
RESEARCH ARTICLE

Genome-Wide Identification and Expression
Analysis of the NAC Transcription Factor
Family in Cassava
Wei Hu*☯, Yunxie Wei☯, Zhiqiang Xia☯, Yan Yan, Xiaowan Hou, Meiling Zou, Cheng Lu,
WenquanWang*, Ming Peng*

Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and
Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan,
571101, People’s Republic of China

☯ These authors contributed equally to this work.
* huwei2010916@126.com (WH); wangwenquan@itbb.org.cn (WQW); mmpeng_2000@yahoo.com (MP)

Abstract
NAC [no apical meristem (NAM), Arabidopsis transcription activation factor [ATAF1/2] and

cup-shaped cotyledon (CUC2)] proteins is one of the largest groups of plant specific tran-

scription factors and plays a crucial role in plant growth, development, and adaption to the

environment. Currently, no information is known about the NAC family in cassava. In this

study, 96 NAC genes (MeNACs) were identified from the cassava genome. Phylogenetic

analysis of the NACs from cassava and Arabidopsis showed that MeNAC proteins can be

clustered into 16 subgroups. Gene structure analysis found that the number of introns of

MeNAC genes varied from 0 to 5, with the majority ofMeNAC genes containing two introns,

indicating a small gene structure diversity of cassava NAC genes. Conserved motif analysis

revealed that all of the identified MeNACs had the conserved NAC domain and/or NAM

domain. Global expression analysis suggested thatMeNAC genes exhibited different

expression profiles in different tissues between wild subspecies and cultivated varieties,

indicating their involvement in the functional diversity of different accessions. Transcriptome

analysis demonstrated thatMeNACs had a widely transcriptional response to drought

stress and that they had differential expression profiles in different accessions, implying

their contribution to drought stress resistance in cassava. Finally, the expression of twelve

MeNAC genes was analyzed under osmotic, salt, cold, ABA, and H2O2 treatments, indicat-

ing that cassava NACsmay represent convergence points of different signaling pathways.

Taken together, this work found some excellent tissue-specific and abiotic stress-respon-

sive candidateMeNAC genes, which would provide a solid foundation for functional investi-

gation of the NAC family, crop improvement and improved understanding of signal

transduction in plants. These data bring new insight on the complexity of the transcriptional

control ofMeNAC genes and support the hypothesis that NACs play an important role in

plant growth, development, and adaption of environment.
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Introduction
The NAC family (NAM, no apical meristem; ATAF, Arabidopsis transcription activation fac-
tor; and CUC, cup-shaped cotyledon) is one of the largest groups of plant-specific transcription
factors [1, 2, 3, 4]. NAM, the first NAC gene isolated from the petunia, plays an important role
in determining positions of meristems and primordial [1]. ATAF1 and ATAF2, two NAC
genes from Arabidopsis, have a negative effect on the plants’ response to biotic and abiotic
stresses, respectively [5, 6, 7, 8, 9]. CUC2 (CUPSHAPED COTYLEDON 2), another NAC gene
found in Arabidopsis, is considered to be vital for the development of embryos and flowers [2].
Typically, in the NAC protein family, there is a highly conserved N-terminal DNA-binding
domain containing approximately 150 amino acids divided into five subdomains (A-E); never-
theless, the C-terminal region that contains the protein-binding activity domain is highly vari-
able and plays an important role in the regulation of transcription [2, 10, 11, 12, 13].

There is abundant evidence indicating that NAC proteins play crucial roles in various
aspects of plant growth and development, and adaption to the environment [14, 15], including
maintenance of the shoot apical meristem [1, 16], cell division and expansion [17], nutrient
remobilization [18], flower formation [19], lateral root development [20, 21], leaf senescence
[22, 23, 24, 25, 26, 27], secondary cell wall biosynthesis [3, 28], fiber development [29], seed
development [30], and response to pathogen infection [9, 12, 31, 32, 33, 34] and abiotic stresses
[15, 26, 33, 35, 36, 37, 38, 39].

Additional studies have also confirmed that a large number of NAC genes induced by abi-
otic stresses play crucial roles in the regulation of plant tolerance to abiotic stress. Three Arabi-
dopsis NAC genes (ANAC019, ANAC055, and ANAC072) showed up-regulation at
transcription levels after drought, high salinity and abscisic acid (ABA) treatments, and those
overexpression resulted in increased tolerance to drought [35]. Similarly, overexpression of
ATAF1 in the Arabidopsis enhanced tolerance to drought, ABA, salt, and oxidative stresses
[14]. The effects of NAC genes on increasing tolerance to abiotic stress were also found in rice.
SNAC1, an NAC gene in rice, can improve tolerance to drought and salt stresses in rice and
transgenic plants were found to produce a 22–34% higher yield in the field under severe
drought stress conditions [36]. Accordingly, OsNAC10-overexpressing rice plants showed an
increased grain yield under both normal and drought conditions [37]. Overexpression of other
three rice drought-responsive NAC genes (OsNAC5, OsNAC6, and OsNAC10) increased plant
tolerance to drought and salt stresses [37, 40]. Therefore, NAC family genes are crucial regula-
tors of plant tolerance to abiotic stress and crop yield.

To date, genome-wide analyses have identified a large number of NAC family members in
several species with 152 NAC genes in Nicotiana tabacum [41], 117 NAC genes in the model
plant Arabidopsis thaliana [13], 151 NAC genes in Oryza sativa [13], 163 NAC genes in Popu-
lus trichocarpa [42], 74 NAC genes in Vitis vinifera [43], 147 putative NAC genes in Setaria ita-
lica [44], 145 NAC genes in Gossypium raimondii [45], 167 NAC genes inMusa acuminate
[46], and 71 NAC genes in Cicer arietinum [47]. However, no information is available for the
NAC family in the cassava.

