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Abstract: LMB-100 is a mesothelin-targeted recombinant immunotoxin (iTox) that carries a modified
Pseuodomonas exotoxin A (PE) payload. PE kills cells by inhibiting synthesis of new proteins. We found
that treatment of pancreatic cancer cells with LMB-100 for 24–48 h did not change total protein level
despite inducing protein synthesis inhibition (PSI). Further, increased levels of ubiquitinated proteins
were detected, indicating that cells may have limited ability to compensate for PSI by reducing
protein degradation. Together, these data suggest that PE depletes concentrations of a minority
of cellular proteins. We used reverse phase protein array and Luminex assay to characterize this
subset. LMB-100 decreased the abundance of 24 of 32 cancer-related proteins (including Bcl-x, Her2,
Her3 and MUC16) without compensatory increases in other analytes. Further, cancer cells failed
to maintain extracellular concentrations of cancer cell secreted growth factors (CCSGFs), including
Vascular Endothelial Growth Factor (VEGF) following treatment with cytostatic LMB-100 doses both
in culture and in mouse tumors. Decreased VEGF concentration did not change tumor vasculature
density, however, LMB-100 caused tissue-specific changes in concentrations of secreted factors made
by non-cancer cells. In summary, our data indicate that PSI caused by cytostatic LMB-100 doses
preferentially depletes short-lived proteins such as oncogenic signaling molecules and CCSGFs.

Keywords: immunotoxin; pancreatic cancer; VEGF; microenvironment; ubiquitination

Key Contribution: Cancer cells cannot compensate for PE-induced protein synthesis inhibition by
slowing protein degradation or upregulating compensatory signaling programs. Treatment with
PE-based immunotoxin therapeutic therefore depletes levels of oncogenic signaling molecules
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within cancer cells and lowers concentrations of cancer cell secreted signaling proteins in the tumor
microenvironment. Co-administration with taxane chemotherapy may improve efficacy by impairing
tumor cell signaling adaptations which promote cell survival.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognoses of any malignancy,
and remains incurable in the majority of patients [1]. Combination chemotherapy regimens have
resulted in improved outcomes over the last decade, but a dire need for new therapeutic options for
this disease remains [2–4]. The dense desmoplastic stroma that surrounds cancer cells is considered
one barrier to effective treatment of PDAC. This stromal reaction is initiated by hormones, growth
factors and cytokines secreted by tumor cells (cancer cell secreted growth factors, CCSGFs) and results
in a hypovascular, immunosuppressive microenvironment that impairs drug delivery and facilitates
immune evasion. Multiple efforts are currently underway in the clinic to target components of the
PDAC stroma or the heterotypic cellular signaling pathways that support these elements [5].

Recombinant immunotoxins (iTox) are antibody-based therapies which carry a bacterial toxin
payload. LMB-100 (previously called RG7787) is a next generation iTox currently being tested in
clinical trial (NCT02810418 and NCT03436732). LMB-100 contains a Fab fragment which targets the
cancer cell surface antigen mesothelin (MSLN) fused in-line to a modified Pseudomonas exotoxin A (PE)
payload [6–8]. The iTox is endocytosed following binding to MSLN, which is expressed in >90% of
PDAC [9,10]. In the endocytic compartment, PE is cleaved from the Fab targeting region, and the toxin
proceeds through the retrograde transport pathway to ultimately be secreted from the endoplasmic
reticulum into the cytosol. PE is an enzyme which efficiently catalyzes an inhibitory, irreversible
ADP-ribosylation of elongation factor-2 (EF-2). Since EF-2 is a non-redundant enzyme critical for
protein translation, PE activity halts new protein synthesis in target cells [11]. This is a lethal insult in
many cell types, including some PDACs [6,12].

The PE mechanism of action is unique amongst existing therapeutics for solid tumors: there are no
approved therapies which target EF-2 or that specifically halt the production of new proteins by cancer
cells. While the enzymatic activity of PE and the inhibitory effect of iTox on new protein synthesis
have been well documented, it remains unclear how iTox treatment affects overall protein levels or
those of individual proteins made by target cells. We examined the effect of LMB-100 treatment on
cellular and secreted protein products of tumor cells in both cell culture and mouse models of PDAC.
We found that PE-induced PSI depletes many proteins involved in oncogenic signaling both within the
cell and outside in the tumor microenvironment.

