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Abstract: Hypervirulent K. pneumoniae (hvKP) strains possess distinct characteristics such as hyper-
mucoviscosity, unique serotypes, and virulence factors associated with high pathogenicity. To better
understand the genomic characteristics and virulence profile of the isolated hvKP strain, genomic
data were compared to the genomes of the hypervirulent and typical K. pneumoniae strains. The
K. pneumoniae strain was isolated from a patient with a recurrent urinary tract infection, and then the
string test was used for the detection of the hypermucoviscosity phenotype. Whole-genome sequenc-
ing was conducted using Illumina, and bioinformatics analysis was performed for the prediction of the
isolate resistome, virulome, and phylogenetic analysis. The isolate was identified as hypermucovis-
cous, type 2 (K2) capsular polysaccharide, ST14, and multidrug-resistant (MDR), showing resistance
to ciprofloxacin, ceftazidime, cefotaxime, trimethoprim-sulfamethoxazole, cephalexin, and nitrofu-
rantoin. The isolate possessed four antimicrobial resistance plasmids (pKPN3-307_type B, pECW602,
pMDR, and p3K157) that carried antimicrobial resistance genes (ARGs) (blaOXA-1, blaCTX-M-15, sul2,
APH(3′′)-Ib, APH(6)-Id, and AAC(6′)-Ib-cr6). Moreover, two chromosomally mediated ARGs (fosA6
and SHV-28) were identified. Virulome prediction revealed the presence of 19 fimbrial proteins, one
aerobactin (iutA) and two salmochelin (iroE and iroN). Four secretion systems (T6SS-I (13), T6SS-II (9),
T6SS-III (12), and Sci-I T6SS (1)) were identified. Interestingly, the isolate lacked the known hyper-
mucoviscous regulators (rmpA/rmpA2) but showed the presence of other RcsAB capsule regulators
(rcsA and rcsB). This study documented the presence of a rare MDR hvKP with hypermucoviscous
regulators and lacking the common capsule regulators, which needs more focus to highlight their
epidemiological role.

Keywords: antimicrobial resistance; hvKP; K2 capsule; ST14; fimbrial proteins; aerobactin

1. Introduction

Klebsiella pneumoniae is a Gram-negative bacterium associated with invasive hospital-
acquired infections [1]. Hypervirulent K. pneumoniae (hvKP) overproduces a polysaccharide
capsule and is an important clinical pathogen responsible for several infections in healthy
and immunosuppressed patients [2,3]. The presence of capsular polysaccharides (CPS) and
lipopolysaccharides (LPS) are associated with organism dissemination and virulence [4].
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This pathotype with hypermucoviscosity has acquired antimicrobial resistance capable of
causing serious invasive disease, unlike the old drug-susceptible strains [3]. The presence
of hvKP has been linked to endophthalmitis, pneumonia, liver abscesses, and meningitis [5].
The hvKP phenotype, which contributes to the hypermucoviscous phenotype, is related to
the presence of a virulence plasmid containing two capsular polysaccharide regulator genes
(rmpA and rmpA2) as well as multiple siderophore gene clusters and capsular K antigens
(K1, K2, K5, K20, K54, and K57) [6,7]. Most of the hvKPs belong to a small collection of
clonal groups; the more dominant groups are CG23 and include ST23, 26, 57, and 1633 [8].

Capsules, siderophores, lipopolysaccharides (LPS), fimbriae, outer membrane proteins,
and type 6 secretion systems (T6SS) are among the virulence components that contribute to
hvKP strains [9]. Most of the hypermucoviscous and hypervirulent strains of K. pneumoniae
are characterized by the presence of the rmpA and rmpA2 (transcriptional activators, which
regulate the mucoid phenotype) regulatory genes [10], but in a few cases, these strains
could lack the rmpA and rmpA2 regulators [8,11].

Aerobactin is considered one of the most critical virulence factors in hvKP and is used
for the definition of hypermucoviscous strains such as hvKP [6]. Aerobactin-producing
isolates are more likely to cause a severe immune response in the host and more invasive
infections [6]. In Taiwan, hypermucoviscosity was seen in 88.8% of K. pneumoniae isolates
from individuals with pyogenic liver abscesses [12]. A purulent liver abscess caused
by a very invasive community-acquired K. pneumoniae has recently been reported [3].
Furthermore, an outbreak of ST11-type carbapenem-resistant hvKP was reported in a
Chinese hospital in 2016 [13].

