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Leukocyte integrin Mac-1 regulates thrombosis
via interaction with platelet GPIba
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Inflammation and thrombosis occur together in many diseases. The leukocyte integrin Mac-1

(also known as integrin aMb2, or CD11b/CD18) is crucial for leukocyte recruitment to the

endothelium, and Mac-1 engagement of platelet GPIba is required for injury responses in

diverse disease models. However, the role of Mac-1 in thrombosis is undefined. Here we

report that mice with Mac-1 deficiency (Mac-1� /� ) or mutation of the Mac-1-binding site for

GPIba have delayed thrombosis after carotid artery and cremaster microvascular injury

without affecting parameters of haemostasis. Adoptive wild-type leukocyte transfer rescues

the thrombosis defect in Mac-1� /� mice, and Mac-1-dependent regulation of the

transcription factor Foxp1 contributes to thrombosis as evidenced by delayed thrombosis

in mice with monocyte-/macrophage-specific overexpression of Foxp1. Antibody and

small-molecule targeting of Mac-1:GPIba inhibits thrombosis. Our data identify a new

pathway of thrombosis involving leukocyte Mac-1 and platelet GPIba, and suggest that

targeting this interaction has anti-thrombotic therapeutic potential with reduced bleeding risk.
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T
hrombotic cardiovascular diseases, including myocardial
infarction and stroke, are the leading cause of death in
developed countries1. Current anti-thrombotic drugs,

including antiplatelet agents and anticoagulants, are associated
with significant bleeding risk and increased mortality2–4. There is
emerging experimental evidence distinguishing the molecular and
cellular mechanisms of haemostasis and thrombosis5,6, thereby
providing potential therapeutic targets with reduced bleeding risk.
One such area of research focus is ligand–receptor interactions,
including CD40L and its binding to platelet GPIIb/IIIa (ref. 7),
Gas6 and its tyrosine kinase receptors (mer, tyro3 and axl)8,
ephrins and their eph kinase receptors9, and myeloid-related
protein-8/14 (MRP-8/14 or S100A8/A9) and its platelet CD36
receptor10, that act within the platelet–platelet contact zone or
‘synapse’ after the initial aggregation event and ultimately
promote thrombus growth and stability11.

A second area of research focus that distinguishes molecular
and cellular mechanisms of haemostasis and thrombosis involves
heterotypic cell–cell interactions between leukocytes and platelets.
Platelet–leukocyte interactions induce bidirectional signals
that amplify pro-inflammatory and pro-thrombotic cellular
responses12. A more complete understanding of the molecular
basis of leukocyte–platelet complex formation may provide key
insight into candidate anti-thrombotic targets.

Adhesive interactions between vascular cells play important
roles in orchestrating the inflammatory response. Recruitment
of circulating leukocytes to vascular endothelium requires
multistep adhesive and signalling events, including selectin-
mediated attachment and rolling, leukocyte activation, and
integrin-mediated firm adhesion and diapedesis that result
in the infiltration of inflammatory cells into the blood vessel
wall13. Firm attachment is mediated by members of the
b2-integrin family, LFA-1 (aLb2, CD11a/CD18), Mac-1 (aMb2,
CD11b/CD18) and p150,95 (axb2, CD11c/CD18), and
CD11d/CD18 (aDb2), which bind to endothelial counter ligands
(for example, intercellular adhesion molecule-1; ICAM-1),
endothelial-associated extracellular matrix proteins (for
example, fibrinogen) or glycosaminoglycans14,15.

Leukocyte recruitment and infiltration also occur at sites of
vascular injury where the lining endothelial cells have
been denuded, and platelets and fibrin have been deposited.
A similar sequential adhesion model of leukocyte attachment to
and transmigration across surface-adherent platelets has been
proposed16. The initial tethering and rolling of leukocytes on
platelet P-selectin17 are followed by their firm adhesion and
transplatelet migration, processes that are dependent on aMb2

(ref. 16).
Integrins are heterodimeric proteins composed of one a- and

one b-subunit. A subset of integrin a-subunits, including aM,
contains an inserted domain (I-domain) of B200 amino acids
that is implicated in ligand binding18 and is strikingly similar to
the A domains of von Willebrand factor (vWF)19, one of which,
A1, mediates the interaction of vWF with its platelet receptor, the
glycoprotein (GP) Ib–IX–V complex. Because of the similarity of
the vWF A1 domain and the aMI-domain, we hypothesized that
GPIba might also be able to bind aMb2 and reported that GPIba
is indeed a constitutively expressed counterreceptor for aMb2

(ref. 20).
The aMI-domain contributes broadly to the recognition of

ligands by aMb2 (ref. 18) and specifically to the binding of GPIba
(ref. 20). This region has also been implicated in the binding of
many ligands, including ICAM-1 (ref. 21), C3bi (ref. 22) and
fibrinogen21. We localized the binding site for GPIba within the
aMI-domain segment aM(P201–K217) using a strategy based on
the differences in the binding of GPIba to the aMI- and aLI-
domains that involved several independent approaches, including

screening of mutant cells, synthetic peptides, site-directed
mutagenesis and gain-in-function analyses23. Antibody
targeting of aM(P201–K217) blocked aMb2-dependent adhesion
to GPIba, but not several other ligands and inhibited
leukocyte accumulation, cellular proliferation and neointimal
thickening after arterial injury24, and broadly regulated
the biological response to tissue injury in models of
vasculitis25, glomerulonephritis26 and experimental autoimmune
encephalomyelitis27.

Since leukocyte–platelet interactions bidirectionally induce
signals that amplify pro-inflammatory and pro-thrombotic
cellular responses12, we hypothesized that leukocyte Mac-1
engagement of platelet GPIba is critical for thrombus
formation. In this study utilizing genetic, antibody, and small-
molecule approaches, we provide evidence that Mac-1:GPIba
directly modulates thrombosis without influence on tail bleeding
time or other haemostatic parameters.

Results
Carotid artery thrombosis is delayed in Mac-1� /� mice. To
elucidate the effect of Mac-1 on the development of arterial
thrombosis in real-time, carotid arteries of wild-type (WT) and
Mac-1� /� mice were subjected to the Rose Bengal model of
thrombosis, an endothelial cell photochemical injury model due
to local free radical release28,29. Carotid artery blood flow
was then monitored continuously with a vascular flow probe.
Mean time to occlusive thrombus formation in WT mice was
21.7±6.4 min, and was prolonged significantly in Mac-1� /�

mice to 60.8±20.4 min (n¼ 7–13 per group; Fig. 1a).

Impaired thrombus formation in Mac-1� /� microvasculature.
The cremaster thrombosis model was implemented to examine
the influence of Mac-1 in a small vessel arteriole as contrasted to
the large vessel carotid artery used in the Rose Bengal model.
Thrombus formation after laser-induced injury to the arteriolar
wall in the cremaster microcirculation of Mac-1� /� mice was
compared with that of WT mice, using intravital microscopy30. In
WT mice, platelet accumulation in arterioles was evident within
15 s of laser injury and increased progressively over the 90 s
observation period (Fig. 1b). In contrast, platelet accumulation
was markedly attenuated in Mac-1� /� mice. Analysis of the
growth curves of continuous, real-time thrombus profiles assessed
by integrated fluorescence intensity of labelled platelets over time
showed marked attenuation of platelet thrombus growth in
Mac-1� /� mice (WT: 14.8±14.6� 106 arbitrary fluorescent
units (a.u.) versus Mac-1� /� : 4.5±5.1� 106 a.u., n¼ 33–35
arterioles per group; Fig. 1c,d). Mean % inhibition over time was
70.0%. Initial platelet adhesion and small platelet aggregates were
observed in Mac-1� /�mice, but developing thrombi were
unstable and embolized frequently.