2. Results

KLM1 is a human pancreatic cancer cell line produced by Kimura and colleagues by serial
passaging of the PK1 line through mouse liver [13]. KLM1 cells express high levels of MSLN on the
cell surface and are sensitive to MSLN-targeted iTox treatment [6]. Previously, it has been shown that
LMB-100 causes a dose-dependent decrease in KLM1 new protein synthesis at 12 h with the maximal
effect seen by 18 h post-initiation of treatment when using a 100 ng/mL dose. Even 24 h after washing
away LMB-100, restoration of new protein synthesis is not observed [12]. We hypothesized that this
prolonged protein synthesis inhibition (PSI) would lower total protein levels in cells. To test this, KLM1
cells were treated with LMB-100 for 48 h and then equal volumes of cell lysate produced from equal
numbers of cells were assayed for protein concentration. Despite the PSI caused by LMB-100, cells
maintained stable total protein levels even after 48 h of treatment with a high dose (100 ng/mL) of
LMB-100 (Figure 1A). To determine whether this effect was specific for KLM1, we repeated this assay
with a second pancreatic cancer cell line. Panc02 is a murine pancreatic cancer cell line developed by
Corbett and colleagues [14]. Panc02 makes murine MSLN (mMSLN) but these cells are insensitive to
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LMB-100 since the iTox targets only human MSLN (hMSLN) and not mMSLN. To make a model cell
line sensitive to LMB-100, Panc02 cells were stably transfected with an expression plasmid encoding
a chimeric MSLN (chiMSLN) that is recognized by LMB-100 (Figure S1A). Surface expression of
chiMSLN was verified by flow cytometry using an antibody targeted to the same epitope of hMSLN as
LMB-100 (Figure S1B). As expected, expression of chiMSLN made Panc02 cells sensitive to LMB-100,
resulting in a dose-dependent growth inhibition when cells were exposed to the iTox (Figure S1C).
The treatment was cytostatic at best: total cell numbers measured 48 h after treatment were greater than
baseline at all LMB-100 concentrations tested (Figure S1D). To confirm that LMB-100 treatment caused
PSI in the Panc02-chiMSLN cells, we examined incorporation of low-dose puromycin into nascent
peptide chains by SUnSET assay [15]. Puromycin incorporation was undetectable demonstrating
successful PSI in this dose range (Figure S1E). Despite this, we found that Panc02-chiMSLN cells
maintained stable total protein levels even after exposure to the highest dose of LMB-100 tested
(Figure 1B). These data demonstrate that 48 h of exposure to LMB-100 inhibition does not reduce total
protein levels in tumor cells despite profound inhibition of new protein synthesis.

Both synthesis and degradation processes contribute to cellular proteostasis. We hypothesized
that cells may slow down degradation processes to maintain stable total protein levels in the face of
LMB-100-mediated PSI. Therefore, we compared levels of ubiquitinated proteins in lysate from KLM1
cells treated with vehicle or LMB-100 using a reverse phase protein array (RPPA) for ubiquitinated
proteins. The RPPA allows assessment of relative levels of the ubiquitinated form of 49 proteins.
Ubiquitination is a common signal used by cells to mark proteins for degradation. We anticipated
that protein ubiquitination would decrease in treated cells, thereby slowing degradation of existing
proteins to maintain proteostasis. Instead, we found increased levels of the ubiquitinated forms of 18 of
the 22 array analytes detectable in our cells following LMB-100 treatment including fibroblast growth
factor receptor-2 (FGF-R2) and insulin receptor (Figure 1C). Signal from two analytes decreased (p53
and heat shock protein (HSP70)), while cyclooxygenase-2 (COX2) and cellular inhibitor of apoptosis-2
(cIAP-2) signals remained unchanged. To confirm that increases in the ubiquitinated form correlated
with decreased total protein level, we performed immunoblot for the anti-apoptotic protein Bcl-2 on
the same lysates. We found that the Bcl-2 protein was decreased following LMB-100 treatment as
expected (Figure 1D). These data are not consistent with our hypothesis that degradation is slowed
following LMB-100 treatment and instead showed that cells preferentially increased ubiquitination to
enhance degradation following LMB-100 exposure.

Ubiquitination is one means by which cells can maintain “tight” post-translational control of
critical proteins. It is expected that proteins with more rapid turnover, such as those subject to
ubiquitination, would be disproportionately affected by LMB-100 treatment, while proteins with
slower rates of degradation would maintain relatively stable levels. To test this, we needed to directly
compare levels of a short-lived and a longer-lived protein that were synthesized by the cell in equal
amounts. Therefore, we stably transfected KLM1 cells with a plasmid construct driving both green
fluorescent protein (GFP) and PEST-mCherry fluorophore expression from the same promoter through
use of an internal ribosome entry sequence (IRES). The half-lives of native GFP and mCherry exceed
24 h; however, addition of the PEST signal, a peptide sequence rich in proline (P), glutamic acid (E),
serine (S) and threonine (T), targets proteins for rapid degradation, reducing protein half-life to less than
12 h [16]. We treated GFP + PEST-mCherry expressing cells with LMB-100 for 24 h then assessed the
percent of cells with fluorescent signal by flow cytometry 24 h after this. We observed a dose-dependent
decrease in mCherry expression with LMB-100 treatment, while GFP fluorescence did not change,
consistent with our hypothesis that levels of short-lived proteins would be disproportionately affected
by LMB-100 PSI (Figure 1E).
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Figure 1. Effect of LMB-100 treatment on level of tumor cell proteins. (A) KLM1 cells were treated for 
48 h with LMB-100 as per schema. Equal numbers of cells were lysed into a constant volume of lysis 
buffer and protein concentration assayed by standard colorimetric assay. (B) Panc02/chi-MSLN cells 
were treated with LMB-100 for 24 h as per schema. Protein concentration was assessed as described 
in (A). (C) KLM1 cells were treated as per schema and lysate assayed by RPPA for levels of the 
ubiquitinated forms of 49 protein analytes. “Reference” indicates control spots used to assess loading. 
(D) Immunoblot of lysates from (C) to assess level of Bcl-2. (E) KLM1 cells stably transfected with WT 
GFP and PEST-mCherry reporters driven off the same promoter through an IRES were treated with 
LMB-100 as per schema (Treat = start of LMB-100 treatment, ΔM = change medium). Percentage of 
cells with fluorescence above background in red and green channels was assessed by flow cytometry. 
(F) KLM1 cells treated as shown in schema were lysed and protein levels assayed by RPPA for levels 
of 84 cancer-related proteins. (G) Immunoblot of lysates from treated cells. 

