a peptide sequence identical to the TAAs presented on cancer
cells and deliver it to CTLs to increase their activation and priming
against cancer cells expressing these antigens. This concept can be ex-
trapolated to engineer CTLs in vitro that express chimeric antigen re-
ceptors (CARs) that have antigen-binding and T cell-activating moieties
(CAR T cells) [32]. CAR T cells are generated by adoptive cell transfer,
in which autologous T lymphocytes are taken from the patient, en-
gineered to express CARs, primed against a patient-specific antigen,
expanded in vitro, and re-introduced into the patient [33,34].

Although both peptide vaccines and adoptive cell therapies have
shown clinical efficacy, they are not without limitations. Both treat-
ment options require the expression of specific TAAs by the cancer cells,
but cancer cells can rapidly evolve to downregulate or even eliminate
their expression of TAAs [35]. Additionally, peptide vaccines are lim-
ited by their weak immunogenicity and instability in vivo, as they are
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prone to degradation by proteases [36]. Moreover, CAR T cell therapy is
hindered by drawbacks inherent to the procedure of adoptive cell
therapy, including a limited amount of autologous T cells derived from
patients that is necessary for the procedure [37]. Although these im-
munotherapies have shown clinical efficacy, their drawbacks have pu-
shed researchers to investigate other alternatives.

An alternative and promising immunotherapeutic approach is to
target and deliver therapeutic agents such as peptides, monoclonal
antibodies, and nucleic acid aptamers to immunosuppressive TAMs,
Tregs, and MDSCs [38-41]. In particular, peptides are strong candidates
for immunotherapy and have been used in a variety of studies targeting
immunosuppressive cells, as they possess a number of attractive qua-
lities, such as biocompatibility, cost-efficiency, and versatility as both
targeting moieties and therapeutic agents [42,43]. However, peptides
are limited by their poor stability in vivo, as they are vulnerable to
degradation by proteases present in the serum and tissues. Nanoparticle
systems are often used to circumvent this issue, allowing the safe de-
livery of peptides to target cells. Furthermore, nanoparticles functio-
nalized with peptides exhibiting specificity for immunosuppressive cells
have been used to manipulate these small cell populations, even though
they sit within a highly heterogeneous microenvironment.

This mini-review details the origins, biomarkers, and functions of
immunosuppressive cells pertinent to cancer propagation and then
highlights the use of peptides and peptide-functionalized nanoparticles
in targeting these cells for immunotherapeutic response. We direct the
reader to other reviews that extensively describe general im-
munotherapy and nanomedicine strategies for immunotherapy
[18,34,44,45].

2. Immunosuppressive cells in cancer

Infiltrating immune cells such as M2-like TAMs, Tregs, and MDSCs
adopt suppressive roles in cancer, inhibiting CTL-mediated tumor im-
munity [46-48] (Fig. 1). The endogenous functions of M2 macrophages
and Tregs are to halt the immune response once an infection has been
dealt with, as well as to prevent autoimmunity. However, in the context
of cancer, these cells are affiliated with disease progression by in-
hibiting the CTL-mediated immune response to the disease. MDSCs are
a unique sub-population of cells observed only in pathological sce-
narios, including cancer. The origins, markers, and roles of TAMs,
Tregs, and MDSCs in cancer progression will be further discussed
below.

2.1. Tumor-associated macrophages (TAMs)

Macrophages are immune cells that phagocytose abnormal cells and
foreign invaders, as well as present antigens and secrete im-
munomodulatory cytokines [49]. Monocyte-derived macrophages are
recruited from the blood stream as undifferentiated monocytes in ac-
cordance to inflammatory cues, such as CCL2 (or monocyte chemoat-
tractant protein-1, MCP-1), CCL3 (or macrophage inflammatory pro-
tein-1a, MIP-1a), CXCL12 (or stromal-derived factor-1, SDF-1), and
CX3CL1 (or fractalkine) [50-55]. Depending on the immunological
landscape into which these monocytes extravasate, they may differ-
entiate into the pro-inflammatory M1 phenotype or anti-inflammatory
M2 phenotype macrophage. M1 macrophages are polarized by lipopo-
lysaccharides and Th1 cytokines, such as interferon gamma (IFN-y) and
granulocyte-macrophage colony-stimulating factor (GM-CSF) [56].
They are associated with the killing of pathogens and release of pro-
inflammatory cytokines (TNF-a, CCL3, IL-6, IL-12), making them tu-
moricidal [57-59]. M2 macrophages, on the other hand, are activated
by Th2 cytokines like IL-4 and IL-13 [60,61] and associated with ex-
tracellular matrix remodeling, as well as anti-inflammatory and im-
munosuppressive cytokine secretion (IL-10, TGF-P) that serves to sup-
port tumor growth [62]. As M1 and M2 macrophages serve different
functions in the immune regime, discrimination between the two can be
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Fig. 1. Cancer progression is mediated by the infiltration of immunosuppressive
cell types into the tumor that aid the developing tumor in avoiding eradication.
Adapted and reprinted with permission from the National Cancer Institute.