Similar platelet count and coagulation assays in WT and
Mac-1� /� mice. Having observed delayed thrombosis in
Mac-1� /� mice, we set out to determine the mechanism by first
performing screening platelet and coagulation assays in WT and
Mac-1� /� mice. We performed complete blood count on whole
blood from WT and Mac-1� /� mice (Supplementary Table 1).
White blood cell count (Supplementary Table 1) and platelet
count were similar in WT (786,400±317,800 platelets per ml, n¼ 5)
and in Mac-1� /� (775,700±176,000 platelets per ml, n¼ 6) mice
(Fig. 2a). Coagulation activity of plasma was assessed using the
activated partial thromboplastin time (aPTT) and a thrombin
generation assay. The aPTT was not prolonged in Mac-1� /�

mice (WT: 66±28 s versus Mac-1� /� : 46±11 s; Fig. 2b).
Tissue factor (TF)-induced total thrombin generation was
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not reduced in Mac-1� /� plasma (WT: 21,055±407 versus
Mac-1� /� : 22,398±830 a.u., n¼ 4 per group; Fig. 2c). Taken
together, these data indicate that neither platelet count nor
coagulation parameters likely account for delayed thrombosis in
Mac-1� /� mice.

Unimpaired platelet activation and signalling in Mac-1� /�

platelets. Although leukocyte-restricted expression of Mac-1
makes it unlikely that defective thrombus formation in
Mac-1� /� mice is due to an intrinsic platelet activation defect,
we nonetheless assessed platelet activation in platelets isolated
from WT and Mac-1� /� mice by monitoring the expression of
P-selectin and activated aIIbb3 (GPIIb/IIIa) in response to agonist
stimulation. Washed platelets from WT and Mac-1� /� mice
were stimulated with collagen, thrombin or arachidonic acid.
Platelet activation as measured by both P-selectin expression
(Wug.E9-positive staining) and activated aIIbb3 (JON/A-positive

staining) is similar in Mac-1� /� platelets compared to
WT platelets in response to the treatment of thrombin
(Supplementary Fig. 1a,b), collagen (Supplementary Fig. 1c,d)
or arachidonic acid (Supplementary Fig. 1e,f). In addition,
we demonstrated there was no difference in platelet
adhesion (Supplementary Fig. 1g) and spreading on collagen
(Supplementary Fig. 1h) between WT and Mac-1� /� mice.

Transfer of WT leukocytes restores thrombosis defect in
Mac-1� /� mice. Although we have provided evidence that
deficiency of Mac-1 is associated with prolonged time to carotid
artery occlusion after photochemical injury, we have utilized mice
with global rather than tissue- or cell-specific deficiency of Mac-1,
thereby limiting our ability to conclude definitively that leukocyte
Mac-1 is critical for thrombus formation. To address this
issue, we performed adoptive transfer experiments of WT and
Mac-1� /� donor peripheral blood mononuclear cells (PBMCs)
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Figure 1 | Deficiency of Mac-1 prolongs thrombotic occlusion time. (a) Occlusion time (min) following photochemical injury of the carotid artery in 7- to

8-week-old male WT (n¼ 7) and Mac-1� /� (n¼ 13) mice (mean±s.d.). Thrombus formation after laser-induced injury to the arteriolar wall of the

cremaster microvasculature of Mac-1� /� mice was compared with that of WT mice using intravital microscopy (b–d). Platelets were labelled in vivo using

a fluorescein isothiocyanate-conjugated rat anti-mouse CD41 antibody. (b) Representative intravital images at indicated times following laser pulse

(n¼ 33–35 per group). Scale bar, 20mm. (c) Continuous, real-time thrombosis profiles of one representative experiment (n¼ 33–35 arterioles per group).

(d) Mean fluorescence intensity of platelets in individual arterioles over time. Each data point is from a single arteriole. Data (mean±s.d.) taken from four

WT and four Mac-1� /� 11- to 12-week-old male mice. P values are obtained by two-tailed unpaired t-test.
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or neutrophils into Mac-1� /� recipient mice before photo-
chemical injury. Mac-1� /� recipient mice that received
Mac-1� /� donor PBMCs formed occlusive thrombi in
49.8±17.2 min (Fig. 3a). Strikingly, the time to occlusive
thrombus formation was shortened significantly in Mac-1� /�

recipient mice receiving WT donor PBMCs to 26.6±6.9 min
(Fig. 3a), nearly restoring occlusion time to that observed in WT
mice (21.7±6.4 min; Fig. 1a).

We also performed adoptive transfer of WT or Mac-1� /�

neutrophils isolated by density gradient centrifugation into
Mac-1� /� recipient mice. Mac-1� /� mice that received
Mac-1� /� donor neutrophils formed occlusive thrombi in
57.2±18.7 min. The time to occlusive thrombus formation

was significantly shortened in Mac-1� /� recipient mice that
received WT donor neutrophils to 29.6±15.7 min (Fig. 3b).
Taken together, these adoptive transfer experiments indicate that
Mac-1 on either PBMCs or neutrophils contributes to arterial
thrombus formation.

Mac-1 signalling regulates TF via transcription factor Foxp1.
Having demonstrated the importance of leukocytes in thrombo-
sis, we next sought to elucidate the underlying mechanism.
Platelet–leukocyte interactions bidirectionally induce signals that
amplify pro-inflammatory and pro-thrombotic cellular respon-
ses12. Previous work from our laboratories has demonstrated that
leukocyte engagement of platelet GPIba via Mac-1 induces
platelet ‘outside-in’ signalling and platelet activation31. We next
asked whether leukocyte engagement of platelet GPIba via Mac-1
is capable of inducing ‘outside-in’ Mac-1 signalling by evaluating
phosphorylation of protein kinase C (PKC) and expression of
Foxp1. We and others have reported that Mac-1 clustering by
fibrinogen triggers phosphorylation and activation of PKC delta
that, in turn, regulates expression of the transcription factor
Foxp1 (refs 32,33). Indeed, clustering of Mac-1 by GPIba induced
phosphorylation of PKC delta (Fig. 4a), and downregulated
Foxp1 expression (Fig. 4b).

Foxp1 functions as a transcriptional repressor, and we have
shown that downregulation of Foxp1 is required for monocyte
differentiation and macrophage function in vitro and in vivo32,34.
We hypothesized that Mac-1 may regulate thrombosis via Foxp1
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and TF. We turned our attention to TF because TF initiates
arterial thrombus formation in response to laser-induced injury
of endothelial cells35,36. We first analysed the levels of TF in
PBMCs isolated from WT and Mac-1� /� mice. The expression
of TF is reduced in Mac-1� /� compared to WT leukocytes
(Fig. 4c). To investigate whether TF expression is influenced
by Mac-1–Foxp1 signalling, mouse NIH/3T3 cells were
co-transfected with the TF promoter reporter gene plasmid,
pRSV-b-gal, and expression plasmids for Foxp1 or pcDNA3.1
vector control. Overexpression of Foxp1 significantly inhibited
TF promoter activity in unstimulated (% inhibition¼ 66) and
phorbol 12-myristate 13-acetate-stimulated (% inhibition¼ 78)
cells (Fig. 4d).

To determine whether Mac-1–Foxp1 signalling plays a
critical role in regulating thrombosis in vivo, we subjected mice
with monocyte-/macrophage-specific overexpression of Foxp1
(macFoxp1tg)34 and WT control mice to carotid artery
photochemical injury. Enforced overexpression of Foxp1
significantly prolonged the time to occlusive thrombus
formation from 25.0±4.1 min in WT control to 50.1±16.5 min
in macFoxp1tg mice (n¼ 11–12 per group; Fig. 4e). Interestingly,
TF expression was reduced in Mac-1� /� compared to WT mice
(Supplementary Fig. 2). Hence, the prolonged occlusion time in

the Mac-1� /� mice can be attributed, likely in part, to increased
Foxp1 expression and, consequently, reduced TF expression.