Recent quantitative proteomics studies have shown that proteins involved in signaling, cell 
adhesion, cell division, and regulation of cytokinesis have low expression levels and more rapid 
turnover [17,18]. Low abundance protein classes participate in many processes that are deranged in 

Figure 1. Effect of LMB-100 treatment on level of tumor cell proteins. (A) KLM1 cells were treated for
48 h with LMB-100 as per schema. Equal numbers of cells were lysed into a constant volume of lysis
buffer and protein concentration assayed by standard colorimetric assay. (B) Panc02/chi-MSLN cells
were treated with LMB-100 for 24 h as per schema. Protein concentration was assessed as described
in (A). (C) KLM1 cells were treated as per schema and lysate assayed by RPPA for levels of the
ubiquitinated forms of 49 protein analytes. “Reference” indicates control spots used to assess loading.
(D) Immunoblot of lysates from (C) to assess level of Bcl-2. (E) KLM1 cells stably transfected with WT
GFP and PEST-mCherry reporters driven off the same promoter through an IRES were treated with
LMB-100 as per schema (Treat = start of LMB-100 treatment, ∆M = change medium). Percentage of
cells with fluorescence above background in red and green channels was assessed by flow cytometry.
(F) KLM1 cells treated as shown in schema were lysed and protein levels assayed by RPPA for levels of
84 cancer-related proteins. (G) Immunoblot of lysates from treated cells.

Recent quantitative proteomics studies have shown that proteins involved in signaling, cell
adhesion, cell division, and regulation of cytokinesis have low expression levels and more rapid
turnover [17,18]. Low abundance protein classes participate in many processes that are deranged
in cancer cells. Therefore, we hypothesized that oncogenic signaling proteins would be relatively
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short-lived and therefore more susceptible to depletion by LMB-100 treatment. To examine whether
LMB-100 could decrease individual levels of proteins involved in oncogenic processes, lysates
from KLM1 cells treated with vehicle or LMB-100 were assayed by RPPA to examine levels of
84 cancer-related proteins. Of 32 analytes detectable in KLM1 lysate, 24 decreased following treatment,
some to undetectable levels, and levels of eight remained unchanged. Two proteins that decreased
in abundance, Her3 (Receptor Tyrosine Kinase ErbB3) and HGF-R (Hepatocyte Growth Factor
Receptor/c-Met), had corresponding increased abundance of their ubiquitinated forms (Figure 1C).
We observed no analytes with increased levels after LMB-100 treatment (Figure 1F). MSLN, the target
of LMB-100, was one of the proteins found to decrease following iTox treatment. Immunoblot of treated
lysates confirmed a dose-dependent decrease in MSLN expression following LMB-100 treatment, while
treatment with the LMB-100 antibody fragment component lacking PE (Fab-MSLN) had no effect
(Figure 1G). To further confirm the depletion is specific to PE rather than an effect of anti-MSLN
antibody binding, we also treated cells with the LMB-74 iTox which has the same PE fragment as
LMB-100 but an anti-transferrin receptor Fab for targeting. Similar to LMB-100, LMB-74 depleted total
cell MSLN. In summary, LMB-100 treatment uses a PE-dependent process to decrease total protein
levels of many cancer-related analytes without compensatory upregulation of others examined.