done by evaluating metabolic output. For example, the disparity in
macrophage function is elegantly demonstrated in the metabolism of
the amino acid arginine. M1 macrophages metabolize arginine through
nitric oxide synthase to produce nitric oxide, which diffuses through the
membranes of target cells and mediates cytotoxicity [63,64]. On the
other hand, M2 macrophages have been observed to utilize arginase to
convert arginine into ornithine, an amino acid involved in the urea
cycle that promotes cell proliferation and tissue repair by stimulating
the generation of matrix proteins, such as collagen [65,66]. TAMs ty-
pically fall under the M2 classification and play a major role in cancer
progression, as they are linked to poor patient outcomes [67]. Studies
have shown that infiltration of TAMs into the tumor and surrounding
microenvironment is mediated by chemical signaling from cancer cells,
which recruit undifferentiated monocytes from the peripheral blood
largely through the MCP-1 signaling axis [68]. Cancer-secreted IL-4 and
IL-13 then promote the polarization of these infiltrating monocytes
towards the M2 phenotype [69].

TAMs have been observed to modulate the TME by actively in-
hibiting CTL responses (Fig. 2). This is done primarily through the ex-
pression of inhibitory ligands on the cell surface, as well as the release
of immunosuppressive cytokines that impair CTL expansion and func-
tion. TAMs also play a role in the recruitment of immunosuppressive
Tregs, whose function and role in contributing to the im-
munosuppressive microenvironment will be discussed further in later
sections. TAMs express many ligands that interact with immune
checkpoints displayed on the surfaces of CTLs, resulting in CTL sup-
pression. For example, TAMs express PD-L1, which binds to PD-1
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receptors that populate the surfaces of activated CTLs, down-regulating
their function and proliferation [70,71]. TAMs also express the CD80
and CD86 ligands, which can be immunostimulatory or im-
munosuppressive, depending on which receptor they interact with [72].
CD80/CD86 can interact with CD28 for co-stimulation of naive CTLs
[73]. However, these ligands have a much stronger affinity for the
CTLA-4 on activated CTLs [74,75]. CTLA-4 is expressed at very low
levels in naive CTLs, but its expression becomes up-regulated upon
activation/priming of these cells [76,77]. Thus, CTLA-4 can act as a
braking mechanism, allowing CD80-and CD86-expressing TAMs that
have been attracted to the site by CTL effector activity, to shut down the
immune response before it can eliminate the cancer [78]. This dynamic
is often exploited to prematurely suppress CTL function before the
disease is cleared, as in the case of cancer with the heavy infiltration of
CD80*/CD86™ TAMs.

The promotion of an immunosuppressive microenvironment by
TAMs is one of the key reasons they are associated with poor patient
prognosis and outcome. These macrophages also perform a number of
other tumor-promoting functions, such as angiogenesis induction and
extracellular matrix remodeling, but these are outside the scope of this
review, and are covered in detail in other studies [79-82].

2.2. Regulatory T cells (Tregs)

Tregs comprise an important sub-type of CD4* T cells that serve to
maintain immunogenic self-tolerance and suppress adaptive immune
responses after the clearance of foreign bodies [83]. Disruption of the
balance between CTLs and Tregs has been observed in many patholo-
gies, including cancer. In the case of autoimmune diseases such as type I
diabetes, multiple sclerosis, and rheumatoid arthritis, the failure of
Tregs to suppress CTLs leads to autoimmunity [84]. On the opposite end
of the spectrum, hyper-activity of Tregs renders the CTL population
incapable of neutralizing pathogens or tumors. It is this upregulation in
Treg activity that allows cancers to avoid eradication by the CTL re-
sponse.

