
REVIEW ARTICLE
published: 05 December 2011
doi: 10.3389/fnins.2011.00133

FGFs: neurodevelopment’s Jack-of-all-trades – how do they
do it?
Jean M. Hébert 1,2*

1 Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
2 Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA

Edited by:

Nicholas Gaiano, Johns Hopkins
School of Medicine, USA

Reviewed by:

Maria J. Donoghue, Georgetown
University, USA
Umberto Di Porzio, Institute of
Genetics and Biophysics, Italy

*Correspondence:

Jean M. Hébert , Department of
Neuroscience, Albert Einstein College
of Medicine, Kennedy Building, 1410
Pelham Parkway South, Bronx, NY
10461, USA.
e-mail: jean.hebert@einstein.yu.edu

From neurulation to postnatal processes, the requirements for FGF signaling in many
aspects of neural precursor cell biology have been well documented. However, identi-
fying a requirement for FGFs in a particular neurogenic process provides only an initial and
superficial understanding of what FGF signaling is doing. How FGFs specify cell types in
one instance, yet promote cell survival, proliferation, migration, or differentiation in other
instances remains largely unknown and is key to understanding how they function. This
review describes what we have learned primarily from in vivo vertebrate studies about the
roles of FGF signaling in neurulation, anterior–posterior patterning of the neural plate, brain
patterning from local signaling centers, and finally neocortex development as an example
of continued roles for FGFs within the same brain area. The potential explanations for the
diverse functions of FGFs through differential interactions with cell intrinsic and extrinsic
factors is then discussed with an emphasis on how little we know about the modulation of
FGF signaling in vivo. A clearer picture of the mechanisms involved is nevertheless essen-
tial to understand the behavior of neural precursor cells and to potentially guide their fates
for therapeutic purposes.
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INTRODUCTION
FGFs were first identified as factors derived from bovine pitu-
itary and brain that were mitogenic for fibroblasts (Armelin, 1973;
Gospodarowicz, 1974, 1975). The first two FGFs that were purified,
cloned, and sequenced were acidic and basic FGF (aFGF, bFGF,
now FGF1, and FGF2; Abraham et al., 1986a,b). FGFs can be found
throughout metazoan species and the number of genes encoding
them significantly expanded in early vertebrate evolution (Itoh and
Ornitz, 2004, 2011; Popovici et al., 2005). In mammals there are
22 genes that encode FGFs. Since their identification as mitogenic
factors for fibroblasts, the list of biological processes in which they
are known to play crucial roles has grown to a surprising length –
and continues to grow (Beenken and Mohammadi, 2009; Dorey
and Amaya, 2010; Itoh and Ornitz, 2011). Nowhere is this more
obvious than in the regulation of neural development where FGFs
are found to be required for an increasing number of processes.

FGF genes can be divided into subfamilies based on their
sequence and the mode of action of their respective peptides (Itoh
and Ornitz, 2011). FGFs, except those from two subfamilies, are
thought to act in a paracrine fashion. The hormone-like FGFs
(FGF15/19, 21, 23) instead act in an endocrine manner (Beenken
and Mohammadi, 2009), while the intracellular FGFs (FGF11–14)
are thought to function in an FGF receptor-independent manner
(Goldfarb, 2005). Although some members of all the subfami-
lies are likely to influence CNS development and/or function (see
below; Mason, 2007; Iwata and Hevner, 2009; Umemori, 2009;Vac-
carino et al., 2009; Guillemot and Zimmer, 2011), many of their
roles may still remain unknown. This is in part because although
almost all FGF genes have been knocked out individually (Itoh

and Ornitz, 2011), those with overlapping expression patterns may
functionally compensate for each other and mask the other’s role
at different developmental times and in different tissues.

In contrast to the large number of genes encoding ligands,
only four genes, Fgfr1–4, encode FGF receptors. This is a more
manageable number of genes to work with in order to overcome
compensation when disrupting FGF signaling. The extracellular
portion of FGF receptors is comprised of three immunoglobulin-
like domains and an acid box while the intracellular portion
contains a split tyrosine kinase domain. A fifth receptor gene,
Fgfrl1, also exists, but does not encode an intracellular domain
and is not yet known to have a function in the CNS. Alternative
splicing of Fgfr1–4 transcripts leads to receptors with differing
extracellular domains, but most alternatively spliced forms con-
tain the intracellular kinase domain (Johnson and Williams, 1993).
Upon binding FGF ligand, receptors dimerize, autophosphorylate,
and phosphorylate one or more of several immediate intracellular
mediators described in sections below.

