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Understanding of HLA-conferred 
susceptibility to chronic hepatitis B 
infection requires HLA genotyping-
based association analysis
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Osamu Yokosuka7, Kazuhiko Koike8, Masayuki Kurosaki9, Namiki Izumi9, Masaaki Korenaga1, 
Jong-Hon Kang10, Eiji Tanaka11, Akinobu Taketomi12, Yuichiro Eguchi13, Naoya Sakamoto14, 
Kazuhide Yamamoto15, Akihiro Tamori16, Isao Sakaida17, Shuhei Hige18, Yoshito Itoh19, 
Satoshi Mochida20, Eiji Mita21, Yasuhiro Takikawa22, Tatsuya Ide23, Yoichi Hiasa24, 
Hiroto Kojima25, Ken Yamamoto26, Minoru Nakamura6, Hiroh Saji25, Takehiko Sasazuki27, 
Tatsuya Kanto1, Katsushi Tokunaga2 & Masashi Mizokami1

Associations of variants located in the HLA class II region with chronic hepatitis B (CHB) infection 
have been identified in Asian populations. Here, HLA imputation method was applied to determine 
HLA alleles using genome-wide SNP typing data of 1,975 Japanese individuals (1,033 HBV patients 
and 942 healthy controls). Together with data of an additional 1,481 Japanese healthy controls, 
association tests of six HLA loci including HLA-A, C, B, DRB1, DQB1, and DPB1, were performed. 
Although the strongest association was detected at a SNP located in the HLA-DP locus in a SNP-
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based GWAS using data from the 1,975 Japanese individuals, HLA genotyping-based analysis 
identified DQB1*06:01 as having the strongest association, showing a greater association with CHB 
susceptibility (OR = 1.76, P = 6.57 × 10−18) than any one of five HLA-DPB1 alleles that were previously 
reported as CHB susceptibility alleles. Moreover, HLA haplotype analysis showed that, among the 
five previously reported HLA-DPB1 susceptibility and protective alleles, the association of two DPB1 
alleles (DPB1*09:01, and *04:01) had come from linkage disequilibrium with HLA-DR-DQ haplotypes, 
DRB1*15:02-DQB1*06:01 and DRB1*13:02-DQB1*06:04, respectively. The present study showed an 
example that SNP-based GWAS does not necessarily detect the primary susceptibility locus in the HLA 
region.

Hepatitis B virus (HBV) is an infectious disease that has spread worldwide with an estimated 350 million chron-
ically infected people. Some countries in Asia and Africa are known to be high endemicity areas where the prev-
alence of chronic hepatitis B (CHB) infection is over 8%. In Japan, chronic infection of an estimated 1.5 million 
people was caused by mother-to-child transmission, the reuse of syringes and needles, and sexually transmitted 
infections. Previous genome wide association studies (GWASs) have reported CHB susceptibility loci including 
HLA-DP, HLA-DQ, EHMT2, TCF19, HLA-C, UBE2L3, CFB, NOTCH4, HLA-DOA, and CD40 in Asian popula-
tions1–5. Among CHB susceptibility loci, associations between polymorphisms within HLA-DP locus and CHB 
infection were replicated in Asian and Arabian populations, including Japanese, Han Chinese, Korean, Thai and 
Saudi Arabian populations6,7.

Previous reports revealed that polymorphisms within the HLA-DP and HLA-DQ loci were independently 
associated with CHB infection in the Japanese population2,3. HLA class II genes are known to be highly polymor-
phic, which means that there are many different subtypes (i.e. HLA alleles) in the different individuals inside a 
population. Therefore, HLA genotyping-based association analysis is necessary to comprehensively understand 
the associations between HLA genes and CHB infection. There have been no reports to clearly analyze the asso-
ciation of HLA genes with CHB infection. This is the first report to clearly show the associations of HLA class 
II genes with CHB infection using the emerging method of HLA imputation. The findings in this paper will be 
essential for future analysis to clarify the mechanisms of the immune recognition of HBV antigens by HLA class 
II molecules.