Cassava (Manihot esculenta Crantz) is the third most important crop, after rice and maize,
in Africa, Asia, and Latin America and is considered a food security crop in these regions as the
starchy roots provide nourishment for 800 million people around the world [48, 49]. Since this
plant produces a high starch product at a minimum processing cost, cassava is also considered
one of the major crops for bioethanol production [50, 51]. Cassava is particularly tolerant to
drought and low-fertility soils under environmental stresses [49, 52]; however, the mechanisms
underlying this tolerance to abiotic stress are less known. Therefore, an understanding of the
molecular mechanisms underlying cassava tolerance to abiotic stress may provide effective
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ways for genetic improvement of stress tolerance of cassava and other crops. The high-quality
sequencing data of cassava wild ancestors and cultivated varieties in our previous study provides
an excellent opportunity for genome-wide analysis [53]. Based on the significance of NACs in
the regulation of plant growth, development, and adaption to the environment, the NAC family
was selected to perform a systematic analysis. In the present study, we identified 96 NAC genes
from cassava and carried out detailed studies of their phylogeny, conserved motifs, gene struc-
ture, expression profiles in various tissues, and response to drought, osmotic, salt cold stresses
and signaling of ABA and H2O2. Our results can provide a basis for future research on the evolu-
tionary mechanisms and abiotic stress responses mediated by NACs in cassava.

Materials and Methods

Plant materials and treatments
W14 (Manihot esculenta ssp. flabellifolia) is an ancestor of the wild cassava subspecies which
has a strong tolerance to drought stress. The South China 124 (SC124) is a widely planted cas-
sava cultivar in China [52]. The Argentina 7 (Arg7) adapts to a geographical high-latitude
region of Argentina [54]. All plants were grown in a glass house in the Chinese Academy of
Tropical Agricultural Sciences (Haikou, China). The plants were grown from April to July
2013 during which time the temperature in the glass house ranged from 20 to 35°C. The tran-
scripts of cassava NAC genes in different tissues were examined with wild subspecies (W14)
and cultivated variety (Arg7) under normal growth conditions. Arg7, SC124, and W14 were
chosen to study the transcriptional response of cassava NAC genes under drought stress. After
two months of normal cultivation, the cassava seedlings similar in growth vigor were subjected
to various treatments. For abiotic stress and signal molecule treatments, cassava seedlings were
subjected to 200 mMmannitol for 24 d, 300 mMNaCl for 24 d, 3.27 M H2O2 for 72 h, 100 μM
abscisic acid (ABA) for 72h, and low temperatures (4°C) for 48h following recovery,
respectively.

Identification and phylogenetic analyses of the NAC family in cassava
The whole protein sequence of cassava was obtained from the cassava genome database (http://
www.phytozome.net/cassava.php). The Arabidopsis and rice NAC amino acid sequences were
acquired from UniPort (http://www.uniprot.org/) and RGAP databases (http://rice.
plantbiology.msu.edu/), respectively. To identify the cassava NAC family genes, the local Hid-
den Markov Model-based searches (HMMER: http://hmmer.wustl.edu/) were built from
known NACs to search the cassava genome database [55]. Additionally, BLAST analyses with
all the Arabidopsis and rice NACs as queries were employed to identify the predicted NACs in
the cassava database. With the help of CDD (http://www.ncbi.nlm.nih.gov/cdd/) and PFAM
databases (http://pfam.sanger.ac.uk/), all the potential cassava NAC genes identified from
HMM and BLAST searches were accepted only if they contained the NAC domain; then multi-
ple sequence alignments were used to confirm the conserved domains of predicted NAC
sequences. Moreover, TMHMM Server ver.2.0 (http://www.cbs.dtu.dk/services/TMHMM/)
was used to predict the membrane-bound MeNAC members. Finally, a bootstrap neighbor-
joining (NJ) phylogenetic tree was constructed based on the multiple alignments of identified
cassava NAC members with all the Arabidopsis NACs by Clustal X 2.0 and MEGA 5.0 [56, 57].

Protein properties and sequence analyses
The molecular weight (MW) and isoelectric points (pI) of presumed NAC proteins were pre-
dicted by the online ExPASy proteomics server database (http://expasy.org/). The motifs were
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identified using MEME program (http://meme.nbcr.net/meme/cgi-bin/meme.cgi). The maxi-
mum number of motifs was 15 and the optimum width of motifs was set from 15 to 50 [58].
Furthermore, all identified motifs were annotated according to InterProScan (http://www.ebi.
ac.uk/Tools/pfa/iprscan/). The information of eachMeNAC gene in the genome was retrieved
from the cassava database and the gene structures were identified using GSDS software (http://
gsds.cbi.pku.edu.cn/). Exon/intron organization was further checked by alignment of coding
sequence and genomic DNA sequence of each NAC gene.

Transcriptomics analysis
The RNA-seq technique was employed to determine the expression of cassava NAC genes.
Total RNA was extracted from stems, leaves, and roots in Arg7 andW14 under normal growth
conditions and was also extracted from leaves and roots of Arg7, SC124, and W14 under nor-
mal conditions and 12 days drought treatment. Total RNA was isolated using the plant RNeasy
extraction kit (TIANGEN, China) and the concentration and purity were evaluated using
NanoDrop 2000c (Thermo Scientific, USA). Reverse transcription was implemented using 3 μg
total RNA of each sample by RevertAid First Strand cDNA Synthesis Kit (Fermentas). Accord-
ing to the Illumina instructions, the cDNA libraries were constructed and subsequently sub-
jected to sequencing by Illumina GAII following Illumina RNA-seq protocol. To obtain precise
and reproducible results, each sample was replicated two times.