FGFs play essential roles in the induction and anterior–
posterior (A–P) patterning of the neural plate, in the local pattern-
ing of several developing brain regions, in several steps in neuroge-
nesis, and in establishing functional neural networks. Moreover, at
the level of the cell, FGFs within the developing CNS are in some
cases required for cell survival, fate specification, proliferation,
migration, differentiation, or axon pathfinding. What can account
for such diverse functions? Here, rather than providing a compre-
hensive review of FGFs in neurodevelopment, select examples of
the different functions of FGFs in the developing neural plate and
neocortex are provided to illustrate the broad spectrum of FGF
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functions. In addition, the differences in FGF ligands, receptors,
intracellular and extracellular modulators, and signal transduc-
tion pathways are discussed as potential explanations for the wide
range of FGF effects (Figure 1).

FGFs ARE REQUIRED FOR EARLY PATTERNING PROCESSES IN
CNS DEVELOPMENT
FGFs play roles in the earliest steps of CNS development (Table 1).
To start with, FGF signaling participates in neural induction,
although there is still some controversy as to the extent of its
involvement in each species. In zebrafish, chick, and ascidian
embryos FGF signaling is necessary and sufficient to initiate the
acquisition of a neural fate (Rodriguez-Gallardo et al., 1997;
Inazawa et al., 1998; Streit et al., 2000; Wilson et al., 2000; Hud-
son and Lemaire, 2001; Bertrand et al., 2003; Sheng et al., 2003;
Kudoh et al., 2004), with perhaps a greater role in inducing poste-
rior neural fates (Alvarez et al., 1998; Storey et al., 1998; Rentzsch
et al., 2004; Londin et al., 2005; Takemoto et al., 2006). In Xeno-
pus, even though some studies suggest no role for FGFs in neural
induction (Kroll and Amaya, 1996; Wills et al., 2010), other stud-
ies indicate that it plays either a role in establishing posterior fates
or in inducing anterior versus posterior fates in a time-dependent
manner (Kengaku and Okamoto, 1995; Lamb and Harland, 1995;
Launay et al., 1996; Sasai et al., 1996; Pera et al., 2003; Delaune et al.,
2005; Marchal et al., 2009). A role for FGFs in neural induction in
mammals remains to be clearly demonstrated.

FIGURE 1 | Simplified schema illustrating some of the possible steps

(1–10) at which an FGF signal could be modulated in different cell

types to affect cell fate. See text for details.

Perhaps as an extension of its role in neural induction, FGF
signaling is also essential for patterning the neural plate along
its A–P axis as part of the overall A–P patterning of the embryo
(Amaya et al., 1991; Isaacs et al., 1992; Griffin et al., 1995; Draper
et al., 2003). Studies using chick, zebrafish, and Xenopus embryos
show that graded FGF signaling, with high posterior and low
anterior levels, patterns the neural plate at least in part by reg-
ulating the expression of Hox genes, which in turn determine
the positional identities of neurons along the developing spinal
cord (Isaacs et al., 1994; Cox and Hemmati-Brivanlou, 1995; Ken-
gaku and Okamoto, 1995; Lamb and Harland, 1995; Pownall et al.,
1998; Holowacz and Sokol, 1999; Ribisi et al., 2000; Liu et al., 2001;
Bel-Vialar et al., 2002; Kudoh et al., 2002; Dasen et al., 2003). In
mammals, FGFs are also likely required in A–P patterning of the
neural plate given that FGFs (in particular Fgf8) are expressed
in a high posterior to low anterior gradient in the neurulating
embryo, ectopic FGF4 can suppress anterior development, and
certain mutations in Fgfr1 cause general A–P patterning defects
(Partanen et al., 1998; Davidson et al., 2000). Of course other fac-
tors, WNTs, retinoic acid, BMPs, and BMP antagonists, are likely
to participate with FGFs in patterning the neural plate (Dorey and
Amaya, 2010).

