Echocardiographic phenotype and prognostic value of relative apical sparing of longitudinal strain pattern in severe aortic stenosis with and without cardiac amyloidosis. The AMYTAVI study

M. Bastos Fernandez¹, D. Lopez Otero¹, J. Lopez Pais², V. Pubul Nunez¹, C. Neiro Rey¹, F. Gude Sampedro¹, M. Alvarez Barredo¹, V. Gonzalez Salvado¹, C. Pena Gil¹, J. Martinon Martinez¹, V. Jimenez Ramos¹, F. Garcia-Rodeja Arias¹, R. Trillo Nouche¹, A. Martinez Monzonis¹, J.R. Gonzalez-Juanatey¹

Funding Acknowledgement: Type of funding sources: Private company. Main funding source(s): Pfizer

Introduction: It is estimated that 15% of patients with AS have concomitant cardiac amyloidosis (CA). Left ventricular (LV) longitudinal strain (LS) pattern with relative apical sparing (RELAPS>1), shown as bright red in the apical segments on the polar map, has been strongly associated with CA. Its presence and its significance in AS is yet to be determined.

Purpose: To determine the prevalence of the RELAPS>1 pattern in patients with severe AS with and without concomitant CA, and to analyze the echocardiographic phenotype associated with this strain pattern and its prognostic value.

Methods: Patients with severe symptomatic AS undergoing TAVI were prospectively and consecutively included between Jan-19 and Dec-20. Pre-procedure, a complete echocardiogram was performed that included deformation parameters using Speckle-Tracking. Strain derived Indices accepted for CA screening were calculated: RELAPS: relative apical LS (average apical LS/average basal+mid LS); SAB: (apical-septal/basal-septal LS); EFSR: (LVEF/GLS). After TAVI, a 99Tc-PYP scintigraphy and a proteinogram were performed to screen for CA.

Results: 324 patients were included. The mean age was 81 yo, 52% women. Strain analysis could be performed in 243 patients due to acoustic window and covid19 pandemic restrictions. Among those, 111 (46%) presented relative apical sparing (RELAPS>1).

There were no differences in clinical characteristics between patients with RELAPS <1 and >1: similar age, sex, cardiovascular risk factors and fun-

cional class, renal function or NT-proBNP. Among patients with RELAPS>1 there was more frecuently CA with uptake grade 2 and 3 on scintigraphy (15% vs. 4.5%, P=0.006) (Figure 1). RELAPS>1 group showed greater LV hypertrophic remodeling: thicker myocardial wall with smaller ventricular cavity, especially concentric hypertrophy; LVEF and GLS was similar, however, MAPSE and myocardial contraction fraction (MCF) were worse in RELAPS>1 group, and EFSR was significantly higher (4.2 vs 3.9, p=0.002). RELAPS>1 group had smaller aortic valve area (AVA: 0.6 vs 0.7 cm², p=0.045), but similar transvalvular gradients due to lower stroke volume. It had larger atria and less left atrial (LA) fractional emptying, as well as higher prevalence of atrial fibrillation (AF: 41% vs 27%, p=0.03). Right ventricle (RV) size were similar, however, RV function was worse in RELAPS>1 group (TAPSE: 19 vs 21 mm, p=0.003; free Wall LS: -24 vs -27%, p=0.008).

There was no difference in all-cause mortality at 1 year of follow-up between groups (6.4% vs. 6.3%, p=1).

Figure 2 represents the morphological characteristics according to the LS phenotype.

Conclusions: In severe AS, RELAPS >1 is present in almost half of the patients. It is associated with worse cardiac remodeling, as well as higher prevalence of AF. However, it wasn't associated with higher mortality at 1 year. 1 in 7 patients with AS and RELAPS >1 have concomitant ATTR CA grade 2/3.

	RELAPS <1 (n= 132)	RELAPS >1 (n=111)	p
Uptake on scintigraphy			
Grade 0 Grade 1 Grade 2/3	116 (87,9%) 10 (7,6%) 6 (4,5%)	91 (82%) 3 (2,7%) 17 (15,3%)	0,006
Left ventricular and auricular r	emodeling		
IVSd, mm	14,1 ± 2,4	15,5 ± 2,8	0,000
PWd. mm	12,5 ± 2,1	13,4 ± 2,0	0,001
LV mass index, gr/m2	175,15 ± 48,6	186,7 ± 44,8	0,058
LVEDV, ml	110,1 ± 44,1	90,8 ± 31,2	0,000
LVESV, ml	53,4 ± 39,3	39,5 ± 25	0,002
Eccentricity index	$1,14 \pm 0,17$	1,16 ± 0,19	0,296
Concentric hypertrophy, n (%)	94 (71,2 %)	91 (82 %)	0,069
MWT, mm	14,1 ± 2,6	15,5 ± 2,8	0,000
RWT, mm	0.49 ± 0.11	$0,55 \pm 0,13$	0,000
Pericardial effusion, n (%)	11 (8,4 %)	13 (11,7%)	0,399
PSAP, mmHg	42,1 ± 15,6	42,1 ± 16,8	0,976
LA vol index, ml/m2	55,1 ± 17,7	60,8 ± 23,7	0,035
LA fraccional empting, %	$35,5 \pm 16,9$	30,6 ± 16,5	0,028
Atrial septum, mm	6,32 ± 2,5	6.6 ± 2.5	0.371
Left ventricular systolic and dia			
LVEF, %	55,7 ± 16	59,1 ± 13,3	0,074
MAPSE, mm	$11,6 \pm 3,1$	$10,5 \pm 2,8$	0,005
GLS, %	-15,1 ± 5,2	-14,3 ± 3,7	0,197
EFSR	$3,84 \pm 0,87$	4,22 ± 0,88	0,001
SVi, ml/m2	33,1 ± 9,9	30,1 ± 8,3	0,013
E/A ratio	$1,07 \pm 0,66$	$1,05 \pm 0,75$	0,819
E/E' ratio	19,5 ± 7,4	$19,9 \pm 9,2$	0,662
E-wave deceleration time, ms	258,8 ± 121,1	269,9 ± 118,6	0,502
Aortic valve disease			
AVA, cm2	0.66 ± 0.15	$0,62 \pm 0,17$	0,045
AV Ymax, m/s	4.5 ± 0.6	4,6 ± 0,7	0,302
AV max gradient, mmHg	$83,4 \pm 21,2$	86,3 ± 24,9	0,338
AV med gradient, mmHg	50,02 ± 14	52,14 ± 15,8	0,272
TEA, ms	334,9 ± 41,2	319,4 ± 35,3	0,003
RV morphological and function	al parameters		
RV thickness	6,1 ± 1,8	6,6 ± 2,5	0,371
RV basal EDD, mm	37,9 ± 7,1	36,9 ± 6,4	0,246
TAPSE, mm	21,3 ± 4,7	19,4 ± 4,8	0,003
Tricuspid S', cm/s	12,7 ± 3,3	12,6 ± 4,0	0,909
RV free wall LS, %	-26,7 ± 7,1	-24,3 ± 6,3	0,008

Figure 1. Echocardiographic characteristics

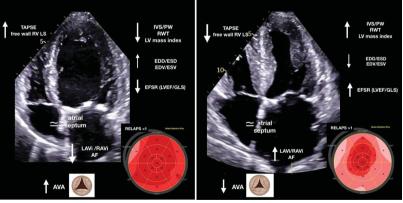


Figure 2. Echo phenotypes according to RELAPS

¹ University Hospital of Santiago de Compostela, Santiago de Compostela, Spain; ² Ourense University Hospital Complex, Cardiology, Ourense, Spain