Most of the hvKPs have remained susceptible to a variety of routinely used antimi-
crobial agents with the exception of ampicillin, but recently MDR isolates have been
increasingly reported worldwide [14–16]. Carbapenem-resistant K. pneumoniae strains from
the clonal group (CG) 258 are the most prevalent, with ST258 and ST11 being the most
common multilocus sequence types globally [17]. The acquisition of virulence plasmids by
K. pneumoniae harboring the insertion of the drug resistance genes blaKPC-2 and catA1 has
been reported [18,19]. According to Hao et al. [3] the rates of the virulence-associated genes
rmpA, iroB, fib, and hib were considerably greater in hvKP than in non-hvKP. Furthermore,
plasmids carrying two replicons (IncHI1B–IncFIB and IncFIIK–IncFIBK) coding for drug-
resistant and virulence genes were discovered [20,21]. The presence of a wide range of
β-lactamases, aminoglycoside, and carbapenem-resistant genes could result in the increas-
ing difficulty of treatment and long hospital stays [16,22]. More recently, hvKP belonging to
ST147 in COVID-19 patients has been reported in Italy with three plasmid replicons of the
IncFIB (Mar), IncR, and IncHI1B types as well as different resistance genes [23]. Addition-
ally, fourteen colistin-resistant K. pneumoniae (CoRKp) strains were screened retrospectively
in China between 2017 and 2018 [24]. Among them, six CoRKp strains belonging to ST11
were MDR [24].

Khartoum is one of the most crowded cities in Africa [25,26] which facilitates the
horizontal transfer of antimicrobial-resistant bacteria. Additionally, Sudan suffers from the
inappropriate use of antibiotics; most of the antibiotics are frequently sold over the counter
and even without a medical prescription [27,28]. In a recent study conducted in Khartoum
state, strains positive for β-lactamase and carbapenemase genes have been reported in hvKP
isolates [29]. To better understand the genomic characteristics and virulence profile of the
newly isolated hvKP strain (named 9KP), this comparative genomic study was conducted.

2. Results
2.1. Patient Details and Phenotypic Characterization of the Isolate

The isolate was obtained from a patient with CKD in Soba University Hospital in
Sudan, and it was identified with a hypermucoviscous phenotype using the string test, in
which mucus is measured more than 9 cm by lop (Supplementary file 1, Figure S1). The
isolate was classified according to CLSI breakpoints as MDR when showing resistance
to ciprofloxacin, ceftazidime, cefotaxime, trimethoprim-sulfamethoxazole, cephalexin,
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nitrofurantoin, amoxicillin-clavulanic acid, and ampicillin, while it was susceptible to
meropenem, imipenem, amikacin, and gentamicin. A high resistance level was observed
for cephalosporins and penicillin, in which a no inhibition zone (0 mm) was observed
for amoxicillin-clavulanic acid and ampicillin. Additionally, for the first-generation and
third-generation cephalosporins, a small zone of inhibition (10 mm) was observed. Among
non-β-lactams, a high resistance level was observed for trimethoprim-sulfamethoxazole
(0 mm) and a small zone of inhibition (10 mm) was observed with ciprofloxacin (Table 1).

Table 1. Antimicrobial susceptibility testing of selected antimicrobial agents used against 9KP strain.

Antibiotic Inhibition Zone (mm) MIC (µg/mL) Susceptibility a

ciprofloxacin 12 128 R

ceftazidime 10 - R

cefotaxime 10 128 R

trimethoprim-
sulfamethoxazole No inhibition - R

cephalexin 10 - R

nitrofurantoin 10 - R

amoxicillin-clavulanic acid No inhibition - R

ampicillin No inhibition 1024 R

tetracycline - 256 R

meropenem 32 - S

imipenem 30 - S

amikacin 20 - S

gentamicin 20 4 S

chloramphenicol - 4 S
Abbreviation: R = Resistant, S = Sensitive, - = Not tested, mm = millimeter; a Antimicrobial susceptibility testing
determined according to CLSI guidelines [30].