Tregs originate as naive CD4™ T cells that continue to mature in the
thymus until TCR activation and forkhead box P3 (FoxP3) expression
promotes a suppressive phenotype [85]. Tregs can be identified by their
expression of CD4, CD25, CTLA-4, lymphocyte activation gene 3 (LAG-
3), neuropilin-1 (Nrpl), and FoxP3 [86-88]. Tregs are able to suppress
activated CTL function directly through contact-dependent inhibition,
as well as through the release of regulatory cytokines. Tregs are at-
tracted to sites of inflammation and activated via IL-2, an inflammatory
cytokine secreted by active CTLs [89]. Since IL-2 is also necessary for
the activation and expansion of CTLs, the high expression of the IL-2
receptor, IL-2R, on Tregs allows them to rapidly deplete the sur-
rounding microenvironment of IL-2, inhibiting CTL activation. Tregs
may also inhibit effector function more directly through contact-de-
pendent mechanisms. Nakamura et al. has shown that the expression of
transforming growth factor beta-1 (TGF-1) on the surfaces of Tregs
contributes to immunosuppression in a contact-dependent manner, al-
though the biomolecular mechanisms governing this process are yet
unknown [90]. Tregs also express LAG3, another immunosuppressive
cell surface ligand with an affinity for MHC class II and CD4. Although
LAG3 is an inhibitory receptor primarily associated with CTLs, recent
studies have shown it to be vital to the immunosuppressive function of
Tregs, although the cause for this remains to be elucidated [91]. This
phenomenon in which LAG3 is associated with inhibition in one T
lymphocyte subset (CTLs) but associated with the activation of another
(Tregs), has been observed in other cell-surface markers, such as PD-1
and CTLA-4. Immunosuppressive cytokines secreted by Tregs also play
a role in down-regulating the immune response. These regulatory cells
have been observed to release high levels of soluble TGF-B1 and IL-10,
both of which have negative effects on CTL activity and proliferation.
TGF-B1 acts by inhibiting the activation of the TCR complex necessary
for CTL expansion [92]. IL-10 operates by inhibiting the
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Fig. 2. TAMs inhibit effector function of T cells through the expression of inhibitor ligands such as PD-L1, B7 (CD80/CD86), and prostaglandins, secretion of T cell-
suppressing IL-10 and TGF-f3, and metabolic starvation through arginine depletion. Adapted and reprinted with permission from ref. 69.

phosphorylation of CD28, the surface protein complementary to the
TCR in the co-stimulatory pathway of CTL activation [93].

The induction of cancer is oftentimes accompanied by the estab-
lishment of an immunosuppressive environment spearheaded by the
recruitment and activation of naive T lymphocytes into Tregs. Similar
to TAM recruitment, Tregs follow a chemotactic gradient established by
cancer cells, based largely on the CCL22 chemokine [94]. Growth fac-
tors like TGF-P and IL-10 stimulate the rapid proliferation of Tregs in
the TME [95]. TGF-f plays an additional role by promoting the con-
version of non-suppressive CD25~ T lymphocytes into the suppressive
CD4%, CD25%, FoxP3* Treg phenotype. The trafficking of Tregs into a
TME that stimulates their expansion results in a synergistic cycle in
which cancer cells and Tregs promote the other's growth and pro-
liferation, establishing a heavily immunosuppressive environment.

2.3. Myeloid-derived suppressor cells (MDSCs)

MDSCs are immunosuppressive myeloid cells found in TMEs that
have been linked to poor patient prognoses [96]. In a healthy in-
dividual, MDSCs do not exist. These cells, unique to pathological con-
ditions such as cancer, are derived from myeloid progenitor cells whose
differentiation into mature myeloid lineages has been inhibited (Fig. 3)
[97]. Normally, immature myeloid cells travel from the bone marrow to
peripheral organs, where they quickly mature into macrophages, den-
dritic cells, or granulocytes. However, in cancer, the differentiation of
these immature cells is inhibited by various signaling factors present in
the tumor, such as GM-CSF, macrophage colony-stimulating factor (M-
CSF), IL-6, IL-10, and TNF-a [98,99]. Furthermore, these factors also
induce the activation of immature myeloid cells into an im-
munosuppressive phenotype. These immature, immunosuppressive
myeloid cells are dubbed MDSCs.