As development proceeds, signaling centers that express FGFs
emerge in discrete areas of the developing brain. At least three
signaling centers have been characterized. One is rhombomere
4 (zebrafish) or 5 and 6 (mouse or chick) in the hindbrain.
In zebrafish, FGF3 and FGF8 emanating from rhombomere 4
are necessary and sufficient to promote development of adjacent
rhombomeres 5 and 6 by regulating the expression of transcrip-
tion factors including Krox20 (Maves et al., 2002; Walshe et al.,
2002; Waskiewicz et al., 2002; Wiellette and Sive, 2003; Hernandez
et al., 2004; Labalette et al., 2011). Similar FGF-dependent pattern-
ing mechanisms are likely to operate in the developing hindbrain
of other vertebrates since FGFs also regulate Krox20 expression in
chicks (Aragon et al., 2005). Moreover, FGF signaling also plays
a role later in rhombomere development: FGF20a in zebrafish is

Table 1 | Examples of functions for FGF signaling in the nascent

central nervous system and developing neocortex.

Early CNS Neural induction

Anterior–posterior patterning

Rhombomere patterning

Cerebellar and midbrain induction and patterning

Telencephalon induction and patterning

Neocortex Areal patterning

Expansion of neuroepithelial progenitors

Initiation of neurogenesis

Maintenance of undifferentiated neurogenic precursors

Gliogenesis

Timing of oligodendrogenesis

Axon pathfinding

Synaptogenesis

Adult functions?

See text for references.
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essential during neurogenesis for maintaining precursor cells in
segment centers in an undifferentiated state (Gonzalez-Quevedo
et al., 2010).

A second signaling center that expresses FGFs is the isthmus
at the mid–hindbrain boundary. Here FGF8, and to some extent
FGF17 and 18, mediate the isthmus’ organizing activity for induc-
ing and patterning the midbrain and cerebellum. An ectopic source
of FGF8 in the caudal diencephalon is sufficient to induce the for-
mation of a normally organized, ectopic, mirror-image midbrain
whereas deletion of Fgf8 results in the loss of most or all midbrain
and cerebellar structures due to cell death of the early precursors
(Crossley et al., 1996; Martinez et al., 1999; Chi et al., 2003; Liu
et al., 2003; Trokovic et al., 2003; Basson et al., 2008). FGF signal-
ing is required concurrently and in a dose-dependent manner for
both survival and patterning of cerebellar and midbrain precur-
sors (Chi et al., 2003; Basson et al., 2008; Chen et al., 2009). As
for rhombomere development, FGFs in the cerebellum play other
roles later in development, for example as attractants for trochlear
axons and in synaptogenesis (Irving et al., 2002; Umemori, 2004;
Partanen, 2007; Yaguchi et al., 2009).

Finally, a third signaling center in which FGFs are required is the
anterior neural ridge (ANR) at the anterior-most tip of the embryo
between the neuroectoderm and underlying ectoderm. At least five
FGFs, FGF3, 8, 15, 17, and 18, are expressed in the ANR or its early
derivatives and three receptors FGFR1, FGFR2, and FGFR3 are
expressed broadly in the anterior neuroectoderm. Similar to their
function in mid–hindbrain development, FGFs emanate from the
ANR to induce broad telencephalic cell types in a dose-dependent
manner and to maintain the survival of telencephalic precursor
cells (Shimamura and Rubenstein, 1997; Shanmugalingam et al.,
2000; Shinya et al., 2001; Gunhaga et al., 2003; Walshe and Mason,
2003; Gutin et al., 2006; Storm et al., 2006; Theil et al., 2008;
Paek et al., 2009). FGFs are also critical for several later steps of
telencephalon development. The known requirements for FGFs in
the developing neocortex, which comprises the dorsal part of the
telencephalon, are described below as an example of the continued
and varied functions for FGFs within one part of the brain.

REQUIREMENTS FOR FGFs IN THE DEVELOPING NEOCORTEX
In addition to inducing cell fates and maintaining cell survival
in the early telencephalon, FGFs play key roles in the develop-
ing neocortex (Table 1; Iwata and Hevner, 2009). Early on, FGFs
pattern and expand the neocortex. FGF8 acts as a morphogen
and is necessary and sufficient to assign positional identities to
cortical precursors along the anterior–lateral to posterior–medial
axis in a dose-dependent manner (Fukuchi-Shimogori and Grove,
2001; Garel et al., 2003; Storm et al., 2006; Toyoda et al., 2010).
FGF17, meanwhile, is required for patterning the frontal neocortex
(Cholfin and Rubenstein, 2007). In addition to patterning, FGFs
are required for expanding the pool of neuroepithelial precursor
cells by extending the number of precursor cell divisions prior to
generating neurons. For example, in the absence of FGF2, there
are fewer precursor cells resulting in fewer neurons, especially in
the anterior neocortex (Vaccarino et al., 1999; Raballo et al., 2000;
Korada et al., 2002).