Results and Discussions
The association of HLA-DP and HLA-DQ loci with CHB infection was replicated in a GWAS using 1,975 Japanese 
individuals (1,033 HBV patients and 942 healthy controls) (Supplementary Fig. 1). The top hit SNP rs2395309 is 
located 6.1 kb downstream of the HLA-DPA1 gene (OR =  1.92; 95%CI =  1.68–2.20, P =  1.24 ×  10−21). Moreover, 
an intron variant of the HLA-DPB1 gene and a 24.0 kb upstream variant of the HLA-DQB1 gene showed sig-
nificant associations with CHB infection (rs9277496, OR =  1.78; 95%CI =  1.56–2.03, P =  6.17 ×  10−18 for 
HLA-DPB1; rs9368737, OR =  1.63; 95%CI =   1.44–1.85, P =  3.17 ×  10−14 for HLA-DQB1). However, none of the 
variants located in the non-HLA region, including the CHB susceptibility loci reported in previous GWASs, 
showed significant associations with CHB infection in the Japanese GWAS.

To investigate the relationship between HLA-DP variants (rs2395309 for HLA-DPA1 and rs9277496 for 
HLA-DPB1) and the HLA-DQB1 variant (rs9368737) and CHB susceptibility, we performed logistic regression 
analysis using the three associated SNPs as covariates. Significant associations of variants within the HLA-DP 
and HLA-DQ loci with CHB susceptibility were independently identified, as previously reported (Supplementary 
Table 1). In the regression analysis using three representative SNPs located in both HLA-DP and HLA-DQ regions 
as covariates, a number of SNPs located around the SNPs showed weakened (Supplementary Fig. 2). These results 
indicated that SNPs in HLA-DP and HLA-DQ regions were in strong linkage disequilibrium (LD) each other.

In order to clearly understand the associations of HLA genes with CHB infection, HLA genotyping has been 
considered as the next step, in which HLA alleles that will behave as functionally distinct HLA allotypes are 
determined. Here, instead of HLA genotyping, we performed statistical imputation of classical HLA alleles for six 
HLA loci including HLA-A, C, B, DRB1, DQB1, and DPB1 using 1,975 genome wide SNP typing data as in our 
previous report8. The call rates and imputation accuracies for six HLA loci were evaluated in 417 Japanese healthy 
controls9, whose HLA genotypes were determined using a PCR sequence-specific oligonucleotide (PCR-SSO) 
method. When only samples with posterior probability of 0.5 or more were considered, the call rates and impu-
tation accuracies had a range of 98.1–100% and 97.3–100%, respectively, across six HLA loci (Supplementary 
Table 2 and Supplementary Table 3). Higher accuracy was achieved compared to previous reports in Asian pop-
ulations10,11. Although the HLA alleles were imputed with high accuracy in the present study, four HLA class I 
alleles were shown to have a discordant rate of over 0.5% (more than 5 discordant alleles out of a total of 417 HLA 
genotypes); HLA-A*24:20 (8 discordances), HLA-A*26:02 (5 discordances), HLA-C*03:04 (6 discordances), and 
HLA-C*08:03 (10 discordances). Therefore, these four alleles were excluded from the following association anal-
yses to avoid false positives due to an error of imputation.

Tests of the association of HLA alleles for six HLA loci with CHB susceptibility was carried out using data 
from a total of 3,456 Japanese individuals consisting of 1,975 individuals whose HLA genotypes were estimated 
by HLA imputation, and 1,481 Japanese healthy individuals whose HLA genotypes were determined using the 
PCR-SSO method. After removing the defect data to compare OR of each HLA allele, HLA allele frequencies 
between 805 HBV patients and 2,278 healthy controls were compared for the six HLA loci (Supplementary 
Table 4–9). Significant associations after correction of the significance level by the total number of observed 
alleles (P <  0.05/144) were observed for a total of twenty alleles. Interestingly, the strongest association was 
observed for HLA-DQB1*06:01, which showed a greater association with CHB susceptibility than any one of five 
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HLA-DPB1 alleles that were previously reported as CHB susceptibility alleles (OR =  1.76; 95%CI =   1.55–2.01, 
P =  6.57 ×  10−18 for DQB1*06:01).

