
brain
sciences

Article

Prediction of Human Performance Using
Electroencephalography under Different Indoor
Room Temperatures

Tapsya Nayak 1 ID , Tinghe Zhang 1, Zijing Mao 1, Xiaojing Xu 2, Lin Zhang 3, Daniel J. Pack 4,
Bing Dong 5 and Yufei Huang 1,*

1 Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio,
TX 78249, USA; ani254@my.utsa.edu (T.N.); prh169@my.utsa.edu (T.Z.); mzj168@hotmail.com (Z.M.)

2 NSF-DOE CURRENT Center, University of Tennessee, Knoxville, TN 37996, USA; xiaojing.hsu@gmail.com
3 SIEE, China University of Mining and Technology, Xuzhou 221116, China; cnnangua@hotmail.com
4 College of Engineering & Computer Science, University of Tennessee, Chattanooga, TN 37403, USA;

daniel-pack@utc.edu
5 Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA;

bing.dong@utsa.edu
* Correspondence: yufei.huang@utsa.edu; Tel.: +1-210-450-7260

Received: 13 April 2018; Accepted: 19 April 2018; Published: 23 April 2018
����������
�������

Abstract: Varying indoor environmental conditions is known to affect office worker’s performance;
wherein past research studies have reported the effects of unfavorable indoor temperature and air
quality causing sick building syndrome (SBS) among office workers. Thus, investigating factors
that can predict performance in changing indoor environments have become a highly important
research topic bearing significant impact in our society. While past research studies have attempted to
determine predictors for performance, they do not provide satisfactory prediction ability. Therefore,
in this preliminary study, we attempt to predict performance during office-work tasks triggered by
different indoor room temperatures (22.2 ◦C and 30 ◦C) from human brain signals recorded using
electroencephalography (EEG). Seven participants were recruited, from whom EEG, skin temperature,
heart rate and thermal survey questionnaires were collected. Regression analyses were carried out to
investigate the effectiveness of using EEG power spectral densities (PSD) as predictors of performance.
Our results indicate EEG PSDs as predictors provide the highest R2 (> 0.70), that is 17 times higher
than using other physiological signals as predictors and is more robust. Finally, the paper provides
insight on the selected predictors based on brain activity patterns for low- and high-performance
levels under different indoor-temperatures.

Keywords: human performance; performance prediction; indoor room temperature; office-work
tasks; electroencephalography (EEG)

1. Introduction

As U.S. citizens spend more than 90% of their time indoors, indoor thermal condition is a
key factor that impacts human productivity in the office [1–5]. Indoor environments and building
characteristics have been reported to impact occurrences of respiratory diseases, allergy and asthma
symptoms, sick building symptoms and office-work performance. It is estimated that improving
the indoor environment in U.S. office buildings would result in a 0.5 to 5% increase in productivity,
worth $12–$125 billion annually [6]. Thus, understanding how indoor environments affect human
performance, health and emotion and developing methods to predict human performance/health in
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changing indoor environments have become highly important research topics that bear significant
economic and sociological impact.

As our indoor daily work becomes increasingly mentally challenging, a significant aspect of
the thermal-driven performance is an individual’s cognitive performance, that is, the ability of an
individual to effectively comprehend and perform independent decisions during complex tasks and
events. Various field and laboratory studies have been conducted to investigate performance levels
and changes under different thermal conditions. A study investigated in Reference [7] showed an
8% fall in sewing work productivity as indoor temperature was increased from 23.9 ◦C to 32.2 ◦C.
A similar trend was observed in a case study by References [8,9] investigating the performance of
employees in telecommunication offices (call center) and a reported decline in work performance by
5–7% at higher indoor temperatures; work performance was evaluated by assessing average time
per call or average handling time. Similar studies were conducted to evaluate the performance of
school children in References [10,11]. In the former research study, students who reported changes
in thermal sensation scores from warm to neutral, performance of numerical and language task
improved significantly, while the latter concluded thermal stress produces mental arousal effects
thereby improving performance. In addition to these papers that studied the influence of indoor
environment on office work performance, researchers have investigated physiological mechanisms and
whether these mechanisms have consequences for human performance. At high temperatures, authors
in Reference [12] reported that the concentration of carbon-dioxide (CO2), by measuring end-tidal
partial CO2, is directly proportional to the increase in room temperature, which they hypothesize is the
result of increased metabolism by humans in turn leading to decreased air quality. Furthermore, they
observed a reduction in arterial blood oxygen saturation (SPO2), increasing sick building syndrome
(SBS) symptoms thereby elevating fatigue levels in participants. A brain imaging near-infrared
spectroscopy (NIRS) study by the authors in Reference [13] observed a reduction in task performance
as blood oxygen saturation levels decrease. Interestingly, while Reference [14] found decreased
concentrations of salivary alpha-amylase and cortisol with increased thermal discomfort—implying
an impact on performance—but performance did not change. On the other hand, they found carbon
dioxide concentrations to be similar at different indoor temperatures thereby suggesting no change in
metabolic rate, however subjects reported significant increase in workload and effort with increased
thermal discomfort. Other detailed research in Reference [15] studied the effects of cold temperature
on cognitive performance, wherein they observed three distinct performance patterns—negative,
positive and mixed, which were determined based on accuracy, response time and efficiency based
on a cognitive test battery. They concluded that skin temperature, thermal sensation, diastolic blood
pressure and heart rate were independent predictors of decreased accuracy and response time and
concluded that cold temperatures impact performance negatively due to mechanisms of distraction
and arousal. These past studies indicate performance trends change depending on the task and
environmental conditions, which is not always straightforward. More research evidence suggests that
human performance is a byproduct of psychological and physiological factors collectively, which we
theorize may be better explained by neurophysiological signals.