MDSCs do not have an MDSC-specific biomarker. Rather, they ex-
press biomarkers indicative of the myeloid lineage, such as CD11b and
CD33, but lack markers of fully differentiated cells [100]. Utilizing
these criteria, MDSCs are generally characterized by the
CD11b*CD14~CD33* biomarker profile in humans and CD11b* Gr1™*
profile in mice [100]. MDSCs are recruited into the TME via chemokine
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secretion. In particular, CCL2, CXCL8, and CXCL12 produced by cancer
cells have been implicated in the majority of MDSC trafficking [101].

Immunosuppression by MDSCs is mediated by reactive oxygen
species (ROS) and cytokine production, as well as arginine depletion. In
a study by Corzo et al., increased generation of ROS in MDSCs led to
DNA damage and apoptosis in CTLs [102]. ROS also downregulates CTL
activity by interfering with their ability to recognize antigens through
the TCR. For example, superoxide (O, ) can react with nitric oxide
(NO) to form peroxynitrite (ONOO ™), a species observed to inhibit CTL
activity by inducing apoptosis and inhibiting phosphorylation pathways
that govern the proper formation of the TCR [103]. Metabolic starva-
tion of CTLs is another means through which MDSCs can inhibit the
immune response. Arginine is an amino acid essential for protein
synthesis in and expansion of CTLs [104]. MDSCs express nitric oxide
synthase (NOS) and arginase, two major metabolizers of arginine, at
high levels, severely lowering the amount of arginine available to CTLs,
impairing their ability to proliferate and control cancer growth [105].

In addition, MDSCs are capable recruiters of other
munosuppressive cells. Adoptive cell transfer studies from Huang et al.
show that IL-10 and TGF-3 by MDSCs are necessary for the induction of
Tregs and their associated immunosuppression [106]. Additionally,
Sinha et al. co-cultured MDSCs with M1 macrophages and showed
polarization toward a tumor-promoting M2 phenotype in a contact-
dependent manner [107]. This observation was marked by a reduction
in the release of T cell-stimulatory IL-12 by the macrophages. More-
over, their studies revealed that depletion of MDSCs through the use of
the chemotherapy drug gemcitabine restored IL-12 production and
tumor immunity.

As described above, immunosuppressive cells are not segregated cell
populations individually contributing to cancer progression. Rather,
they interact with each other and the surrounding environment in a
synergistic and interdependent manner. There is much overlap in the
biochemical signals, particularly chemokines, that they are reliant on,
which makes these signaling molecules potential targets for im-
munotherapy.

im-
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3. Peptides for targeting immunosuppressive cells

Peptides are strong candidates for immunotherapy, as they are
capable of binding to and inducing responses from target cells/re-
ceptors on a highly specific level. Furthermore, recent advances in
peptide chemistry have made their synthesis faster, cost-effective, and
more convenient [108]. Additionally, peptides can be incorporated into
nanoparticle systems, enhancing their stability in vivo and allowing for
their inclusion in multimodal therapies [53-55,109-113]. For example,
nanoparticles may be functionalized with peptides to facilitate inter-
action with the cell membrane and mediate endocytosis [114]. In-
corporation into nanoparticles also serves to enhance the therapeutic
efficacy of peptides by concentrating them into compact nanoparticles
[115]. This is generally done through the engraftment of peptide moi-
eties onto a nanomaterial substrate through chemical conjugation. For
example, a commonly used conjugation strategy is to create an amide
linker between the peptide and nanoparticle substrate by using 1-ethyl-
3-(8-dimethylaminopropyl)carbodiimide (EDC) to react the free amines
found in the N-termini of peptides with nanoparticle substrates func-
tionalized with carboxylic acid groups [116-119]. As peptides also
have free carboxylic acids displayed on their C-terminus, this same
strategy can be leveraged to conjugate peptides to amine-terminated
nanoparticles [120]. Another means of directly conjugating peptides to
nanoparticle substrates is to terminate the peptide sequence with a
sulfur-rich cysteine group and react with a maleimide-functionalized
nanoparticle [54,55,109,121]. High-affinity, non-covalent interactions
may also be used to link peptides to nanoparticle substrates. For ex-
ample, biotinylated peptides can be used to associate closely to nano-
particles displaying streptavidin moieties [122,123]. Moreover, elec-
trostatic interactions can be tuned to achieve the desired interaction
between peptide and nanoparticle [116,124-126] as reported by Blank-
Shim et al. who used a strongly positively-charged arginine homo-
peptide (isoelectric point of 11.15) to bind to negatively-charged
magnetic nanoparticles.