FGFs are also essential for the onset of cortical neurogene-
sis: FGF10 is required in rostral areas to promote the transition

of neuroepithelial cells to radial glial cells, which in turn gener-
ate intermediate progenitors and neurons, marking the start of
neurogenesis (Sahara and O’Leary, 2009). FGF8, meanwhile, is
required to generate rostral Cajal–Retzius cells, one of the earliest
born type of cortical neuron (Zimmer et al., 2010). During neuro-
genesis itself, if FGF signaling is disrupted by deleting one or more
Fgfr genes, then the radial glial precursors fail to maintain their
undifferentiated state and prematurely differentiate (Kang et al.,
2009; Stevens et al., 2010). In this case, FGF18, which is expressed
in neurons, is likely one of the ligands that feeds back to radial glia
to maintain their precursor state (Hasegawa et al., 2004).

In addition to its roles in cortical patterning and neurogenesis,
FGF signaling regulates the production of the other major classes
of neural cell types, astrocytes, and oligodendrocytes. Toward the
end of neurogenesis, FGFR1 and FGFR2, possibly responding to
FGF9, are required for radial glia to transition from generating
neurons to generating astrocytes (Smith et al., 2006; Tole et al.,
2006; Seuntjens et al., 2009). And postnatally, FGFR3 is required
for the timely onset of oligodendrocyte production (Oh et al.,
2003). Hence FGF signaling plays continuous, yet distinct, roles
throughout cortical development.

Not surprisingly, disruption of FGF signaling during corti-
cal patterning, neurogenesis, and gliogenesis are associated with
defects in axon pathfinding and behavioral anomalies in adult
mice. The loss of midline glial cell types that result from disruption
of Fgfr1 leads to a failure of callosal and other axons to cross the
midline and connect the neocortex of both hemispheres (Shan-
mugalingam et al., 2000; Walshe and Mason, 2003; Smith et al.,
2006; Tole et al., 2006). Connections within each hemisphere of
the cortex can also be disrupted, as shown in Fgf8 hypomorphs
(Huffman et al., 2004). Moreover, early ectopic sources of FGF8
can cause misrouting of thalamocortical axons (Shimogori and
Grove, 2005). Imbalances in early cortical cell fate specification
due to disruption of FGF signaling can also lead to behavioral
anomalies such as abnormal social behaviors or hyperactivity,
although the mechanism for the latter, whether due to a reduc-
tion in glutamatergic or a reduction in GABAergic neurons in
the cortex, remains unclear (Shin et al., 2004; Muller-Smith et al.,
2008; Scearce-Levie et al., 2008). Interestingly, FGF22 and FGF7
are required for the formation of glutamatergic and GABAergic
synapses, respectively, in hippocampal CA3 neurons (Terauchi
et al., 2010).

Finally, the roles for FGFs in adult neurogenesis, physiology,
and homeostasis are largely unexplored. One or more of the intra-
cellular FGFs (the FGFR-independent FGFs11–14) are likely to
directly regulate the excitability of neocortical neurons as they do
in the hippocampus and cerebellum (Goldfarb et al., 2007; Xiao
et al., 2007; Shakkottai et al., 2009). The secreted FGFs are also
likely to have functions in the adult cortex as diverse as during
development, but these functions have yet to be determined in
detail in vivo.

FGF–FGFR SIGNALING, DIFFERING LEVELS VERSUS
DIFFERENT MECHANISMS
The genetic disruption of individual FGF ligand and receptor
genes can clearly result in distinct phenotypes in the developing
CNS and embryo (e.g., above; Beenken and Mohammadi, 2009).
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Much of these phenotypic differences are likely due to the individ-
ual patterns and levels of expression for each gene, which does not
explain how FGF signaling promotes cell survival in one case, or
proliferation, differentiation, or the adoption of one of many cell
identities in other cases.