Taking into account the relationship between human performance and indoor thermal conditions
and the advantages of predicting performance by potential improvements on office-workers’ health
and productivity, we propose to use neurophysiological signals from electroencephalography (EEG)
as predictors of performance. Over time, EEG research has been extensively used and shown to be
effective in the detection and interpretation of brain mental states during the execution of cognitive
and physical tasks. Specifically, the association of cognitive functions with specific brain regions
and their temporal characteristics have been determined from imaging studies such as functional
magnetic resonance imaging (fMRI), evoked response potential (ERP) and time-frequency analyses
of EEG or EEG-MEG (magnetoencephalography) studies. Working memory studies have shown
theta band (4–8 Hz) power is correlated with cognitive performance; high-performing individuals
or individuals with working memory training exhibit increased theta power in the frontal-parietal
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brain network [16]. Studies in References [17–21] have also reported the functional involvement
of the frontal-parietal network associated with working memory and executive functions and
References [22,23] have reported the involvement of the frontal-temporal declarative and semantic
memory network associated with controlled retrieval of task-relevant facts or rules. Researchers have
also analyzed the temporal dynamics of these networks; time-frequency analysis in Reference [17]
during arithmetic problem-solving tasks shows the engagement of the frontal cortex at around 300 ms
from stimulus presentation for memory retrieval strategies reflected as enhanced theta power within
the frontal-temporal network. On the other hand, procedural strategies have higher execution
demands at later time points, reflected as alpha power event-related desynchronization (ERD) in
the frontal-parietal networks.

Analogous to arithmetic problem-solving tasks, brain dynamics have also been reported in tasks
involving motor movements where focused attention and somatosensory information processing
play a crucial role [24–26]. Tasks that involve motor movements are associated with the activation of
contralateral sensorimotor cortex, where findings by References [27–29] report an increase in theta
power localized at the fronto-midline during the onset or preset of a motor movement particularly
during high performance or by expert performers and increased theta power was additionally observed
during higher workloads. Beta (14–30 Hz) oscillations have been known to be associated with voluntary
movements, particularly, beta modulations post-movement synchronization over the sensorimotor
cortex has been linked to greater confidence in the execution of motor tasks suggesting reinforcement
of the current motor state and generation of the steady motor output [30–33]. Beta modulation has
additionally been linked to reaction time where a decrease in beta was observed upon committing an
error resulting in longer reaction times for upcoming trials due to increased cognitive load [34].

Based on the evidence stated above, establishing performance changes under varying
environmental conditions and linkage between behavioral changes/performance with underlying
brain activities, we propose to use EEG brain signals to predict performance. With this goal, we present
an experimental design wherein subjects perform mental tasks under varying thermal conditions and
develop linear regression models to predict performance using EEG power spectral densities (PSD) as
features/regressors. Specifically, we theorize the involvement of theta power from the frontal-temporal
or frontal-parietal network in arithmetic problem-solving and the involvement of theta and beta/alpha
power band from the fronto-midline and motor-cortex for typing tasks to vary at different performance
levels. Both office-work tasks in this study require crucial physiological factors such as sustained
attention, working memory, self-motivation and motor control specific to typing tasks. To achieve our
goal, we first compute the prediction strength of features such as thermal survey scores, heart rate and
skin temperature and then compare them to prediction accuracies using EEG power spectral densities
from linear regression models. Given the spatial-temporal brain dynamics to complete the task, we
implement least absolute shrinkage and selection operator (LASSO) as a feature selection technique
to select relevant power densities from brain regions contributing towards explaining performance.
Lastly, the robustness of these regressors is compared with other non-neurophysiological signals by
reporting least mean square errors (MSE).

2. Materials and Methods

2.1. Office-Work Task Simulation

All participants were required to complete two types of office work task—addition and typing—in
two different indoor room temperatures, 22.2 ◦C (72 F) or 30 ◦C (86 F). Each task lasted for 15 min
(30 min in total). The difficulty level of each task ranged from easy to average, designed with the
intention of simulating daily office responsibilities. All participants were provided with a training
session to familiarize themselves with the experiment setup, task instructions and software interface.