Quantitative RT-PCR analysis
Expression ofMeNAC genes in response to various abiotic stress (osmotic, salt, and cold) and
related signaling (ABA and H2O2) were examined by qRT-PCR analysis with Stratagene
Mx3000P Real-Time PCR system (Stratagene, CA, USA) using SYBR Premix Ex Taq (TaKaRa,
Japan) according to the manufacturer’s instructions. The relative expression of the target genes
was determined by the 2–ΔΔCt method [59]. In order to obtain the optimal primer and template
concentrations, a series of primer and template dilutions were performed prior to quantifica-
tion experiments. Primers with high specificity and efficiency amplification on the basis of dis-
sociation curve analysis and agarose gel electrophoresis are used to conduct quantification
analysis (S8 Table). Moreover, to ensure the primer specificity, PCR products were sequenced.
Amplification efficiencies of gene-specific primers ranged from 90% to 110%. EF1 and TUB
that were verified to be constitutive expression were used as internal references for all the
qRT-PCR analyses in this study [60]. Each treated sample contained a corresponding regu-
larly-watered control and each sample had three independent biological replications. The
treated and control plants at each time point were sampled for expression analysis. The relative
expression levels ofMeNAC genes in each treated time point were compared with that in each
time point at normal conditions [61].

Results and Discussion

Identification and phylogenetic analysis of cassava NACs
Both BLAST searches and HiddenMarkov Model searches were carried out to extensively iden-
tify cassava NAC genes from the cassava genome database using Arabidopsis and rice NAC
sequences as queries. After these programs, 96 putative NAC gene family members, designated
asMeNAC1-MeNAC96, were identified from the complete cassava genome. Conserved domain
analysis further confirmed that all of the NACs contain the NAC domain or NAM domain at
the N-terminus that are the basic characteristics of NAC family. When some cassava NAC genes
contain alternative mRNA splicing, the complete sequence and its variant for each gene were
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used for further analyses. The 96 predicted NAC proteins ranged from 82 (MeNAC45) to 656
(MeNAC1) amino acid (aa) residues with an average of 342.7 aa, the relative molecular mass var-
ied from 9.87 kDa (MeNAC45) to 74.79 kDa (MeNAC1), and the pIs ranged from 4.45
(MeNAC9 and MeNAC11) to 9.63 (MeNAC86) with 57 members showing pI<7 and others
pI>7 (S1 Table). MeNAC9 shared a high degree (99%) of sequence identity with MeNAC11
based on amino acid sequence alignment. Additionally, MeNAC25 showed a deficiency of 55 or
56 amino acids at C-terminal relative to MeNAC9 andMeNAC11, suggesting that MeNAC25
might be a splice variant of MeNAC9 andMeNAC11. All of the cDNAs of identifiedMeNAC
genes have been submitted to GenBank and their accession numbers in GenBank are shown in
S2 Table.

To study the evolutionary relationships between cassava NAC proteins and known NACs
from Arabidopsis, an unrooted Neighbor-Joining phylogenetic tree was created with the amino
acids of NAC family proteins from cassava and Arabidopsis. The results indicated that 96
MeNACs can be divided into 16 subgroups together with their ANAC orthologs of Arabidopsis
(Fig 1); however, phylogenetic analysis divided banana and soybean NACs into 8 and 6 sub-
groups, respectively [46, 62]. These data indicated that NAC proteins in cassava have greater
diversity than that in these two species. Subgroup OSNAC8 and ANAC001 each only contain
one MeNAC protein, while subgroup NAM and OSNAC7 each contain the maximum 13
MeNAC proteins. Similar to Arabidopsis and rice, these data identified the existence of a diver-
sified MeNAC family in cassava with diverse functions [13, 63]. In addition, MeNAC9,
MeNAC11 and their splice variant MeNAC25 exhibited close evolutionary relationship in sub-
group NAC2.

Phylogenetic analysis also showed that there are some closely related orthologous NACs
between cassava and Arabidopsis (MeNAC36 and ANAC061, MeNAC93 and ANAC042,
MeNAC56 and ANAC020, MeNAC30 and ANAC002/ATAF1, MeNAC32 and ANAC029,
MeNAC7 and ANAC008, and MeNAC68 and ANAC095), suggesting that an ancestral set of
NAC genes existed prior to the divergence of cassava and Arabidopsis, and that NACs from
cassava generally have a close relationship with the proteins from Arabidopsis. ANAC042,
which showed a high degree of similarity with MeNAC93, has been reported to be involved in
the regulation of camalexin biosynthesis, leaf senescence, oxidative, and heat stresses tolerance
[26, 34, 38]. MeNAC30 shares high similarity with ANAC002/ATAF1 that has been shown to
be involved in abiotic (drought, salt, and ABA) and biotic (necrotrophic pathogen Botrytis
cinerea) stress responses, and the leaf senescence [14, 23]. MeNAC32 showed a high degree of
similarity with ANAC029 that have recently been reported to play a role in tissue senescence
[64]. These results suggest the possible functions of NAC genes in cassava.