Haemostasis is unimpaired in Mac-1� /� mice. To assess the
role of Mac-1 in haemostasis, we examined tail vein bleeding
times. When placing the transected tail tip into a beaker con-
taining saline at 37 �C and then determining the time to complete
cessation of bleeding, there was no difference in tail bleeding
times between WT and Mac-1� /�mice using either complete
cessation of bleeding for 3 min or 30 s as the criteria for bleeding
time determination. Mean bleeding time for WT mice was
244±173 s compared to 285±151 s for Mac-1� /� mice (n¼ 9
per group) when complete absence of bleeding for 3 min was
the end point (Fig. 5a). With a shorter bleeding cessation period
of 30 s, the bleeding time in Mac-1� /� mice was also similar to
that in WT mice (76±44 versus 64±44 s; Fig. 5b). Similarly,
when blotting the transected tail tip with filter paper and
then determining the time to complete cessation of bleeding,
there was no difference in tail bleeding times between WT
and Mac-1� /� mice. Mean bleeding time for WT mice was
482±145 s compared to 538±207 s for Mac-1� /� mice
(n¼ 7–8 per group; Fig. 5c).
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Mac-1 and GPIba interaction is critical for regulation of
thrombosis. Mac-1, the most abundant b2-integrin on
neutrophils and monocytes, is a highly promiscuous receptor,
capable of binding a broad repertoire of ligands (reviewed in
ref. 15) and facilitating key leukocyte functions, including
migration, coagulation, proteolysis, phagocytosis, oxidative burst
and signalling14,37–40. Elegant structural studies by several groups

have begun to elucidate the molecular basis for such broad ligand
recognition by Mac-1. A subset of integrin a-subunits, including
aM of Mac-1, contains an inserted domain (I-domain) of B200
amino acids that is implicated in ligand binding. The aMI-domain
contributes broadly to the recognition of ligands by aMb2

(refs 18,41), and the binding sites for C3bi, neutrophil
inhibitory factor, fibrinogen and GPIba have been mapped
extensively23,42–46. These studies suggest that overlapping, but
not identical, sites are involved in the recognition of C3bi,
fibrinogen, neutrophil inhibitory factor and GPIba (refs 23,47).
We reported previously that the P201–K217 sequence, which
spans an exposed loop and amphipathic a4 helix in the
three-dimensional structure of the human aMI-domain, was a
binding site for GPIba (ref. 23). Site-directed mutagenesis of the
P201–K217 sequence within the human aMI-domain allowed us to
further narrow the binding region to H210–K217 and subsequently
identified two single mutants showing reduced binding to GPIba
(T213 and R216). Indeed, grafting these two critical amino acids
onto aL (G213T and N216R) converted aLb2 into a GPIba-binding
integrin. Thus, the P201–K217 sequence within the aMI-domain is
necessary and sufficient for GPIba binding. Importantly, this site
appears to be highly selective for the binding of GPIba since
antibody targeting the P201–K217 sequence inhibited the binding
of GPIba, but not other Mac-1 ligands, including fibrinogen,
ICAM-1 and junctional adhesion molecule-3 (JAM-3).

Guided by the identification of the Mac-1-binding site for
GPIba, we took steps towards the generation of a mutant
mouse with a double alanine substitution corresponding to the
homologous murine sequence S213A and R216A (referred to as
muMac-1 mice; Supplementary Fig. 3). We first confirmed that
the GPIba specificity requirement of human aMI-domain also
applied to purified murine aMI-domain. WT and mutant murine
aMI-domains were expressed in Escherichia coli as gluthatione
S-transferase (GST) fusion proteins and purified for use in ligand-
binding assays. The E. coli-expressed aMI-domain has been used
in multiple functional studies from our laboratories45,48 and from
other investigators49. WT aMI-domain (S213 and R216), but not
the S213A/R216A aMI-domain double mutant, bound to soluble
GPIba (Fig. 6a). Importantly, the binding of multiple other
Mac-1 ligands, including ICAM-1, iC3b, CD40 ligand (CD40L)
and fibrinogen, was unaffected by mutation of these two amino
acids required for GPIba binding (Fig. 6b), indicating that the
murine S213A/R216A aMI-domain mutant functions similarly
to human aMI-domain mutants (T213A/R216A) that we
characterized previously23. We also characterized the binding of
fluorescent-labelled WT aMI-domain (S213 and R216), single
aMI-domain mutants (S213A or R216A) and double aMI-domain
mutants (S213A/R216A) to mouse platelets that abundantly
express GPIba. WT aMI-domain (S213 and R216) bound to
mouse platelets and this binding was reduced with both single
and double aMI-domain mutants (Fig. 6c). The residual binding
of the aMI-domain double mutant (S213A/R216A) to platelets may
reflect its binding to other platelet surface ligands, such as JAM-3
(ref. 50) or heparin/heparan sulfate51.

To determine whether Mac-1 regulates thrombosis through its
interaction with platelet GPIba rather than other ligands, we
subjected muMac-1 mice to carotid artery photochemical injury
(Fig. 7a). The mean time to occlusive thrombus formation was
prolonged significantly in muMac-1 (44.8±27.6 min) compared
with WT mice (27.0±10.6 min). Importantly, we verified that
complete blood count of whole blood from muMac-1 mice was
similar to that of WT mice (Supplementary Table 1), and that
platelet activation in response to agonist stimulation (that is,
expression of P-selectin and activated aIIbb3) was unaffected
in platelets isolated from muMac-1 compared to WT mice
(Supplementary Fig. 4). Platelet adhesion (Supplementary Fig. 1g)
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beaker containing saline and the time for complete cessation of bleeding

either for 3 min (a) or 30 s (b) was recorded. Method 2: the transected tail

tip was blotted with filter paper and the time to complete cessation of

bleeding was recorded (c). Mean±s.d. (n¼6–9 per group, each dot

represents one data point from one single mouse). P values are obtained by

unpaired two-tailed t-test.
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and spreading (Supplementary Fig. 1h) on collagen were
unimpaired in muMac-1 mice. Next, we examined haemostasis
in muMac-1 mice. There was no difference in tail bleeding
time between WT and muMac-1 mice (mean bleeding time
WT: 69±35 s versus muMac-1: 65±29 s, n¼ 8–9 per group;
Supplementary Fig. 5a). Finally, key leukocyte functions,

including migration (as assessed by peritoneal macrophage
accumulation after thioglycolate-induced peritonitis) and phago-
cytosis of Red Zymosan fluorescent beads, were unaffected in
muMac-1 mice (Supplementary Fig. 5b,c,d).

Thrombus formation after laser-induced injury to the arteriolar
wall in the cremaster microcirculation of muMac-1 mice was also
compared with that of WT mice, using intravital microscopy30.
In WT mice, platelet accumulation in arterioles was evident
within 15 s of laser injury and increased progressively over the
90 s observation period; in contrast, platelet accumulation was
markedly attenuated in muMac-1 mice (Fig. 7b). Analysis of the
growth curves of continuous, real-time thrombus profiles assessed
by integrated fluorescence intensity of labelled platelets over time
showed marked attenuation of platelet thrombus growth in
muMac-1 mice (WT: 41.3±52.7� 106, n¼ 16 arterioles versus
muMac-1: 4.6±6.6� 106, n¼ 31 arterioles; Fig. 7c,d). Mean %
inhibition over time was 89%. Taken together, these observations
indicate that Mac-1-GPIba regulates both large vessel and small
vessel arterial thrombosis.

Antibody targeting Mac-1:GPIba inhibits thrombus formation.
Having established a role for Mac-1 and its interaction with
platelet GPIba in thrombosis using genetic approaches, we next
investigated the effect of antibody targeting of Mac-1:GPIba
interaction on thrombosis. We have reported previously on the
generation of an antibody targeting aMI-domain P201–K217

(termed anti-M2) that selectively blocks the binding of Mac-1 to
GPIba, but not to other Mac-1 ligands24. This antibody attenuates
inflammation and tissue injury in a variety of animal models,
including restenosis24, vasculitis25, glomulerulonephritis26 and
experimental autoimmune encephalomyelitis27. Anti-M2 (100mg
via tail vein) was injected into mice before photochemical carotid
artery injury. Strikingly, antibody targeting of Mac-1:GPIba
prolonged significantly the time to occlusive thrombus formation
to 70.2±16.8 min in anti-M2-treated mice compared to
23.5±2.1 min in control IgG-treated mice (Fig. 7e).

