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Synopsis
Stress pathways monitor intracellular systems and deploy a range of regulatory mechanisms in response to stress.
One of the best-characterized pathways, the UPR (unfolded protein response), is an intracellular signal transduction
pathway that monitors ER (endoplasmic reticulum) homoeostasis. Its activation is required to alleviate the effects of
ER stress and is highly conserved from yeast to human. Although metazoans have three UPR outputs, yeast cells
rely exclusively on the Ire1 (inositol-requiring enzyme-1) pathway, which is conserved in all Eukaryotes. In general, the
UPR program activates hundreds of genes to alleviate ER stress but it can lead to apoptosis if the system fails to
restore homoeostasis. In this review, we summarize the major advances in understanding the response to ER stress
in Sc (Saccharomyces cerevisiae), Sp (Schizosaccharomyces pombe) and humans. The contribution of solved protein
structures to a better understanding of the UPR pathway is discussed. Finally, we cover the interplay of ER stress in
the development of diseases.

Key words: ER stress, IRE1, lipid disequilibrium, protein homoeostasis, unfolded protein response, UPR-related
diseases. The UPR (unfolded protein response) is activated to alleviate the effects of ER (endoplasmic reticulum)
stress and is highly conserved from yeast to human. In this review, we summarize the major advances in yeast and
humans.
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INTRODUCTION

Stress pathways respond to systemic perturbations by regulating
diverse functions. They are specialized mechanisms designed
to monitor and maintain intracellular homoeostasis. A response
targeted to restore homoeostasis in the ER (endoplasmic retic-
ulum), the UPR (unfolded protein response), is one of the best-
studied cellular stress responses. Upon ER stress, three inde-
pendent branches sense stress, with the Ire1 (inositol-requiring
enzyme-1) branch being the most highly conserved among euka-
ryotes. In yeast, only the Ire1 pathway is found while metazoans
utilize two additional pathways, double-stranded RNA-activated
PERK (protein kinase-like ER kinase) and ATF6 (activating tran-
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scription factor 6) (Figure 1). In general, these ER-localized trans-
membrane proteins sense ER stress resulting in the activation of
their respective pathways. Translational attenuation and activa-
tion of UPR target genes are the most common UPR outputs
found in eukaryotes. However, the UPR programme can lead to
apoptosis if cells fail to reach homoeostasis and undergo pro-
longed stress.

Early work on the UPR were done in animal cells, where
the expression of ER-resident molecular chaperones [BiP (im-
munoglobulin heavy-chain-binding protein)/GRP78 (glucose-
regulated protein 78), GRP94, PDI (protein disulphide iso-
merase)/ERp59 and ERp72] were shown to be induced by dif-
ferent treatments causing the accumulation of unfolded pro-
teins in the ER [1,2]. The major breakthrough, reporting the
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Figure 1 Activation of the UPR
ER stress transducer, Ire1α, PERK and ATF6 form the three branches of
the UPR pathways in mammals. In response to ER stress, the release
of the molecular chaperone BiP, from the lumenal domain of Ire1α, pro-
motes binding of misfolded proteins. Subsequently, Ire1α oligomerizes
and phosphorylates itself, splices XBP1 mRNA and this results in the
translation of the transcription factor XBP1 regulating downstream sig-
nalling cascade. Upon prolonged ER stress, Ire1α cleaves mRNAs to
relieve protein load through its RIDD activity. PERK oligomerizes and
phosphorylates itself together with eIF2α, where it attenuates protein
translation. It further activates the transcription factor ATF4, which car-
ries out downstream activation of UPR genes. Under ER stress, ATF6 is
packaged into vesicles and transported to the Golgi apparatus. Cleav-
age of ATF6 lumenal and transmembrane domain occur, where the N-ter-
minal cytosolic fragment, ATF6(N) localize into the nucleus to activate
UPR target genes.

missing elements in the UPR pathway from unfolded proteins to
the activation of UPR-specific genes, was done in Sc (Sacchar-
omyces cerevisiae). Upon accumulation of unfolded proteins,
HAC1 mRNA was found to be spliced by Ire1 protein, and only
the spliced form results in translation of stable transcription factor
Hac1 protein [3–5]. These findings opened the door to many new
discoveries in yeast and metazoans. Although major advances
in understanding the UPR come from all model organisms, this
review will focus on the discoveries culminating from budding
yeast, fission yeast and mammals, as well as diseases related to
the UPR.