The membrane-associated MeNACs
It is well known that membrane-bound transcription factors (MTFs) of NAC family have vital
role in biotic and abiotic stress response [65, 66, 67, 68]. Using TMHMM Server ver.2.0, 6
members (MeNAC1, -2, -3, -4, -88, and -92) were identified as membrane-associated
MeNACs, designated as MeNTLs (NTM1-Like or ‘‘NAC with Transmembrane Motif 1”-Like)
according to the name of membrane-bound NACs in Arabidopsis, of which MeNAC1 contains
two TMHs, while other four MeNTLs contain one TMH (S3 Table). To date, comprehensive
analyses have identified a large number of NACMTFs in several species, including 18 NAC
MTFs in Arabidopsis thaliana [66], 5 NACMTFs in Oryza sativa [66], 11 NACMTFs in Gly-
cine max [62], 8 NACMTFs in Setaria italica [44], 17 NACMTFs in Brassica rapa [69], 8
NACMTFs in Cicer arietinum [47], 8 NACMTFs in Zea mays [70], and 7 NACMTFs in Bra-
chypodium distachyon [71]. According to the NJ phylogenetic tree (Fig 1), we found that
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MeNAC1, -2, -3, -4, -88 and -92 showed close phylogenetic relationship with ANAC028, -016,
-091, -017, -014 and -040 respectively that were also identified as NACMTFs in Arabidopsis
[66]. This indicates that NACMTFs in cassava might have similar function to their homologs
in Arabidopsis. ANAC016, a senescence-associated NAC transcription factor, was reported to
negatively regulate salt, drought and oxidative stress tolerance [25, 72]. However, ANAC017
function on positively regulating drought stress tolerance [68]. These results suggest the possi-
ble functions ofMeNAC2 andMeNAC4 in response to abiotic stress.

Fig 1. Phylogenetic analysis of NAC proteins from cassava and Arabidopsis. A total of 96 NACs from cassava and 105 NACs from Arabidopsis were
used to construct the NJ tree with 1000 bootstrap based on the full length sequences of NACs. The NAC proteins are grouped into 16 distinct subgroups
(TERN, NAC2, ONAC022, ANAC011, NAC1, SENU5, ATAF, AtNAC3, NAP, NAM, TIP, OSNAC8, OSNAC7, ANAC001, ONAC003 and
ANAC063).“ANACs”are the NAC proteins from Arabidopsis. “MeNACs” indicate the NAC proteins from cassava.

doi:10.1371/journal.pone.0136993.g001
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Gene structure and conserved motifs of cassava NACs
During the evolution of multigene families, gene structure was commonly diversified and thus
could facilitate evolutionary co-option of genes for new functions to adapt to changes in the
environment [45]. To further examine the structural features of cassava NAC genes, intron/
exon distribution and conserved motifs were analyzed according to their phylogenetic relation-
ships (Fig 2; Fig 3). Gene structure analysis indicated that the number of introns ofMeNAC
genes varied from 0 to 5 (Fig 2), which is similar to that in banana, where introns number vary
from 0 to 6 [45]; however, the number of introns vary from 0 to 16 and 0 to 9 in rice and cot-
ton, respectively [13, 46]. These results suggest a small gene structure diversity of cassava NAC
genes compared with NAC genes in rice and cotton.

Additionally, we found that 72 of 96MeNAC genes had two introns. This phenomenon was
also observed in rice, cotton, and banana, with the majority of NAC genes containing two
introns [13, 45, 46]. TwoMeNAC genes (MeNAC25 andMeNAC45) contained no intron in
their open reading frame (ORF), while sixMeNACs (MeNAC1, -85 from subgroup ANAC011,
MeNAC5 from subgroup NAC2,MeNAC3 from subgroup ONAC022, andMeNAC-6, -71 from
subgroup ONAC003) had the maximum number of introns. According to Nuruzzaman et al.
(2010) [13], the rate of intron loss is faster than the rate of intron gain after segmental duplica-
tion in rice. Thus, it is possible that the subgroups ANAC011, NAC2, ONAC022, and
ONAC003 may represent the original genes. In addition, MeNAC9 and MeNAC11 contained
one introns, whereas their splice variant MeNAC25 had no intron. This indicated that alterna-
tive splice led to the deficiency of C-terminal exon of MeNAC25. Generally, most ofMeNAC
members in the same group had similar exon-intron structure. This conserved intron numbers
in each subfamily supports their close evolutionary relationship and the classification of
subgroups.

To further examine the structural diversity of cassava NAC proteins, fifteen conserved
motifs were predicted using the MEME program and subsequent annotation with InterPro
(Fig 3; S1 Fig; S4 Table). All the MeNACs contain at least one of the four main motifs (motif 1,
2, 3, and 4) that were annotated as NAC domain and/or no apical meristem (NAM) domain;
therefore, all the cassava NACs identified in this study have conserved features of the NAC
family. Interestingly, most of the conserved motifs located in the N-terminal of NAC proteins
are highly conserved for DNA-binding, indicating that these motifs may be essential for the
function of NAC proteins; a similar phenomenon was also observed for currently identified
NACs in potato [73]. Notably, the motifs in subgroup ANAC063 were the most diverse, which
corresponds to the intron/exon distribution of this subgroup. Additionally, all of the cassava
NAC proteins, except for MeNAC42, contained the motif 2. All of the MeNACs in subgroup
OSNAC7 specially showed motif 12 and all of the subgroup ONAC003 MeNACs, except for
the closely related genes MeNAC38 and MeNAC68, specifically show motif 7 and 9. Interest-
ingly, MeNAC9, MeNAC11, and MeNAC25 showed similar constitution of conserved motifs,
indicating their similar function. Generally, NAC proteins that were clustered in same sub-
groups shared similar motif composition, indicating functional similarities among members of
the same subgroup.