Tumor cells secrete growth factors and cytokines that promote their own proliferation and survival.
The half-life of these soluble factors within the tumor microenvironment is presumed to be short due
to uptake by target cells, diffusion into the circulation and surrounding tissues, and destruction by
proteases. For instance, steady replenishment of pro-angiogenic VEGF-A by tumor cells is required to
maintain local concentrations [19]. We hypothesized that the concentration of CCSGFs, such as VEGF,
would be decreased following LMB-100 treatment due to tumor cell PSI caused by PE. Therefore, we
treated pancreatic cancer cells with LMB-100 as per schema in Figure 2A, then examined levels of
VEGF in conditioned medium by ELISA. We found that LMB-100 treatment caused a dose-dependent
decrease in conditioned medium VEGF concentration in KLM1, T3M4 and AsPC1 pancreatic cancer
cell lines (Figure 2B). To determine whether LMB-100 could suppress levels of other CCSGFs, we
repeated this assay using a human analyte Luminex plate which allowed us to simultaneously assess
for changes in the protein concentration of multiple analytes. In eight of nine detectable analytes,
we observed a dose-dependent concentration decrease in conditioned medium following LMB-100
treatment. These included VEGF, platelet-derived growth factor (PDGF), mucin-16 (MUC16), matrix
metalloproteinase-1 (MMP-1), Dickkopf-related protein 1 (Dkk-1), growth/differentiation factor 15
(GDF-15), osteopontin (OPN), and osteonectin/secreted protein acidic and rich in cysteine (SPARC)
(Figure 2C). Conversely, LMB-100 treatment increased conditioned medium levels of one analyte,
macrophage migration inhibitory factor (MIF), consistent with prior reports that pre-synthesized
pools of this protein are released by some cells under stress [20]. This experiment was repeated
using Panc02-chiMSLN cells. Once again, a dose-dependent decrease in concentration of six of seven
analytes (murine isoforms of VEGF, Cystatin-C, Chemokine C-C motif ligand 5 (CCL-5), low density
lipoprotein receptor (LDL-R), macrophage colony stimulating factor (MCS-F), and OPN) assayed by
mouse analyte Luminex was observed in conditioned medium from cells treated with LMB-100, and
no statistically significant difference in concentration was detected in the seventh (murine GDF-15)
(Figure 2D). By comparison, treatment of KLM1 cells with the chemotherapy agent paclitaxel given
at a cytostatic dose (Figure 2E), resulted in increased conditioned medium concentration of four of
five analytes examined (VEGF, PDGF, MMP-1, and Tissue inhibitor of metalloproteinases-1 (TIMP-1)),
and did not change the concentration of the fifth (SPARC) (Figure 2F). These data demonstrate that
LMB-100 treatment reduces concentrations of CCSGFs in conditioned medium of cultured tumors
cells, unlike treatment with paclitaxel chemotherapy.
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Figure 2. (A) LMB-100 treatment reduces levels of CCSGFs in conditioned medium, while paclitaxel 
increases it. For experiments in (B–D), the indicated pancreatic cancer cell lines were treated with 
LMB-100 for 24 h as per schema. Medium was replaced to stop treatment then collected 24 h later. (B) 
Conditioned medium from treated cells were assayed for VEGF using ELISA assay. (C) Conditioned 
medium from KLM1 cells was assayed for multiple CCSGFs by human analyte Luminex assay. (D) 
Conditioned medium from Panc02-chiMSLN cells was assayed for multiple CCSGFs by murine 
analyte Luminex assay. (E) Viable cells from triplicate wells were treated with paclitaxel for 24 h as 
shown in schema and then counted to assess viability. (F) Conditioned medium from KLM1 cells 
treated with paclitaxel were assayed for multiple CCSGFs by human analyte Luminex assay. 

LMB-100 PSI should also decrease concentrations of CCSGFs in intratumoral fluid (ITF) 
following in vivo LMB-100 treatment. Therefore, aythmic nude mice bearing KLM1 subcutaneous 
tumors were treated with three or five doses of LMB-100, and then 24 h later the mice were 
euthanized and ITF collected from harvested tumors (Figure 3A). We utilized a dose and schedule of 
LMB-100 that halted tumor growth but did not significantly decrease tumor size from pre-treatment 
baseline (Figure 3B). Using the human-specific Luminex assay from our cell culture experiments, we 
again detected concentration decreases in seven of 10 detectable analytes, including VEGF. MIF 
concentration increased in ITF, as seen in conditioned medium from treated cells. No change was 
detected in GDF-15 concentration. Similar results were seen using the LMB-74 anti-transferrin iTox 
(data not shown). These data demonstrate that LMB-100 treatment reduces levels of many CCSGFs 
in vivo. 

Figure 2. (A) LMB-100 treatment reduces levels of CCSGFs in conditioned medium, while paclitaxel
increases it. For experiments in (B–D), the indicated pancreatic cancer cell lines were treated with
LMB-100 for 24 h as per schema. Medium was replaced to stop treatment then collected 24 h later.
(B) Conditioned medium from treated cells were assayed for VEGF using ELISA assay. (C) Conditioned
medium from KLM1 cells was assayed for multiple CCSGFs by human analyte Luminex assay.
(D) Conditioned medium from Panc02-chiMSLN cells was assayed for multiple CCSGFs by murine
analyte Luminex assay. (E) Viable cells from triplicate wells were treated with paclitaxel for 24 h as
shown in schema and then counted to assess viability. (F) Conditioned medium from KLM1 cells
treated with paclitaxel were assayed for multiple CCSGFs by human analyte Luminex assay.

LMB-100 PSI should also decrease concentrations of CCSGFs in intratumoral fluid (ITF) following
in vivo LMB-100 treatment. Therefore, aythmic nude mice bearing KLM1 subcutaneous tumors
were treated with three or five doses of LMB-100, and then 24 h later the mice were euthanized
and ITF collected from harvested tumors (Figure 3A). We utilized a dose and schedule of LMB-100
that halted tumor growth but did not significantly decrease tumor size from pre-treatment baseline
(Figure 3B). Using the human-specific Luminex assay from our cell culture experiments, we again
detected concentration decreases in seven of 10 detectable analytes, including VEGF. MIF concentration
increased in ITF, as seen in conditioned medium from treated cells. No change was detected in GDF-15
concentration. Similar results were seen using the LMB-74 anti-transferrin iTox (data not shown).
These data demonstrate that LMB-100 treatment reduces levels of many CCSGFs in vivo.
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repeated our in vivo assay in a syngeneic model, where composite concentrations of the analytes 
could be examined since all contributing cells produce murine isoform. Panc02-chiMSLN cells were 
inoculated into the abdominal cavity of syngeneic wild-type (WT) C57Bl/6 mice. However, in our 
pilot experiments, we observed limited tumor growth, presumably due to host intolerance of the 
chiMSLN transgene. Therefore, we utilized a transgenic C57Bl/6 mouse line (C57Bl/6-CAG) 
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in ITF was observed, however, no change in ITF concentration was identified for three other analytes 
(murine CCL-5, cytostatin-C, and OPN), which had decreased in previous cell culture experiments 

Figure 3. LMB-100 reduces levels of CCSGFs in ITF of nude mouse xenograft model. (A) Treatment
schema. Nude mice bearing subcutaneous KLM1 tumors of ~100 mm3 were randomized to treatment
with PBS vehicle or LMB-100 (2.5 mg/kg) given IV every other day for three (qodx3) or five (qodx5)
doses. Mice were euthanized 24 h after final treatment and tumors harvested for extraction of ITF.
(B) Tumor growth curve of LMB-100 and PBS treated animals. LMB-100 treatment resulted in a statistically
significant decrease in tumor burden compared to PBS in both qodx3 and qodx5 treatment groups. (C) ITF
from harvested tumors was assayed for multiple CCSGFs by human analyte Luminex assay.