For the determination of the minimum inhibitory concentrations (MIC) of the an-
tibiotics, we used the microtitre broth dilution method, which revealed that the isolate
possessed a high resistance level against ampicillin (MIC = 1024 µg/mL), tetracycline
(MIC = 256 µg/mL), cefotaxime (MIC = 128 µg/mL), and ciprofloxacin (MIC = 128 µg/mL),
while two antimicrobial (gentamicin and chloramphenicol) scored a very low MIC (4 µg/mL),
falling within the susceptibility range according to CLSI guidelines [30] (Table 1).

2.2. Genome Characteristics and Typing

The total genome was assembled into 5364730 bp, with 83 contigs and an average con-
tig length of 64635, while N50 was 220979, L50 7, the average coverage was 100X, and the GC
content was 57.3%. The total number of predicted genes was 5248, 76 tRNA, and 202 genes
associated with stress response, defense, and virulence (Supplementary file 1, Figure S2).
The isolate was identified as K. pneumoniae with sequence type (ST) 14 by the Institut Pasteur
MLST and MLST 2.0 databases. The global platform for genomic surveillance, Pathogen-
watch, was used for the prediction of the capsule (K) and O serotypes; the isolate was
identified with the K2 (wzi2 genotype) capsule and O1 serotype. The 9KP strain harbored
ten antimicrobial resistance genes including β-lactam resistance genes (blaOXA-1, blaCTX-M-15,
and blaSHV-28), sulfonamide resistance (sul2), fosfomycin resistance (fosA6), aminoglycoside
resistance (APH(3′′)-Ib, APH(6)-Id, and AAC(6′)-Ib-cr6), and the gene causing resistance to
tetracycline (tet(A)). The chloramphenicol O-acetyltransferase (CatB3) gene was detected
in the 9KP strain with 70% coverage and 100% identity (Supplementary file 1, Table S1).
Additionally, three efflux pumps were identified, including K. pneumoniae KpnF, LptD,
and oqxA. Two chromosomal mutations conferring resistance to fosfomycin (E350Q) and
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elfamycin EF-Tu (R234F) were also identified. The PlasmidFinder tool revealed the pres-
ence of four plasmid replicons (Col440II, IncFII, IncFIB(K), and IncFII(K)) in the 9KP strain
with 100% identity and coverage. Additionally, the use of a BLASTn search against the
PLSDB database revealed the presence of four plasmids in the 9KP strain, carrying different
ARGs, pKPN3-307_type B, pECW602, pMDR, and p3K157, which showed a matching of
99.56%, 99.75%, 100%, and 100%, respectively. The pKPN3-307_type B plasmid of the
K. pneumoniae strain H151440672 was identified in our strain as carrying genes correspond-
ing to blaCTX-M-15, RND efflux, and IS1 sequences (Supplementary file 1, Figures S3 and S4).
The Escherichia coli plasmid pECW602 was detected in the 9KP strain carrying different
mobile elements and ARGs-encoding genes, which included sulfonamide (sul2) and amino-
glycoside resistance genes (APH(3′′)-Ib and APH(6)-Id) (Figure 1). K. pneumoniae pMDR
was identified with two transposases capturing tet(A) MFS-family efflux-pump-encoding
genes (Supplementary file 1, Figure S5). Moreover, we detected the chloramphenicol O-
acetyltransferase (CatB3) gene, class D beta-lactamase (blaOXA-1), and aminoglycoside N(6′)-
acetyltransferase (aac(6′)-Ib-cr) genes in the 9KP plasmid (p3K157) (Supplementary file 1,
Figure S6) while SHV-28 and fosfomycin resistance (fosA6) genes were detected only in chro-
mosomal sequences and were absent in the assembled plasmid, indicating their possible
chromosomal association.

One plasmid belonging to the IncFIB(K) type was identified by a BLASTn search
against PLSDB and showed 99.7% identity to the K. pneumoniae strain SCKP020143 plasmid
p1_020143, and it was negative for ARGs (Supplementary file 1, Figure S7).