All participants attempted the addition task first, involving the addition of two three-digit
numbers, which were generated randomly online in MATLAB [35]. The task was designed to be
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self-paced and participants were instructed to avoid errors while attempting as many questions as
possible in 15 min; thus, the total number of questions answered by each participant depends on their
response time for each question. This was followed by 15 min of a typing task, in which all participants
were instructed to type the paragraph (4 sentences long) exactly as presented on the display monitor
and was self-paced. The writing paragraph for this task was selected from a journal and no limit was
posed on the number of paragraphs typed—that is, every time the participant finished typing the
current paragraph, a new paragraph was presented. Similar instructions were provided, that is, to
avoid any typing errors and to attempt typing as many paragraphs as possible. The typing software
continuously monitored the typed words for errors, in which case the participant had to correct them
before proceeding to the next word. Contrary to the typing task, wherein the participant is aware of
typing errors and must correct them, in the addition task the participant is unaware of their response
accuracy, that is, no feedback was provided.

MATLAB [35] was used to design and program the addition task presentation and the typing task
software was developed by the National Research Council of Canada [36].

2.2. Participants

Seven healthy male adult participants, all university students, were recruited for this study whose
age ranged between 18 and 25 years (mean age = 23.5 ± 0.8 years). All provided written consent to
participate in the study, which was approved by the Institution Review Board at the University of Texas,
San Antonio and stated that they were healthy, without any neurological issues and were not under
the influence of any drugs at the time of the experiment. All participants reported to have at least five
hours of sleep the night before the experiment and dressed in formal casuals (jeans with long sleeve
shirts) for the experiment. This clothing level was selected to keep the participants thermally neutral
at room temperature 22.2 ◦C (72 F), which is reported as a neutral temperature to achieve optimal
performance. The study was conducted in an experiment room simulating an office environment with
comfortable lighting. Each participant was exposed to two thermal conditions—22.2 ◦C (72 F) and
30 ◦C (86 F). A ventilation rate of 6 L/s per person was kept constant at both room temperatures and
the relative humidity in room was maintained within normal recommended limits. Lastly, before
beginning the experiment all participants were instructed to focus and not to move their head or talk
during the task.

2.3. Experimental Procedure

First, all participants were guided to a preparation room where a neutral temperature of 22.2 ◦C
was maintained. Here, participants were prepped for the experiment, that is, sensors for measuring
skin temperature, heart rate and the EEG cap were attached. After which, they were guided to the
experiment-room, the room temperature was randomly maintained at either 22.2 ◦C or 30 ◦C, see
Figure 1. All participants were seated on a comfortable chair 50 cm away, from the center of the
monitor to the participant’s eye. Before the start of the first office-work task under each exposure (or
session), 10 min of rest time was provided to adapt to the thermal settings and all participants were
alone in the experiment-room. Prior to the second exposure, a 45-min break was given to relax, drink
water, walk around and use the restroom. In the meantime, the temperature of the experiment-room
was increased or decreased depending on the temperature setting used in the first exposure. The order
of the indoor room temperature was randomized for each participant, wherein 4 participants were first
exposed to 22.2 ◦C and the remaining three participants to 30 ◦C. In the second session, all participants
repeated the office-work task for the next 30 min. Additionally, before and after each session and each
task, participants answered a short thermal survey. The entire experiment lasted for 155 min.
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2.4. Measurements

2.4.1. Performance Metrics

All participants performed the addition and typing task for 15 min under each exposure. Response
time and accuracy are the performance metrics commonly used for the addition task. To assess the
overall performance in this task, the two metrics were integrated, that is, the time taken to complete
20 questions correctly, that is Equation (1):

Addition Per f ormance Index (API)
= Time taken (seconds) to answer 20 questions correctly

(1)

To increase the number of samples, a sliding window of 20 correct questions with a shift of one
question is applied, moving along the dimension of number of questions answered. For instance, if
the first 20 questions are all answered correctly, then the API for the first sample is calculated as the
sum of the response times for answering the first 20 questions. Now, if question number 21 is incorrect
but number 22 is correct, then the API of the second sample is calculated as the sum of the response
times for answering questions 2 to 22 including exactly 20 correctly answered questions. Thus, for
committing an error, a penalty in time is issued in the metric API. We chose 20 correct questions in the
metric because most participants take approximately one minute to answer 20 questions, thus making
API a stable metric to assess addition performance.