Two broad, non-mutually exclusive possibilities exist to explain
the varied effects of FGFs on cells: the first is that the individual
ligands and/or receptors in fact transmit different signals to cells
(for example, some FGF–FGFR combinations activate one trans-
duction pathway whereas another combination induces a different
pathway); and the second is that individual target cell types and
their environments modulate and interpret an FGF signal differ-
ently (for example, one cell is predisposed to respond to FGFs
by activating one intracellular pathway whereas another cell type
responds by activating a different pathway). Although both of these
possibilities will undoubtedly be found to affect FGF function
in vivo, the little evidence that exists to date suggests that mechanis-
tic differences in ligand–receptor signaling will be less substantial
than the inherent modulation of the signal by the target cell type
and its environment.

Although alternatively spliced forms of both ligands and recep-
tors exist and these can affect binding specificities and levels of
signaling as measured in cultured cells, binding of the FGF lig-
ands to their receptors remains rather promiscuous (Ornitz et al.,
1996; Zhang et al., 2006). Moreover, there is little evidence that
distinct FGFs binding to the same receptors illicit distinct cellular
responses. For example, the different effects of FGF8a and FGF8b
on midbrain and cerebellar cell fates appear to simply reflect their
different potencies (i.e., levels of activity; Sato and Nakamura,
2004).

Moreover, the existing evidence suggests that the receptors
themselves transmit signal via the same intracellular pathways for
a given cell type. For example, activation of FGFR1 promotes pro-
liferation in some cell types, but activation of the intracellular
domain of this receptor in chondrocytes leads to suppression of
proliferation in a manner similar to FGFR3, the receptor that is
normally expressed in these cells (Wang et al., 2001). Similarly, in
zebrafish, constitutively active forms of several FGFRs each caused
dorsalization, brain caudalization, and secondary axis formation,
suggesting that signal transduction is similar among FGFRs for
several embryonic cell types (Ota et al., 2009).

In addition, when the three Fgfr genes, Fgfr1, Fgfr2, and Fgfr3,
that are expressed in the embryonic neuroepithelium are deleted
in the early mid–hindbrain region, the telencephalon, or the neo-
cortex, the cell death, patterning, and differentiation phenotypes
obtained are dramatically more severe than loss of one or two
receptors alone (Saarimaki-Vire et al., 2007; Kang et al., 2009;
Paek et al., 2009). Hence the receptors can largely compensate
for each other indicating that they likely signal through the same
intracellular pathways for a given cell type.

This does not mean the receptors are equivalent and inter-
changeable since the efficiencies with which they activate down-
stream mediators may differ, leading to quantitative or qualitative
differences in a cell’s response. There might even be cases in which
individual FGF ligands,which have different receptor binding pref-
erences, illicit different responses on the same cells. For example,
Fgf15 and Fgf8 appear to have opposite effects on telencephalic

precursors (Borello et al., 2008; Danjo et al., 2011). In cases in
which phenotypic differences are associated with different lig-
ands, it becomes of interest to decipher the underlying mechanism,
whether it is the activation of different receptors, the duration or
strength of receptor activation, and/or the recruitment of different
intracellular signal transduction components.

EXTRACELLULAR MODULATORS OF FGF SIGNALING
Extracellular molecules that interact directly with FGFs or their
receptors may affect both the levels of signaling and the cellular
responses. Perhaps the best characterized molecule that interacts
with FGFs is heparan sulfate (HS) as part of heparan sulfate pro-
teoglycans. HS is widely believed to be a required component
of FGF signaling (Dailey et al., 2005; Mason, 2007; Beenken and
Mohammadi, 2009; Krejci et al., 2009; Umemori, 2009; Itoh and
Ornitz, 2011). For example, disruption of the Ndst1 gene, which
encodes an HS modifying enzyme, results in cerebral hyperplasia
and mimics aspects of the forebrain phenotypes of FGF and SHH
mutants (Grobe et al., 2005).