As is well known, strong LD between DRB1 and DQB1 alleles and less strong LD between DPB1 and 
DRB1-DQB1 alleles/haplotypes have been reported in many populations12–14. Strong LD (r-squared and D prime) 
between HLA class II alleles was also observed in the studied Japanese individuals (Supplementary Table 10 and 
Supplementary Table 11). Haplotype frequencies for six HLA loci, for three HLA class I loci and for three HLA 
class II loci were estimated using the PHASE software and were compared between HBV patients and healthy 
controls (Supplementary Table 12, Supplementary Table 13 and Table 1). Among the twenty-five haplotypes of 
HLA-A-C-B-DRB1-DQB1-DPB1 whose frequencies were over 0.5% in either of two groups (i.e. HBV patients 
and healthy controls), the most frequent haplotype showed the strongest association with CHB susceptibility 
in the studied individuals (OR =  1.81; 95%CI = 1.47–2.22, P =  1.03 ×  10−8 for HLA-A*24:02-C*12:02-B*52:01-
DRB1*15:02-DQB1*06:01-DPB1*09:01). Because the estimated haplotypes of six HLA loci were highly varied, 
subdivided haplotypes with low frequency may lead to difficulty in detection of a true association. Haplotype 
analysis of HLA class I genes and HLA class II genes showed a total of twenty-three haplotypes and twenty-five 
haplotypes, respectively, whose frequencies were over 1.0% in either of the two groups. Among these haplo-
types, the haplotype harboring DQB1*06:01 showed up with the highest frequency in the studied individuals, 
and had a significant association with CHB susceptibility (OR =  1.91; 95%CI =   1.61–2.28, P =  1.13 ×  10−13 for 
HLA-DRB1*15:02-DQB1*06:01-DPB1*09:01).

In the current study, SNP based association tests showed that the significant association of variants located in 
the HLA class II region with CHB susceptibility was replicated in Japanese individuals. Although HLA-DQ and 
DP were shown to be independently associated with CHB susceptibility by applying regression analysis with asso-
ciated variants as covariates, further analysis of HLA molecules is necessary to clarify the pathogenesis of HBV 
infection. To clearly understand the associations of HLA genes with CHB infection, HLA alleles were determined 
by the HLA imputation method using the genome-wide SNP typing data set. HLA class II alleles showed stronger 
associations with CHB susceptibility than HLA class I alleles. Interestingly, HLA-DQB1*06:01 showed the strong-
est association out of a total of twenty associated alleles, including any one of the previously reported HLA-DPB1 
alleles (i.e. DPB1*05:01 and *09:01 for susceptibility to CHB infection; DPB1*02:01, *04:01, and *04:02 for pro-
tection against CHB infection).

Haplotype

HBV patients Healthy Controls

P-value* OR

95% CI(2n = 1,610) (2n = 4,556)