LMB-100 specifically induces PSI in MSLN-expressing tumor cells but has no activity against
the cells in the tumor microenvironment because they do not express hMSLN. Consequently, loss
of CCSGF production by cancer cells due to LMB-100 PSI could be compensated for by increased
production of CCSGFs by other hMSLN-negative cell types within tumors such as activated fibroblasts,
immune cells or endothelial cells. In the KLM1 xenograft model, the Human Luminex assay can
distinguish cancer cell from host contribution to the ITF milieu since detection of many analytes is
human-specific. To determine whether the effect of LMB-100 treatment is strong enough to change the
composite (cancer cell + other host contribution) concentrations of CCSGFs, we repeated our in vivo
assay in a syngeneic model, where composite concentrations of the analytes could be examined since all
contributing cells produce murine isoform. Panc02-chiMSLN cells were inoculated into the abdominal
cavity of syngeneic wild-type (WT) C57Bl/6 mice. However, in our pilot experiments, we observed
limited tumor growth, presumably due to host intolerance of the chiMSLN transgene. Therefore, we
utilized a transgenic C57Bl/6 mouse line (C57Bl/6-CAG) engineered to express hMSLN in addition to
native mMSLN. Using a moderate dose of LMB-100 (40 µg flat dose), we found that three LMB-100
treatments (see schema in Figure 4A) resulted in a statistically significant decrease in both ascites
volume and total tumor burden in an intraperitoneal (IP) tumor model (Figure 4B) and decreased
pancreas weight in an orthotopic model (Figure 4C). In the IP model, a statistically significant decrease
in murine VEGF, LDL-R and PCSK-9 concentrations in ITF was observed, however, no change in
ITF concentration was identified for three other analytes (murine CCL-5, cytostatin-C, and OPN),
which had decreased in previous cell culture experiments (Figure 4D). Similarly, in the orthotopic
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model, we observed a statistically significant decrease in VEGF concentration in ITF fluid, and a
decrease in LDL-R and OPN concentrations which did not reach statistical significance (Figure 4E).
No change in ITF concentration was observed in two other analytes with decreased concentrations
following LMB-100 treatment in cell culture experiments (CCL-5, cystatin-C). These data demonstrate
that total local tumor concentrations of selected CCSGFs, such as VEGF, can be significantly reduced
by LMB-100.
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Figure 4. LMB-100 reduces levels of CCSGFs in ITF of syngeneic orthotopic and IP metastasis models.
(A) Treatment schema. C57Bl/6-CAG > hMSLN mice were inoculated IP with Panc02-chiMSLN tumor
cells. Tumors were grown for ~3.5 weeks before initiation of treatment with LMB-100 (2.5 mg/kg) given
IV every other day for three (qodx3) doses or to equivolume PBS vehicle given on the same schedule.
Mice were euthanized 24 h after final treatment and tumors harvested for extraction of ITF. (B) Ascites
volume and total IP tumor burden in treated animals were measured. (C) C57Bl/6-CAG>hMSLN mice
were inoculated into the pancreas with Panc02-chiMSLN tumor cells, then tumors grown for six weeks.
Treatments were performed as described in (A). Pancreas weight was measured at necropsy of treated
animals to assess tumor burden. (D,E) ITF from harvested tumors was assayed for multiple CCSGFs
by mouse analyte Luminex assay. PCSK-9 level was assessed by ELISA since this analyte was not
available on Luminex platform.

Secretion of growth factors and cytokines by pancreatic cancer cells both induce and maintain
the unique pancreatic cancer microenvironment. LMB-100 treatment suppresses local tumor
concentration of CCSGFs such as VEGF, and therefore LMB-100 treatment might remodel the tumor
microenvironment. Since VEGF influences angiogenesis, we examined vascular density in treated
tumors. No difference in vascular density was observed in the KLM1 subcutaneous tumors (Figure 5A)
or in Panc02-chiMSLN IP tumors following LMB-100 treatment (Figure 5B). Other parameters including
mean vessel area and diameter were also unchanged (data not shown). LMB-100 treatment was
insufficient to remodel tumor vessels over the short time-course of our experiment, despite causing a
reduction in VEGF levels.
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Figure 5. Changes in CCSGFs are insufficient to cause detectable changes in tumor vascular density or
in secreted protein milieu. Formalin-fixed paraffin embedded KLM1 tumor samples from mice treated
as described in Figure 3 (A), and Panc02-chiMSLN IP tumor samples treated as described in Figure 4
(B) were both stained for CD31, a marker of vascular density. The percent vessel area in four mice
per group was assessed by a pathologist blinded to treatment status at Pathology/Histotechnology
Laboratory Core Facility (NCI, Frederick, MD). (C,D) ITF from harvested tumors was assayed for
multiple CCSGFs by mouse analyte Luminex assay.