The metric used to evaluate the typing task performance is net characters per minute (CPM) [20],
which is calculated as Equation (2):

Net characters per minute (CPM)

= Total number of key
−(Total cursor keys pressed + 2×Number of backspace keys pressed)

(2)

During the task, the user types the paragraph displayed on the screen. The text is confirmed
after each word and in the case of errors a strikethrough is notified on the screen from the point of
error occurrence. The user is unable to continue typing until the error has been rectified. The user
is unable to use the mouse, however can move around the screen using cursor keys and can delete
using BACKSPACE or DELETE keys. The typing performance metric is calculated as the net number
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of characters typed per minute as shown above. The backspace key is doubled as characters typed
are deleted and then retyped. Thus, as the typing errors increase, the number of characters typed per
minute (or typing performance) decreases. To calculate CPM samples, a sliding window of one minute
was applied with a shift of 30 s.

2.4.2. Physical Measurements

The temperature and relative humidity of the experiment-room were continuously maintained
and recorded with data loggers—temperature (range: 20 ◦C to 70 ◦C, accuracy: ±0.7 ◦C), humidity
(range: 0–95%, accuracy: ±5%) and CO2 (range: 0–2000 ppm, accuracy: ±50 ppm) sensors. All sensors
were calibrated before use.

Subjective measurements: A survey/questionnaire was provided to all participants before each
task to assess the room thermal conditions (comfort and sensation) and air-quality. The perceived
thermal comfort and sensation conditions were assessed using continuous scales describing
participants’ satisfaction in the thermal environment. In case of thermal comfort, participants reported
their comfort level in the room temperature under an exposure. A score of one-point indicates very
uncomfortable, 4-point indicates just right and seven-point indicates very comfortable. Likewise, for
thermal sensation, one-point indicates cold, 4-point indicates neutral and seven-point indicates hot
body sensation. In addition to these questions, participants also answered questions indicating their
general indoor thermal preference and if they preferred the current room temperature to be changed.

2.4.3. Physiological Measurements

The physiological measurements included: (1) skin temperature measured from eight sensors
located at forehead, right scapula, left upper chest, wrist, both upper arms, left hand, left-calf and
right anterior thigh according to ISO 9886 standards. Samples were recorded every second and for
analysis purposes a weighted average skin temperature was computed, recommended by ISO 9886
standards [37]; (2) Heart rate was measured by using Polar H7 Smart Chest Transmitter (Polar Electro
Oy, Kempele, Finland) and recorded on an iPad via Bluetooth every second.

2.4.4. EEG Measurement and Preprocessing

Brain activities were continuously recorded at a sampling rate of 512 Hz using 64-channel
EEG system (Biosemi, Inc. [38]) referenced to the right and left ear mastoids based on a modified
international 10–20 system. Before data acquisition, care was taken to ensure that the impedance
between EEG electrodes and cortex was less than 5 kΩ. From each participant, 30-min EEG signals
during each exposure were recorded and preprocessed prior to obtaining power spectral density (PSD)
values for further analysis. EEG preprocessing involved down-sampling the data to 128 Hz, bad
channel removal and interpolation using the software EEGLab [39], referencing each EEG electrode
using the average signal from left and right ear mastoid connections, bandpass filtered between 1 and
50 Hz to remove electrical noise, DC shift and artefact removal introduced by eye blinks and muscle
movements. EEG data from each participant from both exposures were normalized using z-scores.
Preprocessing was followed by average PSD value computation for each EEG electrode data epoch.
Length of the epochs depended on the type of office work task metric, for the addition task, the length
of epochs was based on the time taken to answer 20 questions correctly from its metric API and for the
typing task, an epoch length of one minute was extracted based on its metric net CPM. To increase
the sample size, a sliding window was applied, wherein for the addition task, a sliding window of
20 questions with one question shift was applied and for the typing task, a sliding window of one
minute with a 30-min shift was applied.

3. Results and Discussion

The goal of this paper is to assess the efficiency of using EEG signals in performance prediction
induced by varying indoor room temperatures. To do so, this paper is organized into three parts:
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first, we present statistical results to validate performance is effected by indoor temperatures;
second, we show the prediction results of office-work performance using features reported by past
research—thermal sensation, thermal comfort, skin temperature and heart rate in a linear regression
model; and third, we present the prediction ability and robustness of using EEG PSDs as predictors in
a linear regression model enhanced with LASSO.

3.1. Performance versus Room Temperatures

Tables 1 and 2 summarize the statistical test results of all seven subjects during each office-work
task to determine change in performance under different indoor temperatures. For each task, the
average performance of the corresponding task is reported under each temperature exposure along
with standard deviation in parentheses and respective p-values. Additionally, prior to and after
the experiment, all participants answered a thermal survey reporting their comfort levels at 22.2 ◦C
and 30 ◦C and most felt comfortable at 22.2 ◦C, which is considered the control exposure in our
study design.

Table 1. Kolmogorov-Smirnov (KS) test results on addition task performance under two indoor
temperatures. Columns 2 & 3 show the average task performance with standard deviation in
parenthesis. Column 4 shows the p-values from the statistical test.