Confirmation of nanoparticle functionalization can be obtained
through characterization of nanoparticle properties via dynamic light
scattering (DLS) and transmission electron microscopy (TEM) to ex-
amine nanoparticle size, morphology, and polydispersity before and
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after peptide conjugation [127-129]. Additionally, nanoparticle zeta
potential is often characterized to examine differences in surface charge
conferred by peptide functionalization [130,131]. Shifts in nuclear
magnetic resonance (NMR) and circular dichroism (CD) spectra are also
used to confirm peptide conjugation, as well as examine peptide sec-
ondary structure [109,127,132].

The rest of this mini-review will highlight peptide-focused studies
that have been used for cancer immunotherapeutic strategies focused
on addressing the immunosuppressive TAMs, Tregs, and MDSCs, and
evaluate the outlook for immunotherapeutic peptides and peptide na-
noparticles.

3.1. Targeting TAMs

Given the immunosuppressive roles of TAMs and their negative
correlation to cancer prognoses, a variety of novel peptides have been
developed to target not only the macrophages themselves, but also their
monocyte precursors, as well as the biochemical pathways that facil-
itate their induction and pathological behavior. Pun et al. developed
and validated a novel M2 macrophage-targeting peptide, M2pep
(YEQDPWGVKWWY), through phage display [133]. The targeting
ability of M2pep was determined through injection of Alexa Fluor 660-
tagged M2pep into the intraperitoneal cavity of mice. Harvesting of
intraperitoneal cavity cells, as well as those from the spleen, show the
ability of M2pep to target F4/80", CD301 ", CD11c¢™ M2 macrophages
in a mixed population of cells including B cells, T cells, and neutrophils
(Fig. 4a and b). Moreover, M2pep exhibited increased binding com-
pared to the non-targeting (scrambled peptide) control.

A number of other studies have utilized the same M2pep sequence
for TAM targeting and observed positive results. For example, M2pep-
functionalized poly (lactic-co-glycolic acid) PLGA nanoparticles loaded
with CSF-1R (colony-stimulating factor 1 receptor) inhibitors were used
to block proliferative and pro-survival signaling in TAMs in a B16F10
murine melanoma model. After tumors became palpable (170 mm?®
size), treatment was administered every two days for ten days, showing
an approximately 50% decrease in tumor growth rate compared to free
inhibitor [134]. In addition, Qian et al. linked the M2pep to apolipo-
protein Al-mimetic a-helical peptide (a-peptide) to form a-M2pep
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Fig. 4. Targeting of M2-like TAMs by M2pep and scM2pep in the peritoneal cavity (A) and spleen (B). Adapted and reprinted with permission from ref. 133.

[135]. The a-peptide moiety was included to target scavenger receptor
B type 1 (SR-B1), a surface receptor highly expressed in TAMs. The
addition of phospholipids induced self-assembly into lipid nanoparticles
in which a hydrophobic core was surrounded by the two peptide moi-
eties to facilitate interaction with TAMs. The resultant nanoparticle was
then loaded with a cholesterol-modified anti—-CSF-1R siRNA (siCD115)
to interfere with pro-tumor CSF-1 signaling, forming M2NP-siCD115s.
In order to evaluate M2 TAM-targeting, M2NPs (no siRNA) loaded with
the near-infrared fluorescent dye DiR-BOA (1,1’-dioctadecyl-3,3,3",3"-
tetramethylindotricarbo-cyanine iodide bisoleate), as well as NPs in-
corporating a scrambled (non-targeting) peptide sequence, were in-
cubated with M2 macrophages for 1 h, observing a 7.5-fold increase in
M2 uptake of M2NPs compared to the scrambled control. Additionally,
in vivo studies using the B16 murine melanoma model revealed an 87%
decrease in tumor size of mice treated with M2NP-siCD115s every 2
days, compared to a saline-treated control.