We next considered whether the changes in CCSGF concentration induced by LMB-100 might alter
chemical crosstalk between cells in the microenvironment and lead to changes in the local concentration
of ITF proteins not secreted by tumor cells. Therefore, we assayed ITF from Panc02-chiMSLN tumors
for levels of 11 analytes undetectable in conditioned medium from these cells, yet detectable in ITF
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extracted from tumors. There was a statistically significant decrease in concentration of CCL-12
(chemokine C-C motif ligand 12) and endoglin in IP tumor ITF that was not observed in orthotopic
tumor ITF samples, and a trend to decreased concentration of P-selectin in IP tumor ITF, that did reach
statistical significance in the orthotopic model (Figure 5C,D). No significant changes in concentration
were observed for any of the eight other analytes measured. In conclusion, decreases in CCSGFs caused
by LMB-100 altered concentrations of selected factors secreted by non-tumor cells in a tissue-dependent
fashion, but were insufficient to alter ITF concentrations of most analytes.

3. Discussion

We have shown that LMB-100 treatment depletes levels of many tumor-secreted proteins and
short-lived proteins including those involved in oncogenic signaling. In fact, LMB-100 treatment
modified the cancer cell secretome to reduce concentrations of selected cytokines and growth factors
within tumor fluid even when using cytostatic doses of the iTox. By contrast, treatment with the
chemotherapy drug paclitaxel at cytostatic doses resulted in increased concentrations of several CCSGFs
that support tumor cell proliferation. This result reflects the unique mechanism of iTox action and may
explain why LMB-100 can synergize with taxanes and other anti-cancer therapeutics [12,21,22].

We found that doses of LMB-100 that do not kill cells but do cause PSI modulate the cancer cell
secretome, resulting in decreased extracellular concentrations of most CCSGFs that we studied (see
Table 1). In all models tested, reduced VEGF concentration was observed. Moreover, impaired tumor
cell secretion of VEGF was sufficient to lower total levels of VEGF within tumor fluid, suggesting
that tumor cells are the primary contributors of VEGF to the tumor microenvironment. Over the
timescale that we studied, we observed no changes in tumor vascular density, a hallmark of VEGF
activity, despite the observed reduction in tumor fluid VEGF concentration following iTox treatment.
Regulation of vascular dynamics by VEGF is complicated and relies not only on local concentration,
but also on concentration gradient to stimulate migration of endothelial cells [23], which we did
not measure in our experiments. Further, secreted VEGF can be immobilized in tumor extracellular
matrix components to maintain this gradient [24]. Future studies would be required to examine these
dynamics in greater detail.

We expected that cells might try to compensate for the halt in new protein synthesis caused by
iTox by slowing down degradation processes. Instead, our data indicate that protein ubiquitination
was almost universally increased following LMB-100 treatment, a novel finding. While it is beyond
the scope of this study to confirm that increased ubiquitination of these targets equated with their
increased degradation, we did see that three of the 18 array analytes with amplified ubiquitination
(Her3, HGF-R and Bcl-2) had decreases in protein abundance following LMB-100 treatment. Future
studies would be required to determine whether slowing ubiquitin-mediated protein degradation
using a proteasome inhibitor could prevent iTox-induced decreases in protein abundance, and if so,
may also provide insight into whether depletion of one or more ubiquitinated proteins is the direct
mechanism causing iTox-mediated cell death.

Our data show that levels of many cancer-related proteins were diminished following LMB-100
treatment without evidence for compensatory upregulation in others. Concentration decreases were
observed for two-thirds of detectable analytes on a standard Oncology RPPA following LMB-100
treatment, and no analytes increased. GFP + PEST-mCherry reporter assay demonstrated that
short-lived proteins were most affected by LMB-100-mediated protein synthesis inhibition, similar
to what has been seen previously with the chemical protein synthesis inhibitor cychloheximide.
Our RPPA data corroborate this observation. Schwanhäusser and colleagues analyzed the half-lives of
over 5000 proteins made by NIH3T3 fibroblast cells [17]. The half-lives of five proteins with decreases in
abundance following LMB-100 treatment (Bcl-x, Fox01, HO-1, survivin, and PLAU) were reported and
ranged from 4.9 (PLAU) to 20.8 h (Bcl-x), which is substantially below the 48-h median for the complete
dataset. Half-lives of four proteins with no change in abundance following LMB-100 treatment were
also reported: CapG, enolase, galectin-3, and EGF-R had measured half-lives of 266, 214, 61, and 12.7 h,



Toxins 2018, 10, 447 11 of 16

respectively. Notably, three of the four exceeded the 48-h median (EGF-R which is known to have
ligand-dependent stability was the exception) [25]. These data support our finding that short half-life
proteins are most sensitive to depletion following iTox treatment.

Table 1. Summary of Treatment Effect on Analyte Concentration.