Subject 22.2 ◦C (72 F) 30 ◦C (86 F) KS-Test (p-Value)

S1 86.9 (±8.5) 101.9 (±18.8) 7.2741 × 10−15

S2 75.9 (±5.5) 70.1 (±8.6) 3.8359 × 10−15

S3 85.9 (±13.3) 87.0 (±7.5) 0.0051
S4 69.5 (±7.8) 64.5 (±5.3) 3.7328 × 10−11

S5 99.7 (±9.9) 90.0 (±6.5) 1.2082 × 10−18

S6 73.5 (±8.5) 78.6 (±7.9) 6.4751 × 10−11

S7 90.1 (±11.9) 93.5 (±15.3) 0.0021

Table 2. KS test results on typing task performance under two indoor temperatures. Columns 2 & 3
show the average performance with standard deviation in parenthesis. Column 4 shows the p-values
from the statistical test.

Subject 22.2 ◦C (72 F) 30 ◦C (86 F) KS-Test (p-Value)

S1 185.25 (±27.3) 207.5 (±25.9) 0.0186
S2 121.5 (±18.8) 122.17 (±34.1) 0.1687
S3 240.6 (±22.8) 226.7 (±30.8) 0.0875
S4 199.7 (±26.2) 214.5 (±16.2) 0.0076
S5 104.5 (±27.9) 120.5 (±19.3) 0.0420
S6 178.3 (±37.3) 191.3 (±26.9) 0.1687
S7 228.0 (±28.1) 244.9 (±37.3) 0.0420

The Kolmogorov-Smirnov (KS) statistical test was used because performance values for both
office-work tasks did not follow a normal distribution. In the addition task, the samples used for the
KS-test were the time taken to answer 20 questions correctly with a sliding window with an overlap of
19 questions, thus low performance corresponds to a longer time taken to answer 20 questions. The
test revealed that all seven participants showed significant differences in performance between the
two exposures (p-value < 0.1). As expected, we observed that four out of seven participantsshowed
low performance at elevated temperature of 30 ◦C. In theseparticipants, an increase in response time
to answer the arithmetic problems could be attributed to fatigue thereby requiring higher cognitive
demand. In the typing task, KS-test samples used were the net characters typed per minute with a
sliding window of one minute with an overlap of 30 s, thus fewer characters per minute reflects low
performance. Five participantsout of seven showed significant differences in performance between
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the two exposures, among whom, interestingly, four subjects performed higher in the elevated room
temperature of 30 ◦C. Based on participantfeedback, this is attributed to discomfort at the elevated
temperature and thus wanting to finish the task quickly. Although we would expect to observe an
increase in typing errors with increased typing speed, this was perhaps not the case because the task
was self-paced. Based on these statistical results, we can conclude that indoor room temperature affects
office-work performance and increaseor decrease of performance under different room temperatures
is task dependent.

3.2. Performance versus Physiological Signals

Table 3 shows the correlations between office-work performance using features reported by
past research groups, that is, from thermal survey votes (thermal sensation, thermal comfort) and
physiological recordings (skin temperature and heart rate). Data samples used to compute correlations
(R2) between performance and physiological recordings during both tasks are as described in
Section 2.4, with the implementation of sliding window for all participants. To compute correlations
with thermal sensation and comfort, survey scores were collected at the end of each office-work
task (see Figure 1) and corresponding average task performance from all participants were used,
without sliding window. Empirical R2 results show that all predictors exhibit a correlation less than
0.5 ranging between 0.003 and 0.1, indicating that each individual regressor is unable to explain
variance in office-work performance and do not exhibit a linear trend. Past research studies have
reported correlations of heart-rate variability with mental effort due to its association with blood
pressure regulation [40,41]; however, linear correlation analysis in this case did not show significant R2

correlations. Due to the small and elusive nature of R2 values, we proceed to investigate the correlation
of office-work performance using brain signals obtained from EEG.

Table 3. Correlation R2 between simulated office-work performance and different physiological predictors.

R2 Thermal Sensation Thermal Comfort Skin Temperature Heart Rate

Addition Task 0.00369 0.018 0.0127 0.0089
Typing Task 0.0714 0.104 0.0201 0.052

3.3. Performance versus EEG

To investigate the efficiency of predicting performance using EEG power spectral densities in
linear regression analysis, we first present results using brain spectral densities as features (i.e., theta,
alpha, beta and combined brain bands) from each EEG electrode location separately and then present
prediction ability by using a variable selection technique—LASSO—that determines the most relevant
features across brain regions.

3.3.1. Band Powers of Raw EEG Data as Regressors

Based on the motivations mentioned above to use EEG brain PSDs as features, we investigate the
average spectral powers corresponding to these well-studied oscillations in theta band (4–8 Hz), alpha
band (8–14 Hz) and beta band (14–30 Hz).