The virulence factor database was used for the prediction and comparison of the
virulence genes of the 9KP strain with others. Different types of fimbrial proteins were
discovered including type I (10), type 3 (8), and type IV pili (pilW) (Table 2) (Supplementary
file 1, Table S2). A total of 15 iron uptake proteins were identified, including 1 aerobactin
(iutA), 12 Ent siderophores, and 2 salmochelin, while it lacked the other aerobactin (iucA,
iucB, iucC, and iucD) reported in the hvKP strains (NTUH-K2044 and KCTC 2242). The
most closely related strains (kkp066 and kkp0e7) were positive for the hvKP marker,
the RmpA gene, and lacked aerobactin (iucA, iucB, iucC, and iucD), similar to our strain.
High similarity in the iron uptake system of 9KP and the other Sudanese strain (23KE)
was observed, including the complete absence of genes related to yersiniabactin and the
presence of two salmochelin and one aerobactin. Four secretion systems that are crucial
virulence factors of pathogenic bacteria were identified in the 9KP strain, including T6SS-I
(13), T6SS-II (9), T6SS-III (12), and one Sci-I T6SS exclusively detected in our strain. The
isolate was positive for two RcsAB (rcsA and rcsB) regulatory proteins and one serum
resistance LPS protein. The mediator of the hyper adherence YidE in enterobacteria and its
conserved region were predicted in the isolate.
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Table 2. Comparison of virulence factors of K. pneumoniae 9KP with other control strains (K. pneumoniae 342, MGH 78578, NTUH-K2044, 1084, HS11286, JM45,
KCTC 2242, SB3432) and the most related strains (kkp066, kkp0e6, and 23KE).

Virulence Factor Related Genes 9KP 342 MGH78578 NTUH-K2044 1084 HS11286 JM45 KCTC 2242 SB3432 kkp066 kkp0e6 kkp0e7 23KE

Adherence
Type 3 fimbriae 8 + + 7 + + + + + + + + 7 +
Type I fimbriae 10 + + + + + + + + + 9 9 8 +

Type IV pili 12 1 - - - - - - - - - - - -
Antiphagocytosis

Capsule 1 + + + + + + + + + + + + +
Efflux pump

AcrAB 2 + + + + + + + + + 1 + + +
Iron uptake

Aerobactin 5 1 1 1 + 1 1 1 + + 1 1 1 1
Ent siderophore 13 12 + + + + + 12 + - 12 10 11 +

Salmochelin 5 2 2 2 + 4 2 2 2 4 2 2 2 2
Yersiniabactin 11 - - - + + + - - - - + + -

Nutritional factor
Allantoin
utilization 6 - - - + + - - - - + - - -

Regulation
RcsAB 2 + + + + + + + + + + + + +
RmpA 1 - - - + - - - + - 1 - 1 -

Secretion system
T6SS-I 18 13 11 11 13 13 + + + 10 16 15 15 12
T6SS-II 10 9 + 8 1 1 1 1 - 4 1 1 - 1
T6SS-III 18 12 + 11 14 13 14 13 14 11 10 8 5 12

Sci-I T6SS 27 1 - - - - - - - - - - - -
Serum resistance

LPS rfb locus 1 + + + + + + + + + + + + -
Toxin

Colibactin 18 - - - - + - - - - - - - +

Key: + means the presence of the same number of genes, - means gene absent, numbers in tables indicate numbers of virulence-factors-related genes.
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2.3. Comparative Genomics and Phylogenomics Analysis

After the genome comparison, the species formed 6142 protein clusters, 3185 orthol-
ogous, and 2957 single-copy gene clusters. 9KP showed 192 single-copy genes and 4843
proteins clustered with others (Supplementary file 1, Table S3). A high degree of variability
was observed at different chromosomal regions of 9KP, which contains ARGs, incF plasmid
proteins, IS, and other mobile elements.