However, a strict requirement for heparan sulfate for FGF
signaling has yet to be demonstrated in vivo. Expression of the
Exostoses 1 (Ext1) gene is essential for heparan sulfate biosynthe-
sis in mice and without it no heparan sulfate can be detected (Lin
et al., 2000).Yet, the Ext1 null mutant survives later than the earliest
FGF-related lethal phenotype, the Fgf4 null phenotype (Feldman
et al., 1995; Lin et al., 2000). Similarly, the phenotype of a CNS
specific deletion of Ext1 using a Nestin-Cre driver only recapit-
ulates defects obtained with Fgf8 hypomorphs or partial loss of
Fgfr expression (Inatani et al., 2003). These results cast doubt on
a strict requirement for heparan sulfate, although they do not
rule it out due to other potential explanations for the discrep-
ancies between Ext1 associated phenotypes and the most severe
FGF-associated phenotypes (such as strain differences, timing of
recombination, heparan sulfate perdurance, or simultaneous loss
in the Ext1 mutants of other signals that act antagonistically to
FGFs and therefore partially rescue loss of FGF signaling). The pro-
tein moieties of the heparan sulfate proteoglycans involved in FGF
signaling within the developing CNS are largely uncharacterized,
although Glypican-1 plays an important role during neurogenesis
(Jen et al., 2009). Nevertheless, it remains likely that the associa-
tion of heparan sulfates with FGF ligands and receptors promotes
higher levels of signaling rather than affecting the nature of the
intracellular response.

FGF ligands and receptors can also interact with a variety of
other extracellular molecules, including NCAM, cadherins, inte-
grins, fibronectin, Klotho, anosmin-1, EphA4, and others (Polan-
ska et al., 2009). These could potentially regulate levels of signaling
and cellular responses to FGFs. However, the importance of these
proteins to FGF signaling and neurodevelopment remains unclear.

INTRACELLULAR FGF SIGNAL TRANSDUCTION
Proteins that can interact directly with the intracellular domain
of FGF receptors and that may mediate signal transduction have
been identified. Potential mediators include FGF receptor sub-
strate (FRS) 2 and 3, Phospholipase-Cγ (PLCγ), CRK, growth
factor receptor bound (GRB) 14, Src homology domain-2 con-
taining protein B (SHB), and possibly a complex comprised of
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GRB2, SH2-containing transforming protein C (SHC), and son of
sevenless (SOS; Mohammadi et al., 1991; Wang et al., 1996; Kanai
et al., 1997; Kouhara et al., 1997; Curto et al., 1998; Xu et al., 1998;
Larrson et al., 1999; Ong et al., 2000; Reilly et al., 2000; Cross et al.,
2002). FGF receptors can also translocate to the nucleus and inter-
act directly with nuclear components (Wiedlocha and Sorensen,
2004; Bryant and Stow, 2005; Stachowiak et al., 2007). Importantly,
the role for each protein that potentially interacts physically with
the FGF receptors in mediating signaling remains unclear for any
neurodevelopmental process in vivo.

The FRS proteins, in particular FRS2, are generally accepted
as key mediators of FGF signaling (Wang et al., 1996; Kouhara
et al., 1997; Xu et al., 1998; Ong et al., 2000; Hadari et al.,
2001; Mason, 2007; Turner and Grose, 2010). FRS2 is a dock-
ing protein that appears constitutively bound to the juxtamem-
brane region of FGF receptors and becomes phosphorylated in
the presence of FGFs. Upon phosphorylation, FRS2 is thought to
recruit Grb2 and SHP2 leading to activation of the PI3K → AKT
and Sos → Ras → Raf → MEK → MAPK pathways. These find-
ings are based mainly on biochemical and cell culture data. Few
studies have addressed the functional requirement for the inter-
action between FGF receptors and FRS proteins directly during
neurodevelopment.

An Fgfr1 mutant that specifically lacks the ability to bind FRS2
and FRS3 was directly compared to an Fgfr1 null mutant in the
same strain background. Whereas the Fgfr1 null mutant exhibits
failures in mesoderm migration during gastrulation, somitogene-
sis, and neural tube closure, leading to small, truncated embryos
that die shortly after gastrulation, the Fgfr1 mutant that cannot
bind FRS undergoes normal gastrulation and somitogenesis, but
exhibits neural tube, tail bud, and pharyngeal arch deficits (Deng
et al., 1994; Yamaguchi et al., 1994; Hoch and Soriano, 2006). This
suggests at the very least that FRS adaptor proteins are not the
exclusive effectors of FGFR1 signal transduction in vivo. Likewise,
an Fgfr2 mutant that lacks the binding site for FRS2 and FRS3,
can rescue the effects of a gain-of-function cis mutation in Fgfr2
(Eswarakumar et al., 2006). However, no phenotype was reported
for the FRS-binding mutation itself, yielding little insight on the
normal requirement for the interaction between FGFR2 and FRS.