Human Panel: CCSFs
Paclitaxel LMB-100

Cell Culture Cell Culture Subq Model

Dkk-1 NA − −
GDF-15 NA − 0

MIF NA + +
MMP-1 + − −
MUC16 NA − 0

OPN NA − −
PDGF + − −
SPARC 0 − −
TIMP-1 + NA −
VEGF + − −

Mouse Panel: CCSFs Cell Culture IP Model Orthotopic Model

CCL-5 − 0 0
Cystatin-C − 0 0

GDF-15 0, trend - 0 0, trend −
LDL-R − − 0, trend −
MCS-F − NA NA
OPN − 0, trend + 0, trend −

PCSK-9 NA − NA
VEGF − − −

Mouse Panel: microenvironment factors Cell Culture IP Model Orthotopic Model

CCL-12 ND − 0
ANGPT2 ND 0 0

BAFF ND 0 0
CD93 ND 0 0

CHI3-L1 ND 0 0
CRP ND 0 0

endoglin ND − 0
MMP-3 ND 0 0
MMP9 ND 0 0

P-selectin ND 0 −
Serpin-E1 ND 0 0

+, increase; −, decrease; 0, no change; NA, not assayed; ND, not detected.

At the outset, we expected that LMB-100 treatment would decrease total cellular protein levels due
to PE-mediated protein synthesis inhibition. Others have previously shown that the most stable cellular
proteins, those involved in housekeeping processes such as translation, protein metabolism, glycolysis,
purine metabolism, and the citric acid cycle, are the most abundant within the cell, constituting
~50% of the cellular proteome [17,18]. By contrast, short half-life proteins such as those important in
signaling and cell adhesion account for ~10% of the quantitative proteome. This means that even a
50% decrease of all short-lived proteins would be expected to change total bulk protein levels by only
~5%. Given these metrics, it is unsurprising that LMB-100 treatment did not decrease total cellular
protein levels over the time course that we studied.

In summary, we have shown for the first time that PE-based iTox decreases the cellular and whole
tumor concentrations of a broad range of proteins involved in oncogenic signaling without detectable
compensatory upregulation of others. In addition, immunotoxin treatment depletes local tumor levels
of many growth factors, cytokines and proteases produced by tumor cells, and does so even when
administered at low doses insufficient to kill target cells.
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4. Materials and Methods

4.1. Cell Culture and Reagents

Human pancreatic cancer KLM1 and T3M4 cells were provided by Ira Pastan and Mitchell Ho
(both of NCI, Bethesda, MD, USA), respectively. AsPC1 was purchased from ATCC. Panc02 cells
were acquired from the NCI Frederick repository. Identity of all cell lines was confirmed by STR
testing. Cells were cultured in RPMI 1640 medium (Gibco, Thermo Scientific, Waltham, MA, USA)
supplemented with L-Glutamine (2 mmol/L), penicillin (100 U), streptomycin (100 µg), and 10%
FBS (Hyclone, Thermo Scientific). All cells were maintained in a 5% CO2 at 37 ◦C and tested free of
mycoplasma. The MSLN targeting iTox, LMB-100, was manufactured by F. Hoffman La Roche and
provided for these studies through a Collaborative Research and Development Agreement. LMB-74
was made as described previously [12].

4.2. Generation of Panc02-chiMSLN Cell Line

A synthetic 213bp DNA fragment containing exon 11 sequence of hMSLN cDNA was cloned
between BstEII and SacII restriction sites in the mouse ORF to replace the corresponding murine exon
10 sequence. This substitution resulted in production of a chiMSLN containing the mature mMSLN
polypeptide with 64 amino acid residues substituted by a corresponding homologous segment of
the human protein (Figure S1A). The chimeric cDNA fragment was cloned into a neomycin-resistant
expression vector under the transcription control of RNA Polymerase II promoter. Panc02 cells were
transfected with PolII-chiMSLN construct using Nucleofection (Lonza, Walkersville, MD, USA) with
DNA Nucleofector Kit R as per manufacturer’s recommendations. Following 24-h recovery, cells
were selected in 0.5 mg/mL of G418 for 72 h. Surviving cells were analyzed for surface expression
of the chiMSLN and subsequently twice sorted by flow cytometry to obtain a clonal population.
Panc02-chiMSLN cells were cultured with 50 µg/mL gentamicin to maintain chimeric mouse-human
MSLN (chiMSLN) expression.

4.3. Cytotoxicity Assay

Cells were plated in 96-well plates at 5000 cells/well on Day 0 and treated with iTox 24 h later.
Relative cell viability was measured using the Cell Counting Kit-8 WST assay (Dojindo Molecular
Technologies, Inc., Rockville, MD, USA). Values were normalized between 0% viability for treatment
with positive control drug (which produced complete cell killing), and 100% viability for addition of
medium alone.

4.4. Cell Lysate, Protein Quantification and Immunoblotting

Cells were harvested by scraping, washed in DPBS lacking calcium and magnesium (Gibco,
14190-144), and lysed in RIPA buffer (20 mM Tris, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1%
Triton X-100, and 1% Tween-20) containing protease/phosphatase inhibitors (Thermo Scientific).
Total protein concentration was determined using Pierce BCA Protein Assay Kit (Thermo Scientific).
Proteins were separated by SDS-PAGE, transferred to PVDF membrane, and blocked in 5% milk
solution. The following antibodies were used: goat anti-human/mouse anti-Bcl-2 (AF810, R&D
Systems, Minneapolis, MN, USA) and mouse anti-human anti-puromycin (MABE343, Millipore Sigma,
St. Louis, MO, USA).