Comparative genomics revealed that the strains TCC BAA-2146, 23KE, kkp066, kkp0e6,
and NTUH-K2044 exhibited a high similarity to 9KP, in which different virulent regions
were similar, such as the outer membrane protein OmpN, LysR-type transcriptional reg-
ulators, kinase, and fimbrial proteins (Figure 2) detected at a region located between the
chromosomal range 1.5–1.6 Mb. Ferric enterobactin-related proteins and phage-related
proteins were clustered in K. pneumoniae 9KP similarly to the strains ATCC BAA-2146 and
NTUH-K2044 (Figure 3), while the secretion systems T6SS were located in a region adjacent
to the VgrG protein, transposases, putative kinase, mobile elements, transcriptional regula-
tor, LysR family, and phage proteins. The PTS system in the 9KP strain was most similar to
the PTS system of the 23KE strain from Sudan others (Supplementary file 1, Figure S3, and
Supplementary file 2).

A phylogenetic tree was generated among the African strains by the iTOL—Interactive
Tree of Life—Klebsiella Pasteur MLST database. The 9KP strain was clustered in a clade
containing three strains from Kenya, one was isolated from a patient with a soft tissue infec-
tion (kkp066) and the others (kkp0e6 and kkp0e7) were isolated from hospital environment.
And it was also clustered to one MDR Sudanese strain (K23) isolated from drinking water
in Khartoum state (Figure 4).
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3. Discussion

Hypervirulent K. pneumoniae strains possess distinct morphological and genotypic
characteristics when compared to other classical strains, which include the production
of colonies with hypermucoviscosity, unique serotypes, and virulence factors associated
with high pathogenicity [31]. Except for ampicillin, most of the hvKPs have remained
susceptible to a variety of routinely used antimicrobial drugs, but recently MDR isolates
have been increasingly reported worldwide [14–16]. The present study reported MDR
hvKP in a patient with a recurrent UTI, and it harbored genes conferring resistance to
β-lactam (blaOXA-1, blaCTX-M-15, and blaSHV-28), sulfonamide (sul2), fosfomycin (fosA6), and
aminoglycoside (APH(3′′)-Ib, APH(6)-Id, and AAC(6′)-Ib-cr6). The presence of a wide range
of β-lactamases and aminoglycoside-resistant genes could result in the increased difficulty
of treatment and long hospital stays [16,22]. Klebsiella species are known to have intrinsic
resistance to ampicillin [32], and here we reported a very high resistance level to ampicillin
(MIC ≥ 1024 µg/mL). This could be a result of the presence of additional beta-lactamases
(blaCTX-M-15, blaOXA-1, and blaSHV-28). A high resistance level was also observed against
cefotaxime (MIC ≥ 128 µg/mL), which could be attributed to the presence of blaCTX-M-15
which possesses a high hydrolytic activity against cefotaxime [33]. Although the isolate
harbored chloramphenicol O-acetyltransferase (CatB3), the isolate was highly susceptible
to chloramphenicol. This could be due to the truncation of the gene, which only showed
70% coverage to the references.

Our isolate harbored an IncF plasmid, insertion sequences, and phage-associated
proteins at regions containing ARGs and virulence genes, which reflect their possible
role in the horizontal gene transfer and dissemination of such strains [16]. The IncF
plasmids are thought to play a significant role in the acquisition of MDR genes [34,35],
which could increase the chance for the acquisition of genes such as the blaKPC carbapenem
resistance gene.

We identified four plasmids that carried different ARGs and transposases. The
presence of the ARGs plasmids in the hvKP strain, which is known to be a more drug-
susceptible strain [36], could be a reason for the presence of the MDR phenomenon in
our isolate. Additionally, these plasmids may result in the mobility of these ARGs to
drug-susceptible isolates.