Phage display experiments performed by Scodeller et al. identified a
short peptide sequence, CSPGAKVRC (dubbed “UNO”), capable of tar-
geting the M2 macrophage-specific CD206 surface marker [136]. The
targeting capability of UNO was validated through injection of fluor-
escently labeled UNO into 4T1 tumor-bearing mice. Mice were sacri-
ficed, and their organs were harvested 2 h post-injection. Confocal
microscopy of harvested tissues shows high colocalization of UNO and
CD206, with 96% of UNO positive cells also being positive for CD206
staining. Additionally, Lee et al. identified melittin (MEL), a 26-amino
acid peptide found in the venom of honey bees, as a CD206-targeting
sequence [137,138]. MEL is an amphipathic peptide that has been
studied as an anti-cancer drug for its ability to induce apoptosis in
cancer cells through mitochondrial pore formation, as well as inhibition
of angiogenesis via the downregulation of VEGF expression [139,140].
The authors investigated the anti-tumor efficacy of both MEL alone and
MEL fused with the cytotoxic (KLAKLAK), peptide (KLA) (MEL-KLA) by
administering MEL or MEL-KLA to a Lewis lung carcinoma (LLC) mouse
model [138]. Treatment began 5 days after tumor inoculation and
consisted of an injection every 3 days until the mice were sacrificed 12
days after inoculation. Results showed a significant decrease in tumor
weight upon treatment of MEL-KLA compared to a PBS-treated control,
as well as KLA and MEL mono-therapies. To further investigate the M2-
targeting ability of MEL, another study from this group showed an in-
crease of M1/M2 macrophage ratio from 0.65 to 1.55 in an LLC model
upon MEL treatment [137]. The M1/M2 ratio is an increasingly used
metric that has been reported to be positively correlated to prognosis in
human cancers [141]. The change in M1/M2 ratio was attributed to
cytotoxicity of MEL to M2 macrophages, validated through the reduc-
tion of M2 macrophage marker CD206 in flow cytometry and qPCR.

3.2. Targeting Tregs

The neuropilin-1 (Nrpl) receptor was first identified as a potential
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Treg marker in 2004 by Bruder et al. [88]. Originally identified as a co-
receptor for VEGF, Nrpl has now been identified as essential for Treg
function. Its expression on these T cells has been correlated to FoxP3
expression, implicating its role as a mediator of the immunosuppressive
phenotype [142]. Moreover, a recent study by Delgoffe et al. has
identified its role in maintaining Treg stability, as destabilization of this
population through the upregulation of Nrpl is a common character-
istic of cancers [143]. Unsurprisingly, preclinical studies of Nrpl in-
volving genetic knockout models and antibody blockades have resulted
in decreased tumor growth in skin, lung, and prostate cancers [144].
The discovery of an Nrpl peptide, LyP-1 (CGNKRTRGC), has led to the
development of NP systems targeting Tregs specifically through Nrpl
[145,146]. LyP-1 is part of a family of peptides, denoted as C-terminal
C-end Rule (CendR) motif peptides, which share tumor penetrative
ability. In a study by Ou et al., a nanoparticle incorporating a PLGA core
loaded with anti-CTLA-4, the tyrosine kinase inhibitor imatinib (IMT),
and LyP-1 as a targeting ligand, significantly reduced tumor growth in a
B16 murine melanoma model compared to conventional anti-CTLA-4
immunotherapy. Mice were treated every 2 days for 15 days, starting 10
days post-tumor inoculation with either PBS, free IMT, free anti-CTLA-
4, non-targeting IMT-loaded nanoparticles, targeting IMT-loaded na-
noparticles, and targeted anti-CTLA-4- and IMT-loaded nanoparticles.
The full nanoparticle incorporating LyP-1, IMT, and anti-CTLA-4
proved most effective, decreasing tumor volume by over 50% compared
to free anti-CTLA-4, demonstrating the potential of peptide-based na-
noparticles to augment the clinical standard [144].

Another Treg-targeting nanoparticle was created by Pastor et al.
through conjugation of a FoxP3-inhibiting peptide (P60) to a CD28-
targeting aptamer (AptCD28-P60) [147,148]. The conjugated molecule
was shown to be capable of countering Treg-mediated
munosuppression of CTLs at a 200-fold lower concentration to un-
conjugated P60 (100 uM vs. 0.5 pM). Furthermore, treatment of CT-26
carcinoma models with AptCD28-P60 in conjunction with a tumor an-
tigen peptide vaccine (AH1) was shown to eradicate tumors compared
to saline control, peptide vaccine alone, peptide vaccine and un-
conjugated P60, and peptide vaccine and unconjugated P60 with un-
conjugated AptCD28, showing the necessity in conjugating P60 to
AptCD28 in achieving synergistic therapy (Fig. 5).