To study the correlations between change in office-work task performance and EEG spectral bands,
a linear regression R2 analysis was used to determine the relationship between performance and each
EEG PSDs from each of the 64 EEG electrode locations from all participants. Figure 2 shows the
topoplots of R2 values obtained for each channel from the above-mentioned three frequency bands. In
both office-work tasks, we observed insufficient R2 ranging approximately between 0.10 and 0.25 when
brain power bands are used as regressors individually. Furthermore, we investigated the correlation
coefficients (ρ) between pairs of brain power bands corresponding to channels with maximum R2 in
the single regressor linear model. From Table 4, we observe that the correlation coefficients between
two regressors is insufficient (<0.9) demonstrating that they do not have a strong correlation, therefore
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denoting that each PSD contributes independently towards performance prediction. Based on this
finding, it is possible to achieve higher correlations R2 by combining all three brain power bands
within each EEG channel to generate a new multiple regressor linear model. In doing so, we observe a
maximum correlation of R2 = 0.2866 and R2 = 0.3216 in the addition and typing tasks, each of which is
an increase of 21.70% and 26.66% compared to the highest R2 using a single regressor linear model
from each EEG channel. The R2 topoplots show maximum correlation in the left parietal and occipital
brain regions in the addition task and in the right fronto-temporal brain regions in the typing task.
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Table 4. Correlation coefficients (ρ) between brain band pairs corresponding to the EEG electrodes
with highest R2 single regressor linear models.

Single Regressors Correlation Coefficient (ρ) Addition Task Typing Task

Theta Band
Theta–Alpha 0.6978 0.4380
Theta–Beta 0.6663 0.5549

Alpha Band Alpha–Theta 0.6788 0.3862
Alpha–Beta 0.6303 0.6130

Beta Band
Beta–Theta 0.7048 0.3065
Beta–Alpha 0.6303 0.5176

To ensure the maximum correlation observed is not due to chance/noise permutation, the test
was performed by randomizing epochs across EEG channels. p-value = 0 (<0.05) was obtained for all
band power regressors, individually and combined, from EEG channel locations corresponding to its
maximum R2 from the linear regression models. Analysis thus far supports the notion that there are
multiple brain regions contributing towards an explanation of performance and helping to achieve
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higher prediction. With this motivation to achieve higher prediction power, we proceed to using
LASSO (least absolute shrinkage and selection operator) to select relevant brain bands from specific
EEG channels collectively in the next section.

3.3.2. LASSO with Brain Band Power in All Brain Regions as Regressors

To determine the subset of EEG spatial locations that collectively contribute to predicting
performance, the LASSO regression analysis method was implemented. This method fits a sparse
linear regression model that performs both feature selection to avoid multicollinearities and overfitting
regularization to improve prediction accuracies and interpretability of statistical models. Specifically,
let y ε <N×1 represent a vector of performance values from N epochs (N = 2546 for addition task and
330 for typing task) and X ε <N×M be a matrix of power values of a frequency band, whose nmth

element denotes the power of epoch n at channel m (note when all brain bands are combined M = 64 ×
3 = 192). LASSO fits a linear model between y and X given by Equations (3) and (4):

y = Xβ + βo + ε (3)

where β ε <M×1 and βo are model coefficients and ε is the N × 1 noise vector with zero mean and
constant variance. LASSO aims to find estimates of the coefficients β̂ by optimizing

min
βo , β

1
N
||y−Xβ− βo|| + λ|β| (4)

where |.| and ‖ . ‖ denote the l1-norm and l2-norm respectively and λ is the regularization
parameter [42]. The l1-norm constraint (2) forces the coefficients to be sparse, that is, only small
subsets of coefficients are nonzero. There are two advantages of using LASSO that generate sparse
constraints. First, as the dimension of the matrix X in (1) is M = 64 or 192, representing the number of
EEG channels when PSDs are used individually and combined and N = 2546 and 330 performance
samples from the addition and typing tasks, LASSO avoids overfitting. Secondly, the sparse coefficients
make the model more interpretable, as the model focuses only on the powers from channels with
nonzero coefficients. To further reduce the overfitting during model fitting, 20% of data samples
were set aside for testing—called holdout data—and the remaining was used for model training.
LASSO iteratively generates models with different regularization parameters on the training data, after
which holdout data is used to determine a model that gives the lowest mean square error between
the observed and predicted performance. To estimate the prediction ability of chosen model, R2 is
computed between the observed and estimated office-work performance.