Our isolate harbored a pKPN3-307_type B plasmid that carried genes corresponding
to blaCTX-M-15, RND efflux, and IS1 sequences; similar plasmids carrying blaCTX-M-15 with
transposases have been reported in the KPC-producing K. pneumoniae ST307 strain in the
UK [37]. The presence of the CTX-M gene in the mobile elements could be the reason for
the current dissemination of the CTX-M-positive isolates in our region [38,39]. Moreover,
the isolate possessed the heavy metal (copper(I)/silver(I)) efflux pump (RND efflux);
isolates resistant to silver have more affinity to establishing hospital and environmental
outbreaks [40]. Interestingly, the 9KP strain harbored the plasmid pECW602, which is
a novel plasmid reported recently in an extensively drug-resistant (XDR) E. coli isolate
in China [41]; here we reported it for the first time in a K. pneumoniae (9KP) isolate with
high identity (99.75%) and high coverage (744). The 9KP plasmid (pECW602) and E. coli
pECW602 plasmid carried a similar pattern regarding the presence of sulfonamide (sul2)
and aminoglycoside resistance genes (APH(3′′)-Ib and APH(6)-Id). The gene responsible
for the resistance to tetracycline (tetA) associated with the MFS family efflux pump was
identified in the K. pneumoniae 9KP strain pMDR plasmid; the gene expression of the
MFS-type tetA has been documented in different Gram-negative isolates [42,43]. tet(A)-
bearing K. pneumoniae was reported with a high tetracycline and tigecycline resistance
level [42]. Adding to that, another tetracycline resistance efflux (oqxA) was discovered in
our isolate [44]. In addition to plasmid-mediated ARGs, two genes (fosA6 and SHV-28) were
not detected among the assembled plasmids of the 9KP strain but they were present in the
chromosomes; the fosfomycin resistance gene (fosA6) and the broad spectrum B-lactamase
SHV-28 gene are commonly reported in K. pneumoniae chromosomes [45–48].
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The isolate lacked the common regulators of the hypermucoviscous phenotype (rmpA/
rmpA2) [49] and yersiniabactin system but showed the presence of aerobactin-(iutA) and
salmochelin-(iroE and iroN) encoding genes, which are clear markers for hvKP identifica-
tion [50]. Additionally, the strain was predicted with the K2 capsule type and hypermuco-
viscosity, which are common virulence factors in hvKP [51]. Similarly, strains belonging to
hvKP and lacking the rmpA and rmpA2 genes were previously reported without knowl-
edge of the mechanisms of capsule overexpression [52,53]. One possible explanation of
the mucoviscosity in K. pneumoniae 9KP is the presence of the RcsA and RcsB genes; the
RcsA gene binds with RcsB to activate the genes responsible for capsular polysaccharide
production in E. coli [54]. Another explanation for the presence of the siderophore receptors
without biosynthetic genes in hvKP is that these strains can acquire the siderophores from
other bacteria found in the same environment [8]. Similar to our finding, a highly virulent
and invasive K. pneumoniae strain possessing genes such as aerobactin (iutA), hypermuco-
viscosity, salmochelin, and lacking rmpA/rmpA2 was reported in a patient suffering from
necrotizing soft tissue infection at Northwestern Memorial Hospital, USA [51].

In this study, four T6SS systems were detected. The type VI secretion system (T6SS)
is usually located at the chromosomes or pathogenicity islands of virulent bacteria, and
they have a role in host infection and colonization [55]. Additionally, eight type 3 fimbrial
proteins were reported. Usually, isolates that express type 3 fimbriae are more biofilm-
producing compared to other strains [56]. Biofilm-producing isolates can cause community
or hospital infections and are associated with 65% of microbial infections and 80% of
chronic infections globally [57]. Furthermore, the genomic analysis of the K. pneumoniae
9KP strain demonstrated a large abundance of LysR-family transcriptional regulators in
the genomic regions containing a cluster of virulence and antimicrobial resistance genes.
LysR is found in different bacterial species and has a role in the regulation of virulence
factors in pathogenic bacteria [58]. A novel type of the LysR family has been demonstrated
to have a pleiotropic role in mediating the resistance and increasing the virulence of the
hvKP NTUH-K2044 strain [59].

The phylogenetic analysis showed that the 9KP strain is more related to strains from
Kenya and Sudan. This could be due to the fact that Kenya is a neighboring country to
Sudan, and the Sudanese clustered isolate was from the same location (Khartoum) of the
sample collection in our study. Two of the Kenyan strains (kkp066 and kkp0e7) were hvKPs
possessing the RmpA gene and lacked aerobactins (iucA, iucB, iucC and iucD), similar to
our strain. Additionally, the 9KP strain showed a high similarity in the PTS system to the
23KE strain from Sudan. This could be one of the reasons behind their high similarity to
our strain.