4.5. Collection of Cell Culture Conditioned Medium

KLM-1, T3M4, and AsPC1 cells were plated at equal densities and allowed to attach overnight, then
exposed to LMB-100. Panc02-chiMLSN cells were plated at dose-specific density (2.5 × 104 cells/well
for 0 or 10 ng/mL LMB-100 treatment, 1.0 × 105 for 10 ng/mL, or 2.5 × 106 100 ng/mL) to allow for
normalization and cultured overnight before treatment with LMB-100 for 24 h. Conditioned medium
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was collected 24 h after washout of LMB-100, aliquoted and frozen at−80 ◦C until ready to be analyzed
by ELISA or Luminex.

4.6. Flow Cytometry

Cells were harvested using trypsin then resuspended in PBS. For experiments with cells
co-expressing GFP and PEST-mCherry, compensation was performed using cells transfected with GFP
or mCherry alone. For assessment of MSLN expression, cells were incubated with mouse anti-human
MSLN MN-1 or MORAb009 humanized anti-human MSLN antibody for 30 min on ice followed by PE
conjugated goat anti-mouse IgG F(ab’)2 fragment (Jackson Immunoresearch, West Grove, PA, USA)
staining for 30 min. Cells were re-suspended in FACS buffer (5% FBS in PBS) prior to analysis on a BD
FACS Calibur.

4.7. Establishment of C57BL/6 Transgenic Mice Expressing Human Mesothelin

Transgenic C57Bl/6-CAG>hMSLN mice were made as described previously [26]. Briefly, a cDNA
that consists of full-length MSLN under the control of a CAG promoter was produced. The pronucleus
of fertilized oocytes from C57Bl/6 mice were microinjected with the plasmid. Founder animals
carrying a hMSLN transgene were identified by Southern blot analysis followed by PCR screening to
establish founder lines.

4.8. Mouse Tumor Experiments

All animal experiments were performed in accordance with institutional guidelines and approved
by the institution Animal Care and Use Committee. For tumor experiments utilizing KLM1, female
6–8-week-old athymic nude mice (Charles River, (location withheld to conceal author identity)) were
inoculated subcutaneously with 3 × 106 cells in 4.0 mg/mL Matrigel (Corning) in RPMI 1640 (Gibco)
with no additives. Tumor size was measured in two dimensions by digital calipers and tumor volume
was calculated using the formula: 0.4 × width2 × length. Once KLM1 xenografts tumors had reached
a size of ~100 mm3 (10 days), mice were randomized into treatment groups. Mice were euthanized 24
h after the final treatment and tumor harvested.

For tumor experiments using Panc02-chiMSLN cells, 6–10-week-old C57Bl/6-CAG mice were
injected in the IP cavity with 1 × 106 cells in RPMI 1640 (Gibco) with no additives. Mice were
monitored for 3–4 weeks until the IP tumor became palpable, then randomized into treatment groups.
For orthotopic experiments, a small incision was made in anesthetized mice to expose the pancreas
and 1 × 105 cells were injected into the pancreatic tail. Treatment was initiated ~6 weeks later. All mice
were euthanized 24 h after the last treatment, ascites was withdrawn and measured, and all visible
tumor in the IP cavity was harvested by dissection and weighed.

4.9. ITF Preparation

Harvested tumors were suspended in 750 µL of RPMI 1640 (Gibco) with no additives. Tumor was
cut into fine pieces using surgical scissors, re-suspended in an additional 750 µL of RPMI, and tumor
debris spun down at 1000× g for 3 min at 4 ◦C. All supernatant was recovered and frozen at −80 ◦C in
aliquots until analysis.

4.10. ELISA, Luminex and RPPA Assays

Human VEGF ELISA kit was purchased from ThermoFisher. MMP-9, murine OPN, murine
PCSK9 ELISA kits, Proteome Profiler Human Ubiquitin and XL Oncology reverse phase protein arrays
were purchased from R&D Systems. Changes in protein expression on RPPA were evaluated by eye as
per manufacturer’s instructions. Custom magnetic bead Luminex assays were purchased from R&D
Systems. To choose Luminex analytes to assay, pilot vehicle and LMB-100 treated murine samples were
tested on Proteome Profiler Mouse XL Cytokine Array (R&D Systems), to identify detectable targets.
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Luminex analytes were then chosen based on availability on the Luminex platform and compatibility
with other potential analytes. Available analytes for the mouse and human arrays differed, such
that the CCSGFs that we profiled were not identical for the two species, however, analytes that were
available for both species and expressed by our models were assayed wherever possible. A MagPix
device using Xponent software was used to analyze Luminex assays (R&D Systems).

4.11. Histological Analyses

Tumor samples were sent to (institutional veterinary histology core) Laboratory core facility for
all histologic studies and analysis. Core pathologists used Aperio Microvessel Analysis Algorithm for
assessment of vasculature.

4.12. Statistics

GraphPad Prism 7 software and Microsoft Excel were used for all statistical analysis and graphing.
Data are presented as averages with error bars representing standard deviations unless stated otherwise.
ANOVA was used for multiple comparisons followed by post-hoc t-test. Two-tailed Student’s t-test
was used for two group comparison of conditioned medium samples and histological analysis.
Mann–Whitney test was used for two group comparisons of in vivo ITF quantification. All experiments
were confirmed by repeat. For all figures: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/10/11/447/
s1. Figure S1: Panc02-chiMSLN cell model.
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