Table 5 summarizes the correlation results between observed and estimated office-work
performance from the features selected by LASSO regression model for each office-work task, including
the number of EEG electrodes selected by LASSO and p-value corresponding to the statistical
significance of the model chosen. Overall, the resulting LASSO models are relatively sparse, exhibiting
R2 in the range of 0.64–0.89 and, as expected, is two times greater than the maximum R2 obtained
from the linear regressor model, that is, without combining spatial information, from both office-work
tasks. In the addition task, we observe that all PSD regressors, individual and combined, provide
correlations >0.5, with the highest R2 observed using alpha power as the regressor individually and
combined with other power bands, using LASSO, at 88.6% from 51 electrode locations and 83.4% from
174 electrode locations. On comparing both R2 values, using alpha power alone, the LASSO model
outperforms the latter by ~5% with contributions from fewer EEG channels (51 EEG channels), maybe
by removing channels involved in multicollinearities. In the typing task, R2 from the LASSO model
using a theta power band provides the best performance prediction at 74.6% with contributions from
48 EEG channels. Thus, we conclude that, for the addition task, we use alpha brain power from 51 EEG
channels, and for the typing task, we use theta brain power from 48 EEG channels as features for
performance predictions.
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Table 5. R2 obtained between observed and estimated performance for office tasks using LASSO
regression and the number of non-zero coefficients in the fitted LASSO model.

R2 Theta Band (4–8 Hz) Alpha Band (8–14 Hz) Beta Band (14–30 Hz) Combined Bands

Addition Task 0.681 0.886 0.67 0.834
(# non-zero
coefficients) (#64) (#51) (#62) (#174)

p-values on fitting 0 0 0 0

Typing Task 0.746 0.712 0.696 0.645
(# non-zero
coefficients) (#48) (#38) (#43) (#45)

p-values on fitting 3.5292 × 10−91 7.2004 × 10−86 1.054 × 10−84 1.6241 × 10−25

Furthermore, based on the LASSO models obtained for the two office-work tasks we statistically
determined the reliability of performance prediction induced by two indoor temperatures with alpha
power (i.e., addition task) and theta power (i.e., typing task). In other words, if the residual errors
between observed and predicted performance follow a random normal distribution, this indicates
that the LASSO model has considered all features in linear regression analyses towards predicting
performance. To do so, we use the t-test on the error values from both exposures for each task. The null
hypothesis for the t-test being performance errors induced by the two room temperatures are the same.
p-values of 0.7756 and 0.5605 were obtained for the addition and the typing task. At a significance level
α = 0.1, the tests failed to reject the null hypothesis of equal performance error means, implying that
changes in performance are sufficiently explained by the features selected by the LASSO technique.

3.3.3. Prediction of Performance

Finally, we investigated the power of using brain power bands as regressors for predicting
performance and compared them to other physiological signals, that is, skin temperature and heart
rate. For physiological signals, polynomial models of model orders 1–9, were fitted by using the same
data as used for LASSO. Table 6 shows the mean squared errors (MSE) of all biomarkers presented in
this paper. It is not surprising to find that the LASSO predictors using PSDs obtained much smaller
MSEs than those from skin temperature and heart rate (even with a higher order polynomial model).
Taken together, these results confirm that neurophysiological signals recorded using EEG are better
predictors of human performance induced by different indoor room temperatures.

Table 6. MSE obtained from LASSO model using brain PSDs & from polynomial curve fitting models
using physiological signals.

Brain Band
Mean Square Errors

Addition Tasks Typing Tasks

Theta (4–8 Hz) 79.97 600.42
Alpha (8–14 Hz) 27.55 682.48
Beta (14–30 Hz) 79.15 717.30

Combined Bands 40.15 1127.30
Skin temperature 2612.5 (6th order) 37002 (5th order)

Heart Rate 284.5460 (7th order) 33361 (4sh order)
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3.3.4. Brain Activity Pattern

To gain insight into the mental functions that are induced by varying thermal conditions during
these office-work tasks, we investigate the differences in brain activity patterns arising from change
in performance from all power bands. To do so we categorized participants’ performance (i.e., API
and net CPM) into two groups, low- and high-performance by defining cutoff values based on the
scatter plots obtained between observed and predicted performance using the LASSO model as seen
in Figure 3A,B. For the addition task’s performance cutoff values, samples less than 100 s were labeled
as high performance and values greater than 120 s were labeled as low performance. Likewise, for the
typing task, samples less than 100 net CPM were labeled as low performance and those greater than
150 CPM were labelled as high performance. Based on these cutoff values, we plot the average brain
activities on the scalp projected from EEG channel locations with non-zero coefficients obtained from
the LASSO model from each brain power band, shown in Figures 4 and 5.
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Brain activity patterns from both office-work tasks over low and high performance may be
interpreted as the average spatial temporal brain power density patterns over a time window
corresponding to the performance index of the specific task, that is, in the addition task, over the
time taken to answer 20 questions correctly and for the typing task, net characters typed per minute.
For the addition task, see Figure 4, congruent with the findings from References [16–21] we observe
high localized theta power over the right prefrontal and left parietal cortex during high performance
than compared to low performance. This is indicative of the frontal-parietal network being associated
with working memory and executive functions of arithmetic problem-solving. High theta activity at
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the right frontal cortex reflects arithmetic fact retrieval, while differential brain temporal dynamics
across the frontal-parietal cortex reflect higher cognitive demands for multistep procedural strategies.
Since frontal theta activity is common in retrieving basic arithmetic facts, LASSO was unable to pick
this feature as most discriminant. Also, bilateral beta activity, particularly during high performance,
is reported to be associated with the conceptual processing of numbers, that is, the identification of
operands in the addition task [43,44]. Although in this study design we are unable to conclusively
compare arithmetic problems between retrieval or multistep procedures based on the subjective
difficulty levels, we can infer that discomfort due to thermal conditions created demands of higher
cognitive load to either maintain the current performance level or to achieve high performance. Overall,
in agreement with the findings from Reference [16], desynchronization of alpha and beta power is lower
at the frontal and parietal region, with right frontal theta enhancement reflecting distinct cognitive
functions in multicomponent problem solving.