MDR and hvKP strains previously developed in distinct clonal groups [60] but the
recent emergence of hvKP isolates carrying MDR genes needs more attention. Such a strain
has the potential to produce fatal hospital outbreaks, so more focus is needed to highlight
its epidemiological role.

4. Methods
4.1. Bacterial Isolation, Identification, Susceptibility Testing, and DNA Extraction

Klebsiella spp. was isolated from the urine sample of a 40-year-old male patient with
a history of recurrent UTI, hypertension, and chronic kidney disease (CKD) admitted
for hemodialysis in Soba Hospital, Khartoum in July 2021. The patient was visiting the
dialysis unit regularly 2 times in a week; the patient received a course of ciprofloxacin
twice daily for 3 days without a response. The bacterium was isolated using a MacConkey
and blood agar (HiMedia, Mumbai, India), then was identified using routine conventional
microbiology methods [61] and Chromogenic UTI media (bioMérieux, Lyon, France). The
isolate was identified as a hypermucoviscous strain using the string test [62]. Antimicrobial
susceptibility testing was performed using the disk diffusion method to test the activity of
amoxicillin-clavulanate (30 µg), cefuroxime (30 µg), ceftriaxone (30 µg), ceftazidime (30 µg),
cephalexin (30 µg), meropenem (10 µg), imipenem (10 µg), amikacin (30 µg), gentamicin
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(10 µg), ciprofloxacin (5 µg), trimethoprim-sulfamethoxazole (25 µg), and nitrofurantoin
(300 µg). K. pneumoniae ATCC 700603 was used for testing the quality of the culture media,
antibiotic disc, and MIC. CLSI guidelines [30] were used for the susceptibility test results
interpretation. DNA was extracted using the quinidine chloride protocol [63]. The gel
electrophoresis and Nanodrop, Qubit (Thermo Scientific TM, Carlsbad, CA, USA), were
used for the estimation of the integrity and quantification of the extracted DNA.

4.2. Minimum Inhibitory Concentration (MIC)

The microtitre broth dilution method [64] was used to determine the minimum in-
hibitory concentration of ciprofloxacin, gentamicin, cefotaxime, ampicillin, chlorampheni-
col, and tetracycline. A two-fold serial dilution of the antibiotics was prepared in Muller–
Hinton (MH) broth, and 100 µL of overnight-grown bacteria adjusted to 5–105 CFU/mL
was poured into each well. The antibiotics concentration used was in the range of 2 to
1024 µg/mL [65]. MIC results were interpreted according to CLSI guidelines [30].

4.3. Genome Sequencing and Assembly

Whole-genome sequencing was conducted by Novogene Company (Beijing, China)
using HiSeq 2500 platform (Illumina, San Diego, CA, USA). The generated short reads
(2× 150 bp) were assembled into contigs using a de novo assembly of Velvet v. 1.2.10 [66];
then, reads with low quality and less than 200 bp were removed. The assembled sequences
were submitted to GenBank under bioproject (PRJNA767482), biosample (SAMN26332310),
and accession number JAKWFM000000000, and were assigned the 9KP strain. The isolate
was identified using MLST 2.0 and the Pasteur MLST. The PATRIC web server and the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP) [67] were used for genome annotation.

4.4. Plasmid Assembly and Identification

The plasmidSPAdes tool v3.15.4 [68] was used for the assembly of the putative plas-
mids sequences from the illumine short read, using different k-mer sizes (21, 33, and
55). The generated plasmids were further evaluated by the Plasmid Finder 2.1 tool using
95% identity and 60% coverage. Additionally, the generated plasmids were aligned using
BLASTn against the plasmid sequences obtained from the plasmid database (PLSDB); then,
a local database of the obtained plasmids was generated at OmicsBox v2.1, and a local
blast search was used for the identification of the plasmids. A plasmid circular map was
generated by the SnapGene Viewer 6.0.2 software.