Expression profiles ofMeNAC genes in different tissues
To investigate the expression profiles of NAC genes in cassava development, the expression
patterns ofMeNAC genes in different tissues were analyzed using available transcriptome data.
W14, a wild cassava subspecies, is the nearest ancestor of cultivated cassava with low tuber root
yield, photosynthesis rate and starch content in root tubers, but strong tolerance to drought
stress [53]. Arg7, a cultivated variety, contains excellent agronomic traits, such as maintaining
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growth under moderate drought stress [54]. Tissues of leaves, stems, and roots inW14 and Arg7
were sampled to explore the expression profiles ofMeNAC genes, which will provide evidence
for cassava development in wild subspecies and cultivated variety. Forty-nine of the 96MeNAC
genes had the corresponding transcripts data in the dataset, while the rest of the 47MeNACs
were not covered in the RNA-seq libraries (Fig 4; S5 Table). Of these 49MeNAC genes, 29
(59%), 21 (43%), and 21 (43%)MeNACs had high expression levels (value>1) in stems, leaves,
and roots of Arg7, respectively. The number ofMeNAC genes with the high expression levels
(value>1) in stems, leaves, and roots of W14 were 24 (49%), 23 (47%), and 26 (53%), respec-
tively. Transcriptomic data also revealed that 28MeNAC genes showed a constitutive expression
pattern expressed in all the tissues of the two accessions, suggesting that these genes might play a
role in plant growth and development [69]. On the contrary, the remaining 21MeNAC genes
exhibited differential expression patterns, specific to certain tissues, such asMeNAC37,
MeNAC10,MeNAC74, andMeNAC93. This phenomenon was also observed in other plants,
such as in Arabidopsis, rice, Chinese cabbage, and chickpea [12, 47, 69, 74]. Moreover, several
reports have indicated that overexpression of tissue-specifically expressed NAC genes can pro-
mote the development of particular tissues, asNAC1 from Arabidopsis promotes lateral root
development [20], Arabidopsis NARS1/NAC2 andNARS2/NAM are involved in embryogenesis
[75], and riceOsNAC5 and OsNAC6 affects plant root growth [76, 77].

Some of theMeNAC genes showed higher expression levels at leaf and stem tissues in Arg 7
than that in W14.MeNAC10, -29, -86, -38, -7 and -6 had higher expression levels at leaf tissue
in Arg7 than that in W14;MeNAC78, -8, -57, -28, -21, -7, -6 and -27 had higher expression lev-
els at stem tissue in Arg7 than that in W14. However, some of theMeNAC genes had higher
expression levels at roots in W14 than that in Arg7, includingMeNAC62, -78, -82, -94, -65, -19,
-35, -6, -27, -47 and -91. The strong expression levels of theseMeNAC genes in a special tissue
in different accessions indicated their key roles in tissue development or function.

Overall, 11 out of 49MeNAC genes showed high transcript abundance in all of the tested tis-
sues of the two accessions, includingMeNAC17 in subgroup NAM,MeNAC5, -9 in subgroup
NAC2,MeNAC28, -3 in subgroup ONAC022,MeNAC29 in subgroup ATAF,MeNAC35 in
subgroup SENU5,MeNAC86, -12 in subgroup ANAC063, andMeNAC38, -7 in group
ONAC003. The NAC genes with relative high transcripts in all the tested tissues could play a
crucial role in the development of cassava. In contrast,MeNAC69, -50, -67, -40, -65, -1, -60,
-75, -58, -72, -41, and -66 had low expression levels in all of the tissues examined. Furthermore,
we also observed that some closely related genes showed similar expression patterns; for exam-
ple,MeNAC50, -67 in subgroup NAM,MeNAC58, -72 in subgroup ONAC003, andMeNAC41,
-66 in subgroup ONAC022 had weak expression in various tissues tested. Together, the tissue
expression profiles of NAC genes in different accessions provide important evidence for further
investigation of cassava development.

Expression analysis ofMeNAC genes in response to drought in different
accessions
Previous studies revealed that NAC family genes play an important role in plants’ response to
drought or osmotic stress [14, 35, 36, 37, 40, 68, 78]. Genome-wide expression analysis of NAC
genes in response to drought can provide an opportunity to further understand the mechanisms

Fig 2. The exon-intron structure ofMeNAC genes according to the phylogenetic relationship. The
unrooted phylogenetic tree was constructed with 1000 bootstrap based on the full length sequences of
MeNACs. Exon-intron structure analyses ofMeNAC genes were performed by using the online tool GSDS.
Lengths of exons and introns of eachMeNAC gene were exhibited proportionally.