High performance in the typing task requires both motor control with sustained attention, a similar
psychological requirement to brain oscillations in sports activities. As theorized earlier in the typing
task, see Figure 5, theta power in the fronto-midline is found to be the most discriminant feature for
performance prediction wherein high theta is observed during low performance at the frontal-midline
and the second most discriminant feature is frontal alpha event-related desynchronization (ERD)
during high performance. Studies by References [27–29] have associated high frontal theta and high
parietal alpha power differentiating skilled sports players to novices, reflecting developed task solving
strategies, focused attention and an economic parietal sensory information processing. The results
found in this paper for the typing task observed an opposite trend in the theta band at different
performance levels, as the typing task involved reinforcement learning where subjects were required
to rectify typing errors in order to proceed, forcing subjects to refocus and retype. Thus, enhanced
frontal-midline theta power during low performance in our data possibly reflects error feedback
information processing and subsequently increasing response time to retype correctly reflected as
high beta power at the somatosensory cortex during low performance. Alpha activity amplitudes
have been shown to be inversely related to the amount of neuronal population activated during
cognitive-motor tasks. Studies by References [45–48] have related alpha and beta ERD for skilled
performers to be associated with fine cognitive-motor performance. This is consistent with our findings,
where during high performance alpha and beta ERD were observed over premotor and sensorimotor
areas reflecting confidence in typing correctly, which requires precise planning and regulation of
bilateral finger movements.

Overall, brain activity patterns presented in Figures 4 and 5 show that during high performance
there is lower activity than during low performance, which is almost in line with the “neural efficiency”
hypothesis. These brain activity patterns enable the creation of a unique EEG profile for varying degrees
of performance level, which are task-dependent. In this study, we use EEG sensor space features to
predict performance, which are limited by volume conductance, while it is possible that source space
estimates could provide better predictions. Additionally, it is possible that functional connectivity
estimates at source level could provide higher prediction ability as reported in Reference [49]. However,
these are the current two limitations of our study as we analyze data in EEG sensor space only and
treat changes in brain states as a continuous task rather than ‘event related.’ The main motivation to
conduct analyses in this fashion is to use this analysis technique in real-time brain computer interfaces
in a realistic office-work setting to predict environmental conditions based on performance predictions
from EEG power spectral densities.

4. Conclusions

To the best of our knowledge, we are the first to present preliminary results of using EEG power
spectral densities to predict performance changes due to change in indoor-room temperature. Our
analysis statistically validates that office-work performance is impacted by varying indoor temperature.
We present a comprehensive regression analysis for predicting performance in two different office-work
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tasks using features reported by past studies and neurophysiological EEG signals. We found that
EEG brain band power is the best predictor of performance, which was enhanced using the LASSO
regression technique. This method found alpha brain power to be the best feature corresponding to the
right frontal and left parietal cortex for the arithmetic problem-solving task (R2 = 88.6%) and theta brain
power as the best feature corresponding to the fronto-middle cortex for the typing task (R2 = 74.6%).
Lastly, the robustness of using EEG power spectral densities as features was reported by mean-square
errors. With LASSO, we were able to achieve performance prediction abilities five times greater than
using a single linear regression model and 17 times higher prediction ability than compared to using
thermal survey votes, skin temperature and heart-rate. While the results of this study are promising,
there are a few limitations. Currently, we are unable to confirm the behavioral trend, that is, whether
there is an increase or decrease in performance under different indoor temperatures due to insufficient
population size, which is why we report prediction strength using linear regression analysis and were
still able to achieve promising results. Also, it is possible that upon collection of data from more
subjects, the relationship between EEG power spectral densities and office-work performance under
different thermal conditions may not be linear, thereby a non-linear regression technique, or other
machine learning techniques may be needed for classifications. In the future, this research needs
to focus on more comprehensive investigations of performance under longer exposures and using
varying workloads and further methodological studies are needed to investigate prediction models
to classify cross-task performance. Ultimately, this domain of research aims to provide motivation
for future research to help achieve optimal productivity from office-workers by providing feedback
regarding their environmental conditions.
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