Small-molecule screen for inhibitors of Mac-1:GPIba binding.
An antibody raised to the M2 peptide sequence in the
aMI-domain of integrin blocks binding of GPIba and platelets to
the integrin and to leukocytes24. The anti-M2 antibody blocks
Mac-1:GPIba binding, but does not inhibit binding of other
Mac-1 ligands. This behaviour suggests that small-molecule
inhibitors of Mac-1:GPIba might be developed for therapeutic
utility. We have taken the initial steps to identify lead compounds
with such blocking activity. We tested the 2,000 compounds in
Spectrum collection from Microsource.

For initial screening of the library, we tested the compounds at
a 100 mM concentration as inhibitors of binding recombinant
fluorescently labelled aMI-domain to Chinese hamster ovary
(CHO) cells expressing GPIbab. A representative screening assay
showing the differential activity of 10 consecutive compounds
tested, including both positive and negative hits, is shown in
Supplementary Fig. 6a. Altogether, we obtained 97 positive hits,
which inhibited the interaction by about 50% and then retested
these at concentrations of 10, 30 and 50 mM. Eliminating those
compounds that did not inhibit or were inhibitory at a single
concentration reduced the number of compounds to 50. Of these,
we moved forward with 36 compounds that were readily
available.

Several approaches were developed to further characterize and
select among the 36 positive hits. As negative selection criteria, we
excluded compounds that caused clumping of neutrophils and
platelets. As a specificity control, we excluded compounds that
inhibited the adhesion of HEK-293 cells expressing Mac-1 to
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from mouse blood by differential centrifugation and incubated with the

aMI-domains for 30 min at room temperature. The platelets were then fixed
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immobilized fibrinogen, another ligand of the integrin.
As positive controls, we measured direct binding of the
compounds to aMI-domain or to GPIba in surface plasmon
resonance (SPR) experiments. Compounds in both categories
were identified, and several bound at low micromolar to
sub-micromolar concentration.

Four more sets of assays have been performed subsequently:
(1) SPR to determine which compounds interacted with the
I-domains of four b2-integrins, aLb2, aMb2, aXb2 and aDb2; (2)

inhibitory activities of the compounds on adhesion of HEK-293
cells expressing aMb2 to CHO cells expressing GPIba; (3) effects
of the compounds on the interaction of naturally occurring cells:
inhibition of human platelet phagocytosis by human neutrophils;
and (4) binding of labelled aMI-domain to human platelets was
assessed, an assay that allowed us to assess the potency of the
compounds as inhibitors of platelet–integrin interaction.

On the basis of these assays, a group that bound specifically to
the aMI-domain was identified. A representative of this group was

90

60

30

0
Control Glucosamine

24.7 ±  8.4 53.2 ± 15.4

P = 0.004

O
cc

lu
si

on
 ti

m
e 

(m
in

)

e f

a

WT

120

80

40

0
muMac-1

27.0 ± 10.6 44.8 ± 27.6

P < 0.001

O
cc

lu
si

on
 ti

m
e 

(m
in

)

Control Anti-M2

60

40

20

0

80

100 23.5 ± 2.1 70.2 ± 16.8

P < 0.001

O
cc

lu
si

on
 ti

m
e 

(m
in

)

b 90 s60 s30 s15 s0 s

c d

WT

muMac-1

0 20 40 60 80 100

30

20

10

0

50

40

70

60

WT

muMac-1

Elapsed time (s)

In
te

gr
at

ed
 fl

uo
re

sc
en

ce
in

te
ns

ity
 (

m
ill

io
ns

)

WT muMac-1

60

40

20

0

100

150

200 41.3 ± 52.7 4.6 ± 6.6

P = 0.013

In
te

gr
at

ed
 fl

uo
re

sc
en

ce
in

te
ns

ity
 (

m
ill

io
ns

)

Figure 7 | Mac-1 regulates thrombus formation through its interaction with platelet GPIba. (a) Occlusion times in WT (n¼ 12) and muMac-1 (n¼ 24)

mice after carotid artery photochemical injury (mean±s.d.). Thrombus formation after laser-induced injury to the arteriolar wall of the cremaster

microvasculature of muMac-1 mice was compared with that of WT mice using intravital microscopy (b–d). Platelets were labelled in vivo using a fluorescein

isothiocyanate-conjugated rat anti-mouse CD41 antibody. (b) Representative intravital images (n¼ 16 for WT and 31 for muMac-1) at indicated times

following laser pulse. Scale bar, 20mm. (c) Continuous, real-time thrombosis profiles of arterioles from one representative experiment. (d) Integrated

fluorescence intensity of platelets in individual arterioles over time (WT: n¼ 16; muMac-1: n¼ 31 arterioles; mean±s.d.). (e) Occlusion times in mice

treated with anti-M2 antibody that disrupts Mac-1-GPIba binding or IgG control (n¼ 6 per group, mean±s.d.). (f) Occlusion times in mice treated with the

small-molecule Mac-1-GPIba inhibitor glucosamine or buffer control (n¼ 6 per group, mean±s.d.). P values are obtained by unpaired two-tailed t-test.
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glucosamine, which we explored in further in vitro and in vivo
experiments. In SPR experiments, WT and aMI-double mutant
were immobilized on CM5 chips, and binding of glucosamine
to the surface was monitored in a BiaCore 3000 instrument.
Under the conditions used, while glucosamine bound to WT

aMI-domain (Fig. 8a, left) in a concentration-dependent manner,
no consistent interaction of the sugar derivative with the
aMI-double mutant was detected (Fig. 8a, right). Because of the
low signal obtained not only with the aMI-double mutant but also
with the WT aMI-domain, we did not attempt to derive binding
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constants from these data. The literature indicates that evaluation
of carbohydrate binding by SPR can be challenging52. Hence, we
increased the coating density of the WT and aMI-double mutant
on the chip from B2,500 relative units (RU) on the chip to
B6,000 RU on the CM5 chip surface. Under this condition,
we detected low-level binding of both WT aMI-domain and the
aMI-domain double mutant (Supplementary Fig. 7) although
the responses obtained with WT aMI-domain was consistently
greater. In attempt to derive a binding constant, we used a steady-
state approach to interpret the data (Fig. 8b), an approach found
to be useful for analysis of progress curves from low-affinity
interactions52. The binding isotherm for WT aMI-domain yielded
an estimated Kd of B100 mM, whereas that of the aMI-double
mutant was B244mM. This difference indicates that one site of
glucosamine binding is influenced by S213A/R216A mutation.
Independent approaches were implemented to verify that
glucosamine inhibits the interaction of aMI-domain with
GPIba. First, binding of biotinylated GPIba to aMI-domain
immobilized on microtitre plates was detected with streptavidin–
horseradish peroxidase (HRP) conjugate. This interaction was
inhibited in a dose-dependent manner by glucosamine (Fig. 8c).
The concentration of glucosamine inhibiting binding by 50%
(IC50) was B50mM, approximating the Kd estimated from
the SPR experiments. Second, an assay in which binding of
Alexa-488-labelled Mac-1-expressing 293 cells to adherent
GPIba-transfected CHO cells was developed. This interaction
was inhibited by an anti-Mac-1 antibody, by an anti-GPIba
antibody or by glucosamine (Fig. 8d). Indeed, in this assay,
glucosamine produced dose-dependent inhibition (Fig. 8e). We
also compared the specificity of glucosamine to several similar
carbohydrate derivatives (Supplementary Fig. 6b). Of these
compounds, only glucosamine produced significant inhibition
of GPIba binding to the aMI-domain (Supplementary Fig. 6b).

To better understand how glucosamine interacts with
aMI-domain, we performed docking analysis to calculate the
potential binding mode of glucosamine by using Schrödinger
Maestro software. Multiple possible conformations were gener-
ated by defining R216 as potential binding site. One conformation
with best docking score of ‘� 4.053’ was selected. In this binding
mode, glucosamine binds to a small pocket of aMI-domain
formed by the a-helix residues from T211 to E221 (Fig. 9a). It is
spatially close to T213 and forms several critical H-bonds with the
side chains of R216, K217, R220 and E221 (Fig. 9b). This docking

mode provides a basis for understanding our mutagenesis study
that showed that T213A/R216A mutant abolished the glucosamine
binding. In comparing the conformation of glucosamine docked
in this model, the root mean squared deviations in the eight next
best fits were all quite similar, varying from � 0.026 to � 0.093,
to that shown in Fig. 9a.