im-

3.3. Targeting MDSCs

Given MDSCs’ status as an immature cell population, they have not
been found to express an MDSC-specific biomarker that can be used for
peptide binding. However, Qin et al. has used phage display to screen
for MDSC-binding peptides [149]. The selected peptide (MEWSLEKG-
YTIK) was fused with the Fc region of murine IgG2b to create a peptide-
antibody conjugate (H6 peptibody). Treatment with H6 peptibody led
to the depletion of MDSCs from the spleen and in circulation in multiple
murine lymphoma models (EL4, EG.7, A20), and exhibited antitumor
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Fig. 5. Tumor volume of CT-26 carcinoma following treatment of saline, AH1
peptide vaccine, AH1 + unconjugated P60 FoxP3-inhibiting peptide,
AH1 + unconjugated P60 + unconjugated CD28Apt, or AH1 + conjugated
CD28Apt-P60 show prevention of tumors upon vaccination of AH1 + CD28-
Apt-P60. Injections were given at a dose of 125 pmol every 2 days for 10 days
before tumor inoculation. Adapted and reprinted with permission from ref. 148.

efficacy in an EL4 model. In addition, Wang et al. investigated the ef-
fectiveness of chemokine blockade as a means of indirectly affecting
MDSC populations [150]. They used a CCL2 agonist to inhibit CCL2
signaling, a major chemoattractant implicated in MDSC migration
[151,152]. This resulted in significantly decreased MDSC infiltration
into the TME of a lung cancer model. Notably, it was observed that
CCL2 blockade also improved the efficacy of anti-PDL1 treatment,
likely via MDSC depletion.

4. Current outlook and conclusions

Advancements in understanding the interactions between im-
munosuppressive cells and cancer cells in establishing and maintaining
an immunosuppressive microenvironment have been made in recent
years. Furthermore, there have been strides in the application of this
knowledge into peptide-based therapies as described herein. The ap-
plication of peptides and nanomedicine targeting immunosuppressive
cells for cancer immunotherapy, however, is only in its early stages.
Consequently, clinical translation of these technologies for human use
has been limited. This may be due to the lack of understanding re-
garding the peptide nanoparticle interactions with the biological milieu
and the formation of a protein shell that alters the nanoparticle fate,
efficacy, and toxicity [153,154]. Another challenge includes scaling up
peptide-functionalized nanoparticles, as well as batch-to-batch varia-
tion, limiting commercialization potential. Moreover, before im-
munotherapeutic targeting of immunosuppressive cells can be trans-
lated to the clinic, a greater understanding of the body's immunologic
network needs to be achieved. For instance, although the interactions of
TAMs, Tregs, and MDSCs with the classical CTL have been well-studied,
other immune cells, such as natural killer (NK) cells, B lymphocytes,
and dendritic cells, all have unique and complex sets of functions and
interactions that merit further study. Peptide-based nanoparticles are
tools that offer researchers and clinicians a means of targeting specific
molecular pathways and intercellular interactions that contribute to
cancer progression, but it is crucial to expand our understanding of
immunology to utilize these tools effectively. Furthering our knowledge
with regards to the immunological network will allow researchers to
not only better develop novel nanoparticle systems, but also better
predict their efficacy in vivo.

A major shortcoming in our knowledge of cancer immunotherapy
lies in the identification of predictive biomarkers for clinical response to
treatment. Although there have been cases in which immunotherapy
eradicated chemotherapy-resistant tumors, the reality is that only a
minority of patients respond to treatment. The inconsistency in patient
response can be attributed to the heterogeneity of cancer but also to the
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lack of predictive biomarkers [155]. Although some markers, such as
immune checkpoints and immunomodulatory cytokines, have been
identified, the discovery of other prognostic markers can serve to op-
timize patient selection, as well as further the understanding of the
mechanisms behind immunotherapy [156]. Furthermore, the use of
these biomarkers in combination can hold more accurate predictive
power.

Nanomedicine makes the use of combinatorial therapies more fea-
sible, as nanoparticles can be engineered to include multiple biologi-
cally active moieties. Additionally, packaging of bio-active materials
into nanoparticles ensures they are delivered to their desired targets,
reducing off-target delivery and toxicity. Many of the studies high-
lighted here have demonstrated that combination therapies can im-
prove the efficacy and safety of mono-therapeutic clinical standards
[137,148]. As scientific research continues to fill in the knowledge gaps
discussed above, peptide-based nanoparticles will continue to develop
and comprise a growing class of nanomaterials capable of targeting
immunosuppressive cell populations.
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