(DRB1-DQB1-DPB1) % % Lower Upper

01:01-05:01-04:02 2.0 4.2 5.99E-05 0.47 0.33 0.69

04:03-03:02-05:01 0.5 1.1 2.74E-02 0.44 0.21 0.93

04:05-04:01-02:01 1.4 2.4 2.43E-02 0.60 0.38 0.94

04:05-04:01-03:01 1.2 0.7 4.17E-02 1.78 1.01 3.12

04:05-04:01-04:02 0.9 1.3 2.03E-01 0.69 0.39 1.22

04:05-04:01-05:01 8.6 7.6 1.93E-01 1.15 0.93 1.41

04:06-03:02-02:01 1.0 1.9 1.56E-02 0.52 0.31 0.89

08:02-03:02-05:01 1.6 1.6 8.91E-01 0.97 0.61 1.53

08:03-06:01-02:01 1.6 2.0 2.19E-01 0.76 0.48 1.18

08:03-06:01-02:02 2.2 1.7 1.42E-01 1.35 0.90 2.01

08:03-06:01-05:01 6.3 3.5 2.24E-06 1.84 1.42 2.38

09:01-03:03-02:01 4.5 5.2 2.35E-01 0.85 0.65 1.11

09:01-03:03-05:01 11.6 7.7 1.76E-06 1.57 1.31 1.90

11:01-03:01-05:01 1.0 1.3 3.76E-01 0.78 0.45 1.36

12:01-03:01-05:01 1.7 1.3 2.32E-01 1.32 0.83 2.10

12:01-03:03-05:01 1.1 0.7 1.15E-01 1.61 0.89 2.93

12:02-03:01-05:01 1.6 0.9 2.21E-02 1.76 1.08 2.89

13:02-06:04-04:01 1.9 4.1 2.73E-05 0.44 0.30 0.66

13:02-06:04-05:01 0.1 1.1 3.52E-04 0.12 0.03 0.48

14:05-05:03-05:01 1.5 0.9 6.89E-02 1.59 0.96 2.63

15:01-06:02-02:01 2.4 3.3 7.50E-02 0.72 0.51 1.03

15:01-06:02-05:01 3.4 2.4 4.98E-02 1.39 1.00 1.93

15:02-06:01-02:01 1.4 1.3 7.76E-01 1.07 0.66 1.76

15:02-06:01-05:01 1.9 0.9 4.98E-04 2.27 1.41 3.66

15:02-06:01-09:01 14.7 8.3 1.13E-13 1.91 1.61 2.28

Table 1.   Haplotype analysis of HLA class II genes in HBV patients and healthy controls. The estimated 
haplotype frequencies over 1.0% in either of two groups (i.e. HBV patients and healthy controls) are shown in 
the table. *P value was calculated by Pearson’s chi-square test in presence vs. absence of each haplotype. P values 
and OR, statistically significant after correction of the significance level (P <  0.05/25), are indicated in bold.
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Haplotype analysis of HLA class II genes showed seven haplotypes that were significantly associated with 
susceptibility to or protection against CHB infection (Table 1). Figure 1A,B summarize the associations of each 
allele and estimated haplotypes of HLA class II genes with CHB susceptibility. A variety of haplotypes harbor-
ing DPB1*05:01 were observed. Of these, two haplotypes, DRB1*09:01-DQB1*03:03-DPB1*05:01 and DRB1*
08:03-DQB1*06:01-DPB1*05:01, showed significant associations, with the same trend of association (i.e. sus-
ceptibility to CHB infection). These results imply that association of DPB1*05:01 may have the primary effect 
on CHB susceptibility, regardless of DRB1 and DQB1 alleles. The same can be said for haplotypes harboring 
DPB1*02:01 or *04:02, although no significant association with CHB infection was observed in haplotypes har-
boring DPB1*02:01.

Although haplotypes harboring DPB1*09:01 or DPB1*04:01 showed significant associations with suscep-
tibility to or protection against CHB infection, respectively, the primary effect on CHB susceptibility may be 
explained by DRB1-DQB1 haplotypes. As for the haplotype harboring DPB1*09:01, two haplotypes harboring the 
counterpart of DRB1*15:02-DQB1*06:01 were determined to have significant associations, with the same trend 
of association (i.e. susceptibility to CHB infection) (Table 1). The same can be said for the haplotype harboring 

Figure 1.  Associations of estimated haplotypes of HLA class II genes harboring. (A) DPB1 alleles susceptible 
to chronic hepatitis B infection, and (B) DPB1 alleles protective against chronic hepatitis B infection. Estimated 
haplotypes, whose frequencies were over 1% (A) in both of two groups, and (B) in either of two groups (i.e. 
HBV patients and healthy controls), are depicted with P values and OR. P values were calculated using Pearson’s 
chi-square test in the presence vs. the absence of each haplotype. HLA alleles that are significantly associated 
with CHB infection in single point analysis are depicted in bold red (susceptible) and bold blue (protective).
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DPB1*04:01. Two haplotypes harboring the counterpart of DRB1*13:02- DQB1*06:04 were determined to have 
signification associations, with the same trend of association (i.e. protection against CHB infection) (Table 1).