The anti-thrombotic potential of glucosamine as an inhibitor of
Mac-1:GPIba binding was then investigated in the carotid artery
photochemical injury model. Glucosamine (27 mg) or phosphate-
buffered saline vehicle control were administered via tail
vein injection immediately before carotid artery injury. The
small-molecule Mac-1:GPIba inhibitor glucosamine significantly
prolonged thrombus formation to 53.2±15.4 min compared to
24.7±8.4 min for vehicle control (Fig. 7f). We also examined
haemostasis in mice treated with glucosamine. There was no
difference in tail bleeding time between mice treated with buffer
or glucosamine (mean bleeding time buffer: 73±31 s versus
glucosamine: 82±35 s, n¼ 12 per group; Supplementary Fig. 5e).
Taken together, these observations indicate that genetic, antibody
and small-molecule targeting of Mac-1:GPIba binding are
capable of influencing arterial thrombus formation in vivo.

Discussion
In this study, we have identified a new pathway of thrombosis
involving leukocyte Mac-1 and platelet GPIba, and interfering
with this pathway does not affect parameters of haemostasis.
This conclusion is supported by the following data: (1) mice
with deficiency of Mac-1 (Mac-1� /� ) or mutation of the
Mac-1-binding site for GPIba (muMac-1) have delayed thrombus
formation after injury to large and small arteries; (2) platelet
count, platelet activation, plasma coagulation activity and
bleeding time were similar in WT and Mac-1� /� mice;
(3) adoptive leukocyte transfer rescued defective thrombus
formation in Mac-1� /� mice; (4) Mac-1-GPIba induces
‘outside-in’ Mac-1 signalling (that is, phosphorylation of PKC
and downregulation of Foxp1), and Mac-1-dependent regulation
of the transcription factor Foxp1, which regulates TF expression,
contributed to the thrombosis defect as evidenced by prolonged
thrombotic occlusion time in macFoxp1tg mice; and (5) antibody
and small-molecule targeting of Mac-1:GPIba inhibited thrombus
formation.

Platelet–leukocyte interactions bidirectionally induce signals
that amplify pro-inflammatory and pro-thrombotic cellular

Mac-1 I-domain

Glucosamine

Mac-1 I-domain

K217

a b

T213
R216

R220
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Glucosamine

Figure 9 | Binding mode of glucosamine to aMI-domain of Mac-1. (a) Glucosamine binds to a small pocket on aMI-domain of Mac-1 (shown in

surface presentation). (b) Key residues of the aMI-domain (cartoon presentation) potentially involved in the interaction with glucosamine (shown in

stick mode). Potential H-bonds formed between aMI-domain and glucosamine are displayed by red dashed lines.
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responses12. One of the key implications of our findings is the
central importance of leukocyte Mac-1 and platelet GPIba
for leukocyte–platelet interactions in vivo. Other reported
interactions contributing to Mac-1-independent leukocyte–
platelet conjugate formation include thrombospondins bridging
between GP IV receptors on platelets and monocytes53, and
P-selectin on activated platelets binding with leukocyte P-selectin
glycoprotein ligand-1 (refs 54,55). However, stable accumulation
of leukocytes to adherent platelets ex vivo under experimental
conditions of arterial shear or to the endothelial–denuded vessel
lined with platelets in vivo, requires leukocyte Mac-1 and platelet
GPIba (ref. 24). Other potential Mac-1 ligands present on the
platelet membrane include fibrinogen (bound to aIIbb3)56,57,
ICAM-2 (ref. 58) and JAM-3 (ref. 50). However, a leukocyte–
platelet interaction mediated by fibrinogen bridging between
Mac-1 and aIIbb3 has been largely discounted by Ostrovsky
et al.59 who found that neither RGDS peptides nor the
replacement of normal platelets with thrombasthenic platelets
(that is, lacking aIIbb3) affected the accumulation of the
leukocytes on platelets. Although Mac-1 binds ICAM-1, this
receptor is not found on platelets. Platelets express a related
receptor, ICAM-2 (ref. 58), but Diacovo et al.16 have shown that
ICAM-2 blockade has no effect on the firm adhesion of
neutrophils on monolayers of activated platelets under flow.
Santoso et al.50 have reported that Mac-1 may also bind to
platelet JAM-3, cooperating with GPIba to mediate neutrophil–
platelet adhesive contacts in vitro. However, we have reported
previously that anti-M2, which is capable of blocking platelet-
dependent leukocyte recruitment both ex vivo and in vivo,
had minimal inhibitory effect on Mac-1-dependent adhesion to
JAM-3 (ref. 24).

Genetic (muMac-1 mice) and antibody approaches were
utilized to investigate the importance of Mac-1 binding to GPIba,
but not to other Mac-1 ligands in thrombosis. The relative
specificity of anti-M2 inhibitory action towards GPIba (that is,
non-inhibitory towards ICAM-1, fibrinogen, JAM-3 and C3bi)
suggests a minor contribution of other ligands for Mac-1 in the
context of thrombosis.

Previous work from our laboratories has demonstrated that
leukocyte engagement of platelet GPIba via Mac-1 induces
platelet ‘outside-in’ signalling and platelet activation31. We
now provide new evidence that engagement of platelet GPIba
via Mac-1 induces ‘outside-in’ Mac-1 signalling that leads to
phosphorylation of PKC delta and downregulation of Foxp1 in
monocytic cells. Thus, blockade of the initial cell–cell conjugation
mediated by Mac-1:GPIba may prevent bidirectional signalling
that amplify thrombus formation, and account for the
effectiveness of Mac-1:GPIba inhibition in reducing thrombus
formation in vivo.

Having established that adoptive transfer of WT neutrophils or
PBMCs partially corrects the thrombosis defect in Mac-1� /�

mice, one needs to consider the possibility that there may be
distinct mechanisms driving neutrophil versus mononuclear
leukocytes in thrombus formation. While TF may be important
in mononuclear cell-dependent thrombosis, it is controversial
whether neutrophils express TF. Neutrophils are known to
regulate thrombosis through the formation of neutrophil
extracellular traps (NETs), which stimulate thrombus formation
and coagulation and are abundant in thrombi in animal models
of deep vein thrombosis60. The molecular basis of NET
generation (known as NETosis) is a complex process requiring
reactive oxygen species production61 and neutrophil proteases
(that is, neutrophil elastase, myeloperoxidase and peptidylargine
deiminase-4)62. Highly relevant to the present study, Neeli et al.63

have provided evidence that the Mac-1 itself may be involved in
the initiation of changes in the neutrophil cytoskeleton that

facilitate the breakdown of nuclear and plasma membranes for
the releases of NETs.

The present observations suggest a possible target for
therapeutic intervention in cardiovascular and thrombotic
diseases. In particular, the specificity of antibody or small-
molecule inhibitory action towards Mac-1:GPIba suggests that it
might be possible to inhibit pro-thrombotic leukocyte–platelet
interactions without affecting other Mac-1 functions. Our study
identifies glucosamine as one such small-molecule antagonist.
The failure of other molecules of similar size and composition to
glucosamine to block aMI-domain:GPIba interaction augers well
for the possibility of detailed structure–activity analyses to
identify more potent small-molecule antagonists. Our modelling
study (Fig. 9) suggests that several closely related binding modes
would allow glucosamine to bind in close proximity to T213/R216