doi:10.1371/journal.pone.0136993.g002
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involved in cassava’s strong tolerance. In order to identify the expression profiles of cassava NAC
genes in response to drought stress, three-month-old cassava seedlings (a wild subspecies W14
and two cultivated varieties Arg7 and SC124) were deprived of water for 12 days and then the
leaves and roots tissues were collected to extract RNA for subsequent RNA-seq analysis. Fifty-
eight of the 96MeNACs had the corresponding transcripts data within the dataset (Fig 5; S6
Table). In the Arg7 variety, 32% and 36% ofMeNAC genes showed induction by drought stress
in leaves and roots, respectively. In the SC124 variety, 39% and 29% ofMeNAC genes were tran-
scriptionally induced after drought treatment in leaves and roots, respectively. In theW14 sub-
species, 26% and 52% ofMeNAC genes were up-regulated by drought stress in leaves and roots,
respectively. These results suggest that the total number ofNAC genes induced by drought was
more inW14 than that in Arg7 and SC124, indicating the comprehensively transcriptional
response ofNAC genes responding to drought inW14 subspecies. W14 exhibited stronger toler-
ance to drought than SC124 and Arg7, two varieties commonly cultivated in China and South-
east Asia, respectively [53]. Moreover, numerous studies have confirmed that the NAC family
genes play a positive role in the drought stress response in various species [14, 35, 36, 37, 40, 68,
78, 79, 80, 81]; therefore, the high ratio ofNACmembers transcriptionally induced by drought
inW14 subspecies might contribute to its strong tolerance to drought. Additionally, from the
previously describe transcriptomic data, we also observed that the number ofNAC genes up-reg-
ulated by drought at transcription levels was significantly greater in roots than that in leaves in
W14. Cassava can form deep root systems (below 2 m soil depth), which is beneficial for pene-
trating into deeper soil layers and absorbing water stored in the soil [82]. Thus, cassava NAC
genes might play a regulatory role in water uptake from soil by roots, hence maintaining strong
tolerance to drought stress in the W14 subspecies.

Generally,MeNAC genes showed similar expression profiles for leaves or root tissues in
Arg7 and SC124, which differs fromW14. Transcripts of someMeNAC genes (MeNAC69,
MeNAC76,MeNAC40,MeNAC1,MeNAC37,MeNAC33,MeNAC58,MeNAC7,MeNAC47,
andMeNAC91) were up-regulated in the roots of W14, but down-regulated in the roots of
SC124 and Arg7 after drought treatment. The expression of someMeNAC genes, such as
MeNAC8,MeNAC1,MeNAC57,MeNAC10,MeNAC58, andMeNAC93, increased in leaves of
W14, but decreased in leaves of SC124 and Arg7 after drought treatment. The differential
response of NAC genes to drought in different accessions implied that mechanisms involved in
the NAC-mediated drought response are different between wild subspecies and cultivated vari-
eties. Notably, although someMeNAC genes showed close phylogenetic relationships, they
exhibited different responses to drought at transcriptional levels, such asMeNAC69, -76 in sub-
group NAM,MeNAC82, -94 in subgroup NAC1,MeNAC96, -70 in subgroup OSNAC7, and
MeNAC11, -9 in subgroup NAC2. Taken together, the transcriptional response ofMeNAC
genes to drought stress in wild subspecies and cultivated varieties will lay a foundation for fur-
ther investigation of the underlying mechanisms of strong drought tolerance in cassava.

Expression profiles ofMeNAC genes with the treatments of various
stress and related signaling
Accumulating evidence indicates that NAC genes play an important role in the regulation of
plant tolerance to various stressors and related signaling transduction in various species [47,

Fig 3. Conservedmotifs of MeNAC proteins according to the phylogenetic relationship. The conserved
motifs in the MeNAC proteins were identified by MEME. Grey lines represent the non-conserved sequences,
and each motif is indicated by a colored box numbered at the bottom. The length of motifs in each protein was
exhibited proportionally.

doi:10.1371/journal.pone.0136993.g003
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70, 83, 84]. Thus, 12MeNAC genes (MeNAC9, -12, -22, -29, -35, -38, -57, -61, -64, -66, -80, and
-94) distributed in different subfamilies and up-regulated in some tissues or in a special tissue
by drought stress, according to our RNA-seq data in different cassava accessions, were selected
to further examine their response to osmotic, salt, cold, ABA, and H2O2 treatments.

Under osmotic treatment,MeNAC22, -38, -61 and -64 showed up-regulation at all treated
time-points, among whichMeNAC38, -61 and -64 showed significant induction at 14d, 18d
and 24d.MeNAC9, -66 and -80 expression was induced during 14–24d treatment, in which
MeNAC9 and -80 showed significant induction at 18d and 24d.MeNAC29, -57 and -94 were
significantly induced at 24d treatment.MeNAC12 and -35 showed obviously down-regulation
at 6h, 3d or 24d treatments (Fig 6). Notably,MeNAC61 showed up-regulation at all treated
time-points and reached the highest expression level (value>6) at 14d, indicating their possi-
ble roles in osmotic/drought stress responses. ANAC002/ATAF1, ANAC017, ANAC019,
ANAC055, ANAC072, and ANAC096 have been reported to positively regulate drought stress
tolerance in Arabidopsis [14, 35, 68, 78].MeNAC22, an orthologue of ANAC072 that is strongly
induced by osmotic and drought stress, may represent a functional gene conferring tolerance
to drought in cassava. However, some NAC genes, including ANAC016 and ANAC053/NTL4,
which showed significant up-regulation during dehydration, were reported to negatively regu-
late drought stress tolerance [72, 85]. Thus, we concluded that the roles of these negative regu-
lators are also important to fine-tune drought stress responsive pathway together with positive
regulators. In rice, four NAC genes (SNAC1, SNAC2/OsNAC6, OsNAC5, and OsNAC10) have
been reported to show induction under drought treatment and function as positive factors in
the regulation of plant tolerance to drought/osmotic stress [33, 36, 37, 40, 86]. In maize, 8 NAC
genes (ZmNAC18, -51, -52, -72, -73, -75, -99, and -145) were found to be up-regulated by desic-
cation treatment in the tolerant genotype [70]. In chickpea, 14 out of 23 CaNACs (CaNAC05,
-06, -16, -19, -21, -27, -31, -40, -41, -43, -47, -50, -57, and -67) were up-regulated under dehydra-
tion [47]. Together, these results indicate the important roles of these NAC genes in response
to osmotic/drought stress.