Associations of variants located in the HLA class II region with CHB susceptibility have been identified in 
several studies based on GWAS including the present study. Although HLA-DR and DQ, which are known to 
be in strong LD, and HLA-DP were independently associated with CHB susceptibility, it is difficult to clearly 
understand the association of HLA genes with CHB susceptibility using SNP based GWASs. Thus, the association 
of a specific SNP in the HLA region with CHB susceptibility may result from compositing effects of several HLA 
alleles. Therefore, the emerging method of HLA imputation, which uses a genome-wide SNP typing data set, is 
considered to be an effective strategy for comprehensive understanding of HLA-disease associations. Indeed, 
the present study showed that among the five previously reported HLA-DPB1 susceptibility alleles, three DPB1 
alleles (DPB1*05:01, *02:01, and *04:02) had the primary effects on CHB susceptibility. However, the association 
of the remaining two alleles (DPB1*09:01 and *04:01) had come from LD with HLA-DR-DQ haplotypes (i.e. 
DRB1*15:02-DQB1*06:01 and DRB1*13:02-DQB1*06:04, respectively). These observations provide an example 
that SNP-based GWAS does not necessarily detect the primary susceptibility locus in this particular genomic 
region.

The disease-associated HLA alleles which were identified in this study may be beneficial to select patients 
who need a continuous follow-up (i.e. patients harboring susceptible HLA allele to CHB infection). As our 
current results showed, observed odds ratio of disease-associated HLA alleles were 1.91 for susceptible 
DRB1-DQB1-DPB1 haplotype, and 0.44 for protective DRB1-DQB1-DPB1 haplotype. Although the impact of 
disease-associated HLA alleles or haplotypes on clinical diagnosis is indeed small, further analysis to identify new 
host factors behind HLA genes, viral factors and clinical features may proceed effectively by selecting individuals 
who have the disease-associated HLA class II alleles.

Methods
Ethics approval.  This study was approved by the Ethics Committee of The University of Tokyo and of all of 
the following Institutes and Hospitals throughout Japan that participated in this collaborative study: National 
Center for Global Health and Medicine, Kawasaki Medical School, Kanazawa University Graduate School of 
Medicine, National Nagasaki Medical Center, Chiba University, Musashino Red Cross Hospital, Nagoya City 
University Graduate School of Medical Sciences, Teine Keijinkai Hospital, Shinshu University School of Medicine, 
Hokkaido University, Saga Medical School, Hokkaido University Graduate School of Medicine, Okayama 
University Graduate School of Medicine, Osaka City University Graduate School of Medicine, Yamaguchi 
University Graduate School of Medicine, Kyoto Prefectural University of Medicine, Tottori University, Saitama 
Medical University, National Hospital Organization Osaka National Hospital, Iwate Medical University, Kurume 
University School of Medicine, Ehime University Graduate School of Medicine, Hyogo College of Medicine, and 
Kitasato University School of Medicine. All participants provided written informed consent for participation in 
this study and the methods were carried out in accordance with the approved guidelines.