and interfere with GPIba binding. Ultimately, solving the crystal
structure of glucosamine or other small molecules identified in
our screen or of an anti-M2 bound to the aMI-domain may lead
to a new class of anti-thrombotic therapy. At a more fundamental
level, the results of this study suggest that thrombosis and
haemorrhage may be uncoupled at the level of the Mac-1:GPIba
interaction. In particular, the specificity of antibody or small-
molecule inhibitory action towards Mac-1:GPIba suggests that it
might be possible to inhibit pro-thrombotic leukocyte–platelet
interactions without affecting other Mac-1 functions. Deficiency
of Mac-1 did not interfere with tail bleeding time, platelet
activation and plasma coagulation activity (that is, aPTT
and thrombin generation). The identification of a new platelet-
dependent pathway of thrombosis that does not affect haemo-
static parameters, such as bleeding time and platelet adhesion
and spreading, has possible clinical implications. Thrombotic
cardiovascular diseases, including myocardial infarction and
stroke, are the leading cause of death in developed countries1.
Total US healthcare expenditures in 2009 for coronary heart
disease and stroke were a staggering $165.4 billion and $68.9
billion, respectively1 with pharmacologic therapies estimated
to exceed $20 billion worldwide1. Antiplatelet agents and
anticoagulants are used in the treatment of acute coronary
syndrome and in primary and secondary prevention of coronary
artery disease and stroke64,65. Current drugs are subject to
significant bleeding risk, which is associated with increased
mortality2–4. While new antiplatelet (for example, prasugrel,
ticagrelor and vorapaxar) and anticoagulant (for example,
apixaban, dabigatran and rivaroxaban) agents have been
approved on the basis of superior efficacy or other clinical
advantages (for example, fixed dosing without the need for
monitoring), these therapeutic advances are associated with a
25–30% increase in the rate of bleeding or transfusion. There is
emerging experimental evidence distinguishing the molecular and
cellular mechanisms of haemostasis and thrombosis5,6. The
interaction between leukocyte Mac-1 and platelet GPIba is now
positioned as a novel and targetable mediator of thrombosis, but
not haemostasis (that is, reduced bleeding risk).

Methods
Materials. Antibody to mouse P-selectin/CD62P conjugated to fluorescein iso-
thiocyanate (Wug.E9) and antibody to mouse activated integrin aIIbb3 (GPIIb/IIIa)
conjugated to R-phycoerythrin (JON/A) were purchased from emfret Analytics
(Würzburg, Germany, Catalogue #: D200). Polyclonal antibody (termed anti-M2)
to the Mac-1-binding site for GPIba was generated by YenZym Antibodies, LLC
(South San Francisco, CA). Antibody to TF was purchased from R&D Systems Inc.
(AF3178, Minneapolis, MN). Rose Bengal (4, 5, 6, 7-tetrachloro-30 , 6-dihydroxy-2,
4, 5, 7-tetraiodospiro (isobenzofuran-1(3H), 9 [9H] xanthan)-3-1 dipotassium salt)
was purchased from Sigma-Aldrich (St Louis, MO). Human a-thrombin was
purchased from Haematological Technologies (Essex Junction, VT, Catalogue #
HCT-0020). Collagen (Catalogue # 101562) and arachidonic acid (Cat # 101297)
were purchased from Bio/DATA Corporation (Horsham, PA).
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Mice. All mice had a congenic C57BL/6 background and were maintained in
animal facilities at Case Western Reserve University School of Medicine.

Mac-1� /� mice were generated in the laboratory of Dr Christie Ballantyne39.
Mutant Mac-1 mice expressing the S213A/R216A double-mutant aMI-domain were
generated at Ozgene Pty. Ltd (Bentley, Australia) using Cre-mediated inversion
strategy by flanking an inverted exon 7 fragment, containing the knock-in sequence
with lox66 and lox71 sites66,67. The following four fragments were generated by
PCR from C57BL/6 genomic DNA and cloned into the Ozgene plasmid PacF
10000113-A08: (a) mutant exon 7 fragment (KI)—the KI fragment contained PacI
and ClaI sites for cloning, an EcoRV site for genomic screening and a lox71 site at
the 30-end; (b) WT exon 7 fragment (wt)—the wt fragment contained ClaI and
AscI sites for cloning and a lox66 site at the 50-end; (c) 50-homology arm (5H)—the
5H arm contained AscI and AatII sites for cloning, and NdeI and MfeI sites for
genomic screening; and (d) 30-homology arm (H3)—the H3 arm contained an
AatII site for cloning and an NdeI site for genomic screening. The targeting vector
containing all four fragments was sequenced and introduced into embryonic stem
cells by electroporation. Embryonic stem cells in which homologous recombination
occurred as detected by Southern blot analysis were injected into a mouse
blastocyst to generate chimeric mice. Offspring of chimera�C57Bl/6 mating
confirmed as wt/flox underwent three additional breeding to remove Neo, FLP and
Cre cassettes, and to bring the mutated exon 7 into reading frame. Breeding step 1:
to remove the selection cassette from a heterozygous wt/flox line by breeding to
heterozygous wt/FLP mice. Breeding step 2: to remove the FLP gene and to
generate a global Cre inverted wt/KI line by breeding the wt/floxDneo–wt/FLP line
generated in breeding step1, to homozygous Cre mice. Breeding step 3: to remove
the Cre gene by breeding the wt/KI—wt/Cre mice generated in step 2, back to
C57BL/6J mice. After the establishment of the mutant mouse colony, mice were
routinely genotyped by PCR of genomic tail DNA using the following primers in
two separate reactions to generate a mutant band of 469 bp (YM121 and YM131)
and a WT band of 585 bp (YM121 and YM128): YM121 (50-GTCCTACCTC
GACATGTTCTTTTC-30); YM128 (50-AGCATAGGCTTAATCCACCTCTCT-30);
and YM131 (50-ACACTACTTTGGCGATCCCGGC-30). macFoxp1tg mice were
generated in our laboratory as reported34.

Platelet isolation. Mouse platelets were isolated from the whole blood obtained by
terminal inferior vena cava phlebotomy as described10,68. Briefly, platelet-rich
plasma was prepared by centrifugation, and platelets were suspended in Tyrode’s
buffer. Platelet suspensions were adjusted to final density after counting particles
43 fl using a Z1 series Coulter Counter (Beckman Coulter, Fullerton, CA)
equipped with a 50 mm aperture or were measured as part of a complete blood
count of sodium citrate-anticoagulated mouse blood on a HEMAVET 950FS
system in the Case Comprehensive Cancer Center, Case Western Reserve
University School of Medicine.

Activated partial thromboplastin time. The aPTT was performed using
Amelung KC4 coagulation analyser (Sigma, St Louis, MO), as described
previously10,69. Briefly, 100 ml of sodium citrate-anticoagulated plasma was
incubated with 50ml of aPTT reagent (Siemens, Washington DC) at 37 �C for
5 min. A volume of 50ml of 30 mM calcium chloride was then added and the time
to clot formation was recorded.

Thrombin generation. TF-induced thrombin generation time was performed, as
previously described10,70. Briefly, a 1:2 dilution of mouse plasma was incubated
with B3 pM TF (3ml of 1:60 dilution of stock Innovin, Siemens) and 0.42 mM
Z-Gly-Gly-Arg-AMC. The reaction was initiated with the injection of 0.16 M
calcium chloride, final concentration 16 mM. Substrate hydrolysis was measured on
a fluorescent plate reader (NOVOstar, BMG Labtech). The thrombin generation
data are expressed as an arbitrary rate of fluorescent accumulation as determined
by the second derivative of the raw fluorescent values. The lag time, peak height
and total area under the curve were calculated using Prism software (Graphpad,
San Diego, CA).

Platelet a-granule release and GPIIb/IIIa activation. Platelet activation assay
was performed as previously described10. Briefly, mouse platelets were stimulated
for 10 min at room temperature, with agonists. The Wug.E9 and JON/A antibodies
were added to detect the expression of P-selectin (CD62P) and activated aIIbb3

(GPIIb/IIIa), respectively, following the instructions of the manufacturer. After
20 min, platelets were fixed for fluorescence-activated cell sorting (FACS) analysis
by addition of formaldehyde. Platelets were distinguished on the basis of side- and
forward-light scatter, and the mean fluorescence intensity of platelets was measured
using FACSDiva LSRII (Becton Dickinson) and analysed using FACS Diva 6.2 or
FlowJo v10.