As shown in Fig 7, under NaCl treatment,MeNAC9, -22, -61, -64, and -66 were induced
after 2h-3d and 24d treatment withMeNAC9 and -61 showing significant up-regulation at 3d
and 24d andMeNAC64 and -66 at 2h and 24d.MeNAC29 andMeNAC80 were induced after
2h-3d treatment.MeNAC12 and -35 showed significant up-regulation at 14d and 6h, respec-
tively.MeNAC38, -57, and -94 were obviously down-regulated at 18d, 14d-18d and 14d, respec-
tively. In Arabidopsis, some NAC genes, including ANAC002/ATAF1, ANAC062, ANAC016,
ANAC019, ANAC055, ANAC069/NTM2, ANAC072/RD26, ANAC083/VNI2, ANAC092/
AtNAC2, and NTL8/ANAC040 were reported to be up-regulated at transcriptional levels after
salt treatment [14, 21, 24, 25, 65, 87, 88, 89, 90]; accordingly, 21 rice NAC genes (SNAC1,
ONAC09/OsNAC5, -06, -10, -11, -15, -27, -28, -39, -45, -59, -60, -67, -68, -73, -74, -85, -88, -103,
-122, -132, and -139) showed up-regulation with the treatment of salt stress [36, 63, 91]. Con-
versely, 39 rice NAC genes were down-regulated after salt treatment [13]. Evidence has sug-
gested a positive role of some NAC genes in response to salt stress, such as ANAC083, SNAC1,
ONAC09/OsNAC5, OsNAC10, and ONAC045 [36, 91, 92, 37, 24]. On the other hand, other
NACs, including ANAC016, ANAC062, ANAC069, and AtNAC2/ANAC092 act as negative reg-
ulators in salt stress response in Arabidopsis [25, 67, 90, 93]. These studies indicated that NAC
family genes may be positively or negatively involved in the salt stress response.

Fig 4. Expression profiles ofMeNAC genes in different tissues of two cassava accessions. The
transcript data generated from two replicates. The bar at the top of the heat map represents relative
expression values.

doi:10.1371/journal.pone.0136993.g004
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Cold stress is a major environmental factor that affects plant growth and crop productivity
[94]. The mechanisms involved in NACs conferring cold tolerance are largely unknown. In
response to cold stress, numerous physiological and molecular changes occur, such as an
increase in the levels of metabolites and induction of the expression of some cold responsive
genes [94]. In Arabidopsis, NTL4/ANAC053 NTL7/ANAC017 were induced by cold stress [65].
In rice, 16 NAC genes (ONAC007, -10, -15, -27, -28, -39, -45, -59, -67, -68, -73, -74, -85, -103,
-122, and -132) showed up-regulation under cold treatment [63]. In Chinese cabbage, 5 BrNAC
genes (Bra000192, Bra001000, Bra011037, Bra003244, and Bra026595) were up-regulated
under cold treatment [69]. Under cold treatment following recovery,MeNAC9, -22, -57, -61,
-64, and -80 showed up-regulation at all the treated time-points, among whichMeNAC9, -22,
-61, and -64 showed significant up-regulation at 5h and 48h andMeNAC57 and -80 was signifi-
cantly induced at 5h, R7d, and R14d.MeNAC29 and -66 were significantly up-regulated at 5h
and R14d.MeNAC38 andMeNAC94 were up-regulated during 2–5h cold treatment and fol-
lowing recovery.MeNAC35 expression was repressed during all the treated time points (Fig 8).
MeNAC57, the most highly induced genes (over 20-fold at two time-points), could be used in
further functional characterization. Cassava, an important tropical crop, distributes in tropical
areas of the world. Low temperatures limit agricultural productivity and the development of

Fig 5. Expression profiles ofMeNAC genes in leaves and roots of three cassava accessions after
drought treatment. The transcript data generated from two replicates. The relative expression values were
log2 transformed. The bar at the top of the heat map represents relative expression values.

doi:10.1371/journal.pone.0136993.g005

Fig 6. Expression profiles ofMeNAC genes in leaves under osmotic stress. The relative expression levels ofMeNAC genes in each treated time point
were compared with that in each time point at normal conditions. NTC (no treatment control) at each time point was normalized as “1”. Data are means ± SE
calculated from three biological replicates. Means denoted by the same letter do not significantly differ at P <0.05 as determined by Duncan’s multiple range
test.

doi:10.1371/journal.pone.0136993.g006
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cassava. Research on the NAC-mediated cold response in cassava will benefit further functional
characterization of NAC genes and investigations of the mechanisms underlying the cold
response in cassava.

Fig 7. Expression profiles ofMeNAC genes in leaves under salt stress. The relative expression levels ofMeNAC genes in each treated time point were
compared with that in each time point at normal conditions. NTC (no treatment control) at each time point was normalized as “1”. Data are means ± SE
calculated from three biological replicates. Means denoted by the same letter do not significantly differ atP <0.05 as determined by Duncan’s multiple range test.

doi:10.1371/journal.pone.0136993.g007

Fig 8. Expression profiles ofMeNAC genes in leaves under cold stress. The relative expression levels ofMeNAC genes in each treated time point were
compared with that in each time point at normal conditions. NTC (no treatment control) at each time point was normalized as “1”. Data are means ± SE
calculated from three biological replicates. Means denoted by the same letter do not significantly differ atP <0.05 as determined by Duncan’s multiple range test.