The phenotype of Frs2 null mice themselves does not clar-
ify the role of this molecule in mediating FGF signaling. Frs2 null
embryos lack normal extraembryonic tissue and die at ∼E8 (Gotoh
et al., 2005), a phenotype that may overlap but does not recapit-
ulate any FGF-associated phenotype. The interpretation of this
result is confounded by the possibilities that there is some compen-
sation by FRS3 and that FRS2 signaling is not specific to the FGF
pathway (e.g., FRS2 can mediate neurotrophin signaling as well).
Frs2 mutants that lack the binding residues for the tyrosine phos-
phatase SHP2 fail to maintain intermediate progenitor cells during
cortical neurogenesis (Yamamoto et al., 2005). However, interme-
diate progenitors do not express detectable levels of Fgfr genes
and mutants in which FGF signaling is abolished during cortical
neurogenesis fail to maintain the radial glial stem cells rather than
the intermediate progenitors, which are unaffected (Kang et al.,
2009), suggesting that FRS2 may be acting downstream of neu-
rotrophins rather than FGFs in this process. Note that no knockout
or knockdown studies for Frs3 have been reported. Interestingly,

the function of FRS-like proteins as direct targets of FGF receptors
is not conserved in flies and worms (Wilson et al., 2004; Lo et al.,
2010). Hence, in mammals there is still uncertainty as to where,
when, and whether FRS is required in vivo for FGF signaling and
how it might differentially affect cellular responses.

Similarly, PLCγ is postulated to be an important immediate
target of FGFR phosphorylation (Mason, 2007; Turner and Grose,
2010), and regulation of this interaction could influence a cell’s
response. However, in vivo evidence is still sparse. PLCγ activates
the IP3 → Ca++ and DAG → PKC pathways. A direct comparison
of Fgfr1 hypomorphic embryos to ones carrying an Fgfr1 point
mutation that abolishes the interaction with PLCγ revealed that
both exhibit homeotic vertebral transformations,but in some cases
in opposite directions along the A–P axis, leading to the sugges-
tion that signaling through PLCγ may negatively feedback on FGF
function (Partanen et al., 1998). However, the overall requirement
for the FGFR–PLCγ interaction in vivo remains largely obscure.
In addition, the requirements for potential immediate targets of
FGFRs other than PLCγ and FRS2, for example CRK, SHB, and
GRB, are also not understood and need to be explored. Neverthe-
less, the use of different FGFR targets is likely to account, in part,
for different cellular responses.

The immediate targets of activated FGF receptors will in turn
activate one or more downstream effectors that include compo-
nents of the Src, STAT, Shc, PI3K, and MAPK pathways (Mason,
2007; Beenken and Mohammadi, 2009; Turner and Grose, 2010;
Guillemot and Zimmer, 2011). There is evidence that some of
these pathways are differentially activated in different neural cell
types in response to FGF signals, providing part of the explana-
tion for how FGFs induce a variety of cellular responses. Activation
of the Ras–Erk pathway has been examined most closely and has
been implicated in mediating FGF signals, for example, in neural
induction and patterning in Xenopus (Ribisi et al., 2000; Delaune
et al., 2005), in patterning rhombomeres and promoting ven-
tral forebrain development (Shinya et al., 2001; Hernandez et al.,
2004; Aragon and Pujades, 2009), and in generating cerebellar, but
not midbrain, cell fates at the mid–hindbrain boundary in the
chick (Sato and Nakamura, 2004). On the other hand, conditional
deletion of Erk2 during cortical neurogenesis appears to affect
primarily the proliferation of intermediate progenitors (Samuels
et al., 2008), a cell type in which FGF signaling appears not to play
a significant role (Kang et al., 2009). The roles of the other intra-
cellular pathways that are potentially activated by FGFs remain
unclear.