Photochemical carotid artery thrombosis. This thrombosis model was
performed, as previously described10. Briefly, 7- to 9-week-old male mice were
anaesthetized and placed on a dissecting microscope (Leica S4E, Leica
Microsystems, IL, USA). A midline surgical incision was made to expose the right
common carotid artery, and a Doppler flow probe (MC 0.5PSL Nanoprobe, Model

0.5 VB, Transonic Systems, Ithaca, NY) was placed under the vessel. The probe was
connected to a flowmeter (Transonic Systems Model TS420) and was interpreted
with a computerized data acquisition programme (Windaq, DATAQ Instruments,
Arkron, OH). Rose Bengal was injected into the tail vein to administer a dose of
50 mg kg� 1 (refs 28,29). The mid portion of the common carotid artery was then
illuminated with a 1.5 mW green light laser source (540 nm; Melles Griot, Carlsbad,
CA) 5 cm from the artery. Blood flow was monitored continuously from the onset
of injury. The time to occlusion, determined only after the vessel remained closed
with a cessation of blood flow for 10 min, was recorded. In a separate group of
animals, 100 mg of anti-M2 antibody or 27 mg of glucosamine was also infused into
mice via tail vein injection to determine the effect of these GPIba- and Mac-1-
blocking reagents on thrombus formation.

Laser injury to microcirculation using intravital microscopy. Thrombosis was
induced, as previously described in male mice aged 11–12 weeks10,30. Briefly,
thrombus formation in vivo after laser-induced injury to the arteriolar wall in the
cremaster microcirculation of WT was compared with that of Mac-1� /� mice
using intravital microscopy (VIVO, 3I Inc.) performed as described previously30.
Platelets were labelled in vivo using a fluorescein isothiocyanate--conjugated
rat anti-mouse CD41 antibody (BD Pharmingen, San Jose, CA) at a dose of
0.4 mg per g body weight of mouse.

Adoptive transfer experiments. Blood from the inferior vena cava of two mice
was collected directly into 3.8% sodium citrate (9:1 blood:citrate) and diluted
with equal amount of Tyrode’s buffer. PBMCs were isolated using histopaque
(Catalogue #: Histopaque-1077, Sigma-Aldrich, St Louis, MO, USA).
Wright-Giemsa staining showed that monocytes represented up to 70% of the
PBMC population. Neutrophils were isolated from anticoagulated and diluted
blood using Percoll (P1644, Sigma-Aldrich) density gradient centrifugation
method. Wright-Giemsa staining showed 485% purity of neutrophils.

Mouse bleeding times. Tail bleeding times were measured by transecting the tails
of sex (male and female)- and age (2–3 months old)-matched anaesthetized mice
5 mm from the tip, as previously described10,69. The transected tail tip was placed
into a beaker containing saline at 37 �C and the time to complete cessation of
bleeding for 30 s and 3 min was determined with a stopwatch. Alternatively, the
transected tail tip was blotted with filter paper every 15 s and the time to complete
cessation of bleeding was determined with a stopwatch.

TF reporter assay. NIH/3T3 cells were co-transfected with 50 ng of pCMV-b-gal,
0.5 mg of human TF promoter-luciferase and 3.0 mg of pcDNA3.1 vector or
pcDNA3.1/FOXP1 construct DNA by Lipofectamine 3000 transfection reagent
(Thermo Fisher Scientific, Waltham, MA). Two days after transfection, some
samples were treated with 20 nM phorbol 12-myristate 13-acetate for 16 h.
Cells were then lysed by 1� reporter buffer (Promega, Madison, WI) and
measured for firefly luciferase activity using Luciferase Assay System reagents
(Promega) in a GloMax Microplate Luminometer (Promega). b-galactosidase
activity was measured by Enhanced Beta-gal Assay Kit (Genlantis, San Diego, CA).
Duplicate measurements of triplicate wells for each sample were performed
and the TF promoter-luciferase activities were normalized by the activity of the
b-galactosidase internal control.

Mac-1 clustering and signalling. Mac-1-expressing THP-1 monocytic cells were
pre-treated with transforming growth factor-b1 (1 ng ml� 1) and 1,25-(OH)2

vitamin D3 (50 nM) overnight at 37 �C. Six-well plates were coated with full-length
soluble GPIba (R&D) or N-terminal GPIba (GC300) for 2 h at room temperature,
then blocked by 0.1% polyvinylpyrrolidone (PVP, Sigma) at 37 �C for 1 h. Wells
coated with PVP alone were used as control. THP-1 cells were treated with the
b2-integrin-activating monoclonal antibody (mAb) KIM185 (10mg ml� 1) and then
added to wells coated with full-length GPIba or N-terminal GPIba (GC300) to
induce Mac-1 clustering and adhesion. After incubation for 2 h at 37 �C, adherent
cells (Mac-1-clustered) or non-adherent cells exposed to PVP control wells
(non-clustered) were collected, washed and lysed in 1� RIPA buffer. Protein
concentrations were determined by BCA assay, and protein samples (20 mg per
lane) were resolved on 4–12% NuPAGE gel for western blot by anti-Phospho-PKC
delta (tyr311) antibody (10ml per 10 ml reaction, Catalogue #: 2055, Cell Signaling
Technology). The membrane was re-blotted using anti-total PKC delta (10 ml
per 10 ml reaction, Catalogue # ab182126, Abcam) and anti-b-actin (1 mg ml� 1,
Catalogue # A1978, Sigma-Aldrich) antibodies. Bands were visualized with
HRP-conjugated secondary antibody followed by the enhanced chemiluminescence
western blotting detection system (PerkinElmer Life and Analytical Sciences,
Waltham, MA). For experiments evaluating the effect of Mac-1 clustering on the
expression of Foxp1, THP-1 cells were added to wells pre-coated with 0.1% gelatin
and gel-filtered human platelets or gelatin-coated wells alone overnight at 37 �C.
Cells were then collected as above for immunoblotting with anti-Foxp1
antibody (1mg ml� 1, customer-designed polyclonal antibody raised against
CDHDRDYEDEPVNEDME by Zymed Laboratories Inc., South San Francisco,
CA) as described previously34.
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Thioglycolate-induced peritonitis and isolation of macrophages. Peritonitis
was induced in 12- to 20-week-old mice by intraperitoneal injection of 1 ml sterile
3% (wt/vol.) thioglycolate broth. At 48–72 h, peritoneal cavities were lavaged by
injecting 10 ml sterile PBS buffer twice with gentle abdominal massage. Leukocytes
in the lavaged fluid were counted and macrophages were enriched after brief
adhesion to tissue culture plastic to remove non-adherent lymphocytes, resulting in
495% macrophages.

Phagocytosis assay. Live functional (adherent) peritoneal macrophages collected
using the above method were aliquoted onto two 96-well plates for phagocytosis
assay. Macrophages in one 96-well plate were stimulated by lipopolysaccharide
(10 mg ml� 1) for 24 h, followed by incubation with sonicated pHrodo Red
Zymosan, a bioparticle fluorescent beads (from ThermoFisher Scientific), for 2 h at
37 �C. Cells on another plate were stained by BCECF to count seeded/treated live
cells for further calibration of phagocytic cell number. The fluorescence intensity of
pHrodo beads and BCECF-treated cells were recorded by fluorescent plate reader
(CytoFluor II, PerSeptiveBiosystems). Images were captured by EVOS FL
(LifeTechnologies).

Expression of recombinant mouse aMI-domains. Mouse aMI-domain was
expressed as a GST fusion protein. The coding region of the mouse I-domain
(residues E132–A318) was PCR-amplified using the cDNA of murine aM as a
template, and the product was cloned into the pGEX-4T-1 expression vector
(GE Healthcare Life Sciences, Little Chalfont, UK). The DNA sequence was
verified, and the plasmid was used to transform E. coli strain BL-21 competent
cells. Expression was induced with 5 mM isopropyl-1-thio-b-D-galactopyranoside
(Sigma-Aldrich) for 3–5 h at 37 �C. The fusion protein was purified from the E. coli
lysate by affinity chromatography on glutathione–Sepharose (GE Healthcare Life
Sciences).