doi:10.1371/journal.pone.0136993.g008
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The phytohormone ABA plays a crucial role in plant development, regulation of stomatal
behavior and responses to abiotic stress, such as salinity, drought, and cold [95]. Accumulated
evidence has shown that NACs are involved in ABA-mediated signal transduction in plants
[14, 36, 37]. In Arabidopsis, several NACs, including ANAC002/ATAF1, -016, -053, -083/VNI2,
-019, -029, -055, -072, -096, -010, -012, -040, -062 and -009 have been shown to regulate ABA-
mediated processes [21, 24, 64, 67, 72, 78, 85, 89]. To investigate the involvement of NAC
genes in ABA signaling, we examined the expression of 12 NAC genes in response to ABA
treatment. The results showed thatMeNAC9, -61, and -64 expression were induced during 2h-
6h and 72h treatments with significant up-regulation at 72h andMeNAC12, -29, -38, -80, and
-94 was also significantly induced at 72h treatment, whereasMeNAC57 andMeNAC66 were
strongly repressed at all the treated time-points andMeNAC35 was obviously down-regulated
during 10h-24h treatments. The expression ofMeNAC22 showed no obvious trend after ABA
treatment (Fig 9). The response of cassava NAC genes to ABA treatment suggested the possible
roles ofMeNAC genes in ABA signaling.

H2O2 is considered a specific component of several biotic and abiotic signaling pathways
and its accumulation has been found to be induced by environmental and developmental sti-
muli [96]. In Arabidopsis, some evidence has suggested that NAC genes play a positive role in
response to oxidative stress; for example, overexpression of ANAC013 in Arabidopsis increased
tolerance to oxidative stress, with more fresh weight under methyl viologen and rotenone treat-
ments [97]. ANAC042 can modulate cellular H2O2 levels, thus improving the ROS balance and
extending longevity and increasing tolerance to heat stress [26, 38]. ANAC059/ORS1 was found

Fig 9. Expression profiles ofMeNAC genes in leaves under ABA treatment. The relative expression levels ofMeNAC genes in each treated time point
were compared with that in each time point at normal conditions. NTC (no treatment control) at each time point was normalized as “1”. Data are means ± SE
calculated from three biological replicates. Means denoted by the same letter do not significantly differ at P <0.05 as determined by Duncan’s multiple range
test.

doi:10.1371/journal.pone.0136993.g009
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to be rapidly induced by H2O2 treatment and function on controlling senescence in Arabidop-
sis [98]. On the other hand, other NAC TFs, such as ANAC016, act as negative regulator in oxi-
dative stress response [25].To determine whether cassava NAC genes play a role in H2O2

signaling pathways, we analyzed the expression of 12MeNAC genes in response to H2O2. The
results suggested thatMeNAC9, -38, -57, -61, -64, -66, and -80 showed induction during 2h-
72h treatments with significant induction at 48h and 72h. In addition,MeNAC29 and
MeNAC94 were significantly up-regulated during 6h-10h H2O2 treatment. H2O2 treatment
also caused a seriously decrease in transcription levels ofMeNAC22 andMeNAC35 at 24h (Fig
10). The expression levels ofMeNAC9, -38, -61, and -66 increased with prolonging of treat-
ment time, suggesting their possible function in H2O2 signaling. These results suggest that cas-
sava NACs are likely involved in the H2O2 signaling pathway.

Taken together, the expression profiles ofMeNAC genes under various conditions suggest
that differentMeNAC genes may participate in different signaling or stress responses, and that
a singleMeNAC gene is also involved in multiple signaling or stress processes. Moreover, most
of the cassava NAC genes could be significantly induced by multiple stressors, ABA, and H2O2

treatments, indicating that NAC genes are important components of multiple transduction
pathways in cassava (Fig 11; S7 Table).

In conclusion, we identified 96 NAC genes from the cassava genome and established their
basic classification and evolutionary characteristics, which will provide gene resources for func-
tional characterization of NAC genes. The differential expression patterns ofMeNACs in tissues

Fig 10. Expression profiles ofMeNAC genes in leaves under H2O2 treatment. The relative expression levels ofMeNAC genes in each treated time point
were compared with that in each time point at normal conditions. NTC (no treatment control) at each time point was normalized as “1”. Data are means ± SE
calculated from three biological replicates. Means denoted by the same letter do not significantly differ at P <0.05 as determined by Duncan’s multiple range
test.

doi:10.1371/journal.pone.0136993.g010
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of the wild subspecies and cultivated varieties suggested that they play different roles in cassava
development, thus assisting in understanding the molecular basis for genetic improvement of
cassava. Additionally, transcriptomic analysis of different cassava accessions associated with
drought stress revealed that a high rate of NACmembers in the W14 subspecies were induced
by drought, which may contribute to its strong tolerance to drought. Furthermore, expression

Fig 11. Expression profiles ofMeNAC genes in leaves under various stresses, ABA and H2O2 treatments. Log2 based values from three replicates of
qRT-PCR data were used to create the heatmap. The scale represents the relative signal intensity values. Relative expression values for each gene after
various treatments are provided in Figs 6–10 and S7 Table.

doi:10.1371/journal.pone.0136993.g011
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analysis ofMeNAC genes after various treatments suggested that they have a comprehensive
response to osmotic, salt, cold, ABA, and H2O2, implying that cassava NACs may represent
convergence points of different signaling pathways. These data will benefit further investiga-
tion of NACs mediated signaling transduction pathways. Overall, this work provides a solid
foundation for functional investigation of the NAC family, crop improvement, and an
improved understanding of signal transduction in plants.
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