Genomic DNA samples and clinical data.  Of the 3,456 Japanese genomic DNA samples used in 
this study, 1,975 samples were obtained from healthy volunteers (n =  942) or HBV patients (n =  1,033) at 28 
multi-center hospitals (liver units with hepatologists) and universities throughout Japan; the other 1,481 samples 
were used in previous studies15,16. HBV status was determined based on serological results for hepatitis B surface 
antigen (HBsAg) and hepatitis B core antibody (anti-HBc) using a fully automated chemiluminescent enzyme 
immunoassay system (Abbott ARCHITECT; Abbott Japan, Tokyo, Japan, or LUMIPULSE f or G1200; Fujirebio, 
Inc., Tokyo, Japan). The unrelated and anonymized Japanese healthy control samples were collected from volun-
teers with/without HBV vaccination.

SNP genotyping and data cleaning.  For the GWAS, we genotyped 1,975 samples (1,033 Japanese HBV 
patients and 942 Japanese healthy controls) using the Affymetrix Axiom Genome-Wide ASI 1 Array, according to 
the manufacturer’s instructions. All samples had an overall call rate of more than 96%; the average overall call rate 
for HBV patients and healthy controls was 99.45% (97.48–99.84) and 99.31% (96.18–99.89), respectively. We then 
applied the following thresholds for SNP quality control during the data cleaning: SNP call rate ≥ 95%, minor 
allele frequency ≥ 5% in both HBV patients and healthy controls, and Hardy-Weinberg Equilibrium P-value 
≥ 0.001 in healthy controls17. Of the SNPs on autosomal chromosomes, 424,157 SNPs passed the quality control 
filters and were used for the association analysis. All cluster plots for SNPs with a P <  0.0001 based on a chi-square 
test of the allele frequency model were checked by visual inspection, and SNPs with ambiguous genotype calls 
were excluded. Supplementary Fig. 1 shows the regional Manhattan plot of the HLA region (Chr6: 32,256,456 – 
33,258,648, GRCh37 hg19).

HLA imputation.  SNP data from 1,975 samples were extracted from an extended MHC (xMHC) region 
ranging from 25759242 to 33534827 bp based on the hg19 position. We conducted 2-field HLA genotype imputa-
tion for six class I and class II HLA genes using the HIBAG R package8,18. For HLA-A, B, DRB1, DQB1 and DPB1, 
our in-house Japanese imputation reference8 was used for HLA genotype imputation; for HLA-C, the HIBAG 
Asian reference18 was used for HLA genotype imputation. We applied post-imputation quality control using 
call-threshold (CT >  0.5); the call rate of the successfully imputed samples ranged from 98.1–100% for the 6 HLA 
classes we imputed. Quality of HLA imputation was further accessed using the data of 417 healthy controls in 
which their HLA genotypes were determined using the PCR-SSO method. In total, we imputed 148 HLA geno-
types of HLA class I and class II genes.
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Haplotype estimation.  The phased haplotypes consisting of six HLA loci were estimated by using the 
PHASE program version 2.119,20. The estimated 6-locus haplotypes were further used for the estimation of hap-
lotypes of three HLA class II loci (i.e., the collapsing method was applied to the phased data for six HLA loci).

Pairwise LD between HLA class II alleles.  The pairwise LD parameters, r2 and D′ 21, between alleles at 
different class II HLA loci were calculated based on the haplotype frequencies estimated by using the expectation 
maximization (EM) algorithm22. Here, each HLA allele was assumed to be one of the alleles at a bi-allelic locus, 
and the other HLA alleles at the same locus were assumed to be the other allele. For example, the DRB1*01:01 
allele and the other DRB1 alleles were designated as “A allele” and “B allele”, respectively. Accordingly, the EM 
algorithm for the estimation of haplotype frequencies for two loci each with two alleles could be applied to two 
HLA alleles at different loci.

Association test.  To assess the association of HLA allele or haplotype with CHB infection, Pearson’s 
chi-square test was applied to a two-by-two contingency table based on the allele or haplotype frequencies. The 
susceptibility to or resistance against CHB infection was evaluated based on the OR (i.e., OR > 1 and OR <  1 
indicate susceptible and resistant alleles, respectively). To avoid false positives due to multiple testing for 144 HLA 
alleles, the significance level was set at 0.00035 (= 0.05/144).
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