In addition to mediators of FGF signaling, there are a number of
important inhibitors. The functions of some of these have begun
to be characterized in CNS development and include members
of the Sprouty (Spry) family, inhibitors of the Ras–ERK pathway
(Mason et al., 2006). Spry genes are typically induced by FGF sig-
nals and negatively feedback to restrict the amount of signaling.
For example, Spry2 misexpression reduces FGF signaling and dis-
rupts mid–hindbrain development in mice (Basson et al., 2008)
and spry4 constrains FGF activity in patterning the hindbrain
and expanding the telencephalon in zebrafish (Furthauer et al.,
2001; Labalette et al., 2011). There are also negative feedback reg-
ulators of FGF signaling other than the Spry proteins, including
Sef, MapK phosphatases (MKPs, also know as Dusps), and factors
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promoting receptor turnover (e.g., Furthauer et al., 2002; Tsang
and Dawid, 2004; Echevarria et al., 2005; Ron et al., 2008). These
are likely important in regulating neurogenic processes. However,
their functions in the CNS have just begun to be explored.

In different parts of the CNS and at different stages of develop-
ment, FGF signaling promotes and inhibits different sets of target
genes. Target genes induced by FGFs usually include genes that
encode feedback inhibitors (e.g., Spry) and members of the Ets
family of transcription factors (including Pea3, Erm, Er81, and oth-
ers) suggesting that these are immediate targets. The transcription
complexes downstream of FGF signaling that regulate expression
of these genes are largely uncharacterized. Cell type specific activa-
tion of transcription factors and target genes is likely due in part to
the use of different intracellular signal transducers and inhibitors.
Although little characterized, the epigenetic states of the target cell
types will also be instrumental in determining which genes are
activated by FGFs and what cell fates are adopted.

INTEGRATION OF MULTIPLE EXTRACELLULAR SIGNALS
In addition to intracellular modulators of FGF signaling affect-
ing cellular responses, the presence of other secreted factors in the
environment of a cell is bound to affect its response to FGFs as it
tries to integrate the multiple signals. How a cell integrates multi-
ple concurrent signals to adopt an appropriate response remains
a fundamental question in developmental biology. Integration of
multiple signals can potentially occur at several levels. For instance,
cross-talk can occur between the different transduction pathways
activated by different extracellular factors. In addition, the regula-
tory sequences of target genes can act as sites at which transduction
pathways converge and integrate to affect gene expression and
ultimately a cell’s fate.

Although few to date, there are some studies that demonstrate
such interactions between FGFs and other signals that affect a cell’s
response and its fate in the developing nervous system. For exam-
ple, at the level of cross-talk between transduction pathways, BMP,
WNT, FGF, and/or IGF signals during neural induction can be
integrated via phosphorylation of alternate sites on SMAD1 (Pera

et al., 2003; Fuentealba et al., 2007). Also, in patterning the pos-
terior neural tube in Xenopus, FGF, WNT, and antagonistic BMP
signals converge on regulatory elements of the Xcad gene (Hare-
maki et al., 2003). Finally, at the earliest stages of telencephalon
development in the mouse, loss of either FGF or WNT signaling
leads to the death of the neuroectoderm, whereas loss of Smad4
can rescue this phenotype (Paek et al., 2009, 2011). In this case,
integration of FGF, WNT, and TGFβ signals occurs at several levels
including the regulation of Cdkn1a expression via direct binding
of SMAD/FOX and MYC complexes to its cis regulatory elements
(Seoane et al., 2004; Paek et al., 2011). However, the few exam-
ples to date provide only limited mechanistic insights into the
interactions of FGFs with other signals in regulating neural cell
fates.

SUMMARY AND PERSPECTIVE
In humans, there are at least 70 nucleotide substitutions that
affect the amino acid sequences of the FGFR genes (Wilkie, 2005;
Beenken and Mohammadi, 2009). Mutations in ligands also exist
and some of these are strongly associated with disease. Before we
can devise effective treatments to remedy or cure neural or FGF-
related disorders, it might be useful, if not essential, to know what
intracellular pathways transduce FGF signaling in each target cell
type and how signaling is affected by intracellular and extracel-
lular modulators. Despite our progress in identifying the many
requirements for FGFs in neurodevelopment and neurogenesis,
our understanding of how FGFs fulfill so many functions remains
preliminary and superficial. This is because we do not yet have a
firm grasp of the mechanisms for how an FGF signal at the cell
surface is transduced and how combined with other signals it leads
to changes in gene expression that ultimately affect a cell’s fate.
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