4.5. Identification of Antimicrobial-Resistant Genes (ARGs) and Mobile Elements

To identify plasmid-mediated ARGs, the generated plasmids were submitted to the
Resistance Gene Identifier (RGI) 5.2.1 and ResFinder 4.0 [69] databases; hits with ≥95%
identity and ≥98% coverage were accepted. Furthermore, ResFinder 4.0 was used to detect
chromosomal mutations conferring resistance to antibiotics; this tool contains a hit that can
be flagged to indicate whether the hit is a plasmid or chromosomally mediated. Insertion
sequences (IS) were identified by an IS Finder.

4.6. Prediction and Comparison of Virulence Genes

The virulence factors of the hvKP strain were screened using RAST 2.0 and the vir-
ulence factor database (VFDB) [70]. The capsule-type genes were identified using the
Kleborate v2.2.0 [71] and Pathogenwatch database. The isolate (9KP) virulence profile
was compared to a list of K. pneumoniae strains including the most closely related strains
(23KE, kkp066, kkp0e6, and kkp0e7) and those found in the VFDB database which includes
K. pneumoniae 342, MGH78578, NTUH-K2044, 1084, HS11286, KCTC 2242, and SB3432;
among these strains, two (NTUH-K2044 and KCTC 2242) were hvKP [72]. SnapGene
Viewer v.6.0.2 (GSL Biotech; available at snapgene.com, accessed on 20 March 2022) was
used for the visualization of the virulence genes cassettes.

snapgene.com
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4.7. Comparative Genomics and Phylogenetic Analysis

The PATRIC v3.6.12 proteome comparison tool [73] was used to perform a protein-
sequence-based genome comparison using bidirectional BLASTp. The OrthoVenn2 server [74]
was used for protein orthologous clustering analysis. The most closely related genomes
(23KE, kkp066, and kkp0e7) and the commonly used strains (K. pneumoniae BAA2146,
HS11286, MGH78578, NTUH-K2044, NUHL24835, and PittNDM01) for K. pneumoniae
genome comparison [31,75,76] were used as references. The phylogenetic tree was gen-
erated and visualized by the online Interactive Tree of Life (iTOL v6) tool available at
Pasteur MLST. This tool generates neighbor-joining trees from concatenated nucleotide
sequences; we considered all loci that contained allele sequence identifiers and cgMLST
schemes for tree generation. The tree was generated against the most similar African strains
of K. pneumoniae submitted to the Pasteur MLST database.

5. Conclusions

This study documented the presence of a rare MDR hvKP, K. pneumoniae 9KP, belong-
ing to K2 and ST14 with hypermucoviscous; it lacked the yersiniabactin system and the
common regulators (rmpA/rmpA2) of the hypermucoviscous but showed the presence
of other capsule regulators, such as RcsAB (rcsA and rcsB) and aerobactin (iutA), as well
as the presence of salmochelin-(iroE, iroN) encoding genes, which are clear markers for
hvKP identification.

The MIC revealed that the isolate possessed a high resistance level against ampi-
cillin (1024 µg/mL), tetracycline (256 µg/mL), cefotaxime (128 µg/mL), and ciprofloxacin
(128 µg/mL).

The isolate possessed four antimicrobial resistance plasmids (pKPN3-307_type B,
pECW602, pMDR, and p3K157) that carried different ARGs and transposases, indicat-
ing their possible horizontal transfer and the clonal spread. The pECW602 plasmid is a
novel plasmid reported recently in an extensively drug-resistant (XDR) E. coli isolate in
China [41]; here, for the first time, we reported it in a K. pneumoniae (9KP) isolate with high
identity (99.75%).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics11050596/s1, Supplementary file 1: contains Tables S1–S3, representing ARGs
(Table S1), virulence factors (Table S2), and numbers of the clustered and singletons proteins in
the 9KP strain compared to others (Table S3). Additionally, it contains figures from Figures S1–S7
representing the string test photograph (Figure S1), a pie chart of the annotated subsystem and genes
of K. pneumoniae 9KP (Figure S2), a circular map of the whole-genome comparison of the 9KP strain
to different K. pneumoniae strains (Figure S3), and a map of the K. pneumoniae strain 9PK plasmids
(Figures S4–S7)). Supplementary file 2: contains the complete data of the whole-genome comparison
of the 9KP strain to different K. pneumoniae strains.
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