To mutate the residues corresponding to S213 (corresponds to T213 in human
aM) and R216 to alanines, site-directed mutagenesis was performed by using the
QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies, Santa
Clara, CA) according to the manufacturer’s protocol. The pGEX-4T-1 construct
containing WT mouse I-domain DNA was modified by PCR using two 52-mer
mutagenic primers: 50-GAATGGGAGGACAAAAACTGCCGCCGGGATCGCAA
AAGTAGTGAGAGAACTG-30 (forward) and 50-CAGTTCTCTCACTACTTTTG
CGATCCCGGCGGCAGTTTTTGTCCTCCCATTC-30 (reverse). The product was
treated with Dpn I endonuclease to digest the parental DNA template, and nicked
vector was then transformed into the Gold Ultracompetent XL cells (Agilent) of the
E. coli BL-21 strain. Individual bacterial clones were analysed by sequencing, and
the presence of the desired mutations and the absence of other mutations in the
cloned cDNA were verified. Expression and purification of the mutant I-domains
as a GST-fusion protein followed the same procedure as for WT aMI-domain.

Expression of recombinant soluble GPIba. cDNA encoding amino acids 1–300
of GPIba was amplified by PCR and cloned into the NheI and XhoI sites of pBIG-
4f (ref. 71). CHO Tet-On cells (Clontech, Mountain View, CA) secreting the
recombinant GPIba-300 peptide were incubated for 48 h in serum-free medium
(EX-CELL 302; Sigma) containing 10 mM biotin (Sigma) and 2 mg ml� 1

doxycycline (Sigma). Conditioned medium was concentrated and desalted to
remove free biotin using a PD-10 column (Sigma).

Solid phase assays to test specificity and screen inhibitors. Ligand specificity of
WT and mutant murine aMI domains. Wells of Costar 96-well HB plates were
coated with 200 ml of 2 mg ml� 1 soluble GPIba, CD40L, iC3b and ICAM-1
(all R&D Systems, Minneapolis, MN), or 1 mg ml� 1 human fibrinogen (Enzyme
Research Laboratories, South Bend, IN) at 4 �C overnight and 1 h at 37 �C.
DH fragment (molecular weight 100 kDa) was prepared by digestion of human
fibrinogen with plasmin (Sigma-Aldrich) followed by ion-exchange chromato-
graphy on CM-Sephadex and by gel filtration on Sephacryl S-200 (both from
Sigma), as described72. Unlike fibrinogen, DH fragment contains an exposed aMb2

recognition site and supports aMb2-dependent binding in a dose-dependent
manner46. The wells then were post-coated 1 h at 22 �C with 300 ml 0.5% PVP
(Sigma-Aldrich). GST-tagged aMI-domains were diluted with Hank’s balanced salt
solution (HBSS) containing 20 mM HEPES (pH 7.4), 2 mM CaCl2 and 2 mM
MgCl2 (HBSS/HEPES) to 5 mg ml� 1 and added to the wells in 200 ml aliquots.
As background controls, wells were coated with PVP only. After 1 h incubation at
37 �C, plates were washed with HBSS/HEPES and 200 ml of 5 mg ml� 1 anti-GST
antibodies conjugated to HRP in HBSS/HEPES, containing 0.5% BSA were added.
After 1 h at 37 �C, the plates were washed with HBSS/HEPES, containing 0.1%
Tween 80, and 200ml HRP liquid substrate (Sigma-Aldrich) was added. After
5 min, the reaction was stopped by addition of 50 ml 1 M H2SO4 and absorbance
at 450 nm was measured in a multiwell plate reader (Molecular Probes).

Inhibition assays. Several different variations of microtitre plate assays (96-well
TC Costar plates) were used to test inhibitors of aMb2:GPIba interaction. In one
variation, plates were coated with 150ml aMI-domain (1 mg ml� 1) overnight
4 �Cþ 1 h 37 �C. Plates were post-coated with 200ml BSA (5 mg ml� 1) for 1 h at
room temperature and then washed with 150 ml HBSS, containing 20 mM HEPES
(pH 7.2), 2 mM CaCl2 and 2 mM MgCl2 (HBSS/HEPES). Anti-aM mAb M1/70,

anti-M2 peptide, glucosamine or related carbohydrates at the indicated
concentrations were added. Plates were incubated for 20 min at 22 �C, and then 3 ml
of GPIba–biotin conjugate (0.25 mg ml� 1) were added. After 30 min at 37 �C, the
plates were washed with HBSS/HEPES, and 150ml streptavidin–HRP conjugate was
added. After 30 min at 37 �C the plates were washed with HBSS/HEPES. Bound
GPIba was detected using 3,30 ,5,50-tetramethylbenzidine liquid substrate (Sigma),
and absorbance was measured at 450 nm.

In another variation, Mac-1-expressing HEK293 cells73 and cells co-expressing
the cDNAs for GPIba and GPIbb in CHO cells were prepared as described74.
Binding of Alexa-488-labelled Mac-1 cells to GPIba/b cells grown in microtitre
plate wells was assessed in the presence of anti-Mac-1 (ICRF44), anti-GPIba
(VM16d) or glucosamine. After 30 min at 37 �C, the plates were washed a
minimum of three times and absorbance was read in a microtitre plate reader.
A third assay was used to screen the 2,000 small molecules within the Spectrum
collection from Microsource. GPIba/b cells were grown to confluence in microtitre
plates. After washing, Alexa-488-labelled aMI-domain (1 mg ml� 1) was added
together with 100 mM (final concentration) the test inhibitor in HBSS containing
10 mg ml� 1 BSA in a total volume of 200 ml aliquots. As background control, wells
coated with PVP only. After 30 min at 37 �C, plates were washed with HBSS/
HEPES and read in a spectrophotometer; background binding was taken as the
absorbance in the presence of mAb (ICRF44). Each test compound was tested in
triplicate, and eight wells on each plate were used to determine background,
nonspecific binding.

Surface plasmon resonance. Binding of glucosamine to human WT and mutant
aMI-domains was assessed in real time by SPR using a Biacore3000 instrument
(Biacore, Uppsala, Sweden). The aMI-domains were immobilized on CM5
biosensor chips using the standard amine coupling chemistry according to the
manufacturer’s instructions to achieve either a typical (2,500 RU) or higher coating
density (6,000 RU). Experiments were performed at room temperature in 10 mM
HEPES (pH 7.4) containing 150 mM NaCl and 0.005% surfactant P20 at a flow rate
of 25 ml min� 1. SPR sensograms were obtained by injecting various concentrations
of glucosamine over the immobilized aMI-domain proteins. The chip surfaces were
regenerated by injecting a short pulse of 5 mM NaOH. The curves of buffer only
and the blank flow cell were subtracted from the binding curves, and the resulting
progress curves were analysed in overlay plots using BIAevaluation software
(version 4.01, GE Healthcare) or a steady-state approach.

Molecular docking of glucosamine on the aMI-domain. Molecular docking was
performed using Maestro 9.9 software (Schrödinger Release 2014-3, Schrödinger,
LLC) with the following procedures.

Ligand preparation. The structure of D-glucosamine in structure data file (SDF)
format was downloaded from PubChem (PubChem CID:439213). It was later
processed using ‘LigPrep’ module in Maestro. The compound was desalted, and
possible ionization states in the pH range of 5.0–9.0 and tautomers were generated
by Epik mode in the force field of OPLS_2005.

Protein preparation. The coordinates of aMI-domain was derived from the
Protein Data Bank (PDB code: 1BHO). Before docking, the protein was processed
and refined with ‘Protein Preparation’ module in Maestro.

Docking grid generation. The residue R216 of aMI-domain was used to define the
centre of the docking pocket; the scaling factor and the partial charge cut-off of the
van der Waals radii were set to 1.0 and 0.25, respectively. This step was done by
using ‘Receptor Grid Generation’ module in Maestro.

Glide docking. Prepared glucosamine was docked into the defined binding
pocket using SP (standard-precision) and XP (extra-precision) docking modes,
respectively. The docking conformation analysis was performed using PyMol
(Version 1.3, Schrödinger, LLC).

Statistical analysis. Data are presented as mean±s.d. Comparisons between
groups were performed by unpaired, two-tailed Student’s t-test. Probability values
o0.05 were considered significant.

Study approval. Animal care and procedures were reviewed and approved by the
Case Western Reserve University School of Medicine Institutional Animal Care
and Use Committees and performed in accordance with the guidelines of the
American Association for Accreditation of Laboratory Animal Care and the
National Institutes of Health.

Data availability. The data supporting the findings of the current study are
available from the corresponding author on reasonable request.
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