ACTIVATION OF THE UPR IN YEAST

In Sc, ER stress is monitored by the transmembrane sensor pro-
tein Ire1 (Figure 2A). Ire1 is activated by either direct binding of
unfolded proteins, or from the release of the molecular chaper-
one BiP from the lumenal domain of Ire1. Both mechanisms of
activation have been proposed by different groups and will be dis-

cussed in detail in the Ire1 structure section. Upon activation, Ire1
oligomerizes followed by trans-autophosphorylation through its
cytosolic kinase domain [6]. When activated, the cytosolic ribo-
nuclease domain of Ire1 cleaves the intron of pre-messenger RNA
HAC1 to initiate synthesis of Hac1 transcription factor [3–5].
Hac1 then translocates into the nucleus to regulate the expression
of UPR target genes. The UPR can alleviate stress by reversing
severe dysfunctions through the up-regulation of nearly 400 tar-
get genes [7]. These target genes include ER chaperones, lipid
biosynthesis enzymes and ERAD (ER-associated degradation)
machinery. The UPR program appears to be adaptable and might
be remodelled differently according to the needs of the cells.
This differential regulation of the UPR, from different stressors,
suggests the involvement of additional unidentified regulatory
factors [7].

The UPR-related protein Ire1 is conserved in Sp (Schizosac-
charomyces pombe) [8] (Figure 2B). Despite having no ortho-
logues of HAC1 or XBP1 mRNA being identified, Ire1 still plays
an important role to alleviate ER stress [9,10]. Unlike Sc Ire1,
activated Sp Ire1 degrades ER-localized mRNAs to relieve pro-
tein load in a pathway called RIDD (regulated Ire1-dependent
decay). This pathway was first identified in metazoan where Ire1
degrades mRNAs in addition to XBP1 splicing [11,12]. Surpris-
ingly, certain mRNAs cleaved by Sp Ire1 are stabilized instead of
being degraded [10]. For example, BIP1 mRNA, which encodes
an HSP70 (heat-shock protein 70) family protein, is recognized
and cleaved by Ire1, but it remains stable and its translation is
increased. Notably, it was reported that a BIP1 mRNA mutant,
which is no longer cleaved by Ire1 in Sp, exhibits lower viab-
ility during ER stress. Other players are likely to work in syn-
ergy with Ire1 to regulate the UPR pathway. The UGT (UDP–
glucose–glycoprotein glucosyltransferase) (gpt1) and a calnexin
orthologues (cnx1) have been identified similarly with Ire1, from
a genetic screen, to alleviate ER stress [9]. UGT was first iden-
tified from rat liver extract to recognize only misfolded proteins
and to be essential under extreme ER stress in Sp [13,14]. The
other identified protein from the screen, Cnx1, promotes fold-
ing of glycosylated proteins in the ER and may cooperate with
BiP1 [15]. The first 160 residues of Cnx1 in Sp was found to
be sufficient for cell survival under normal conditions [16,17].
Reinforcing its link to ER stress, Sp Cnx1 promotes apoptosis
which is mediated by Ire1 [18]. Thus, the recent development
in our understanding of ER stress response in Sp seems unique
and it might help in elucidating the similar pattern in higher
organisms.

THE UPR ACTIVATION IN MAMMALS

In mammals, the presence of three different ER stress trans-
ducers facilitates the activation of the UPR [19] (Figure 1). Two
forms of IRE1 are found in mammals where IRE1α is expressed
ubiquitously while IRE1β solely in the intestinal and lung epithe-
lium [20,21]. In human, IRE1α and IRE1β proteins are encoded
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Figure 2 UPR in yeast
(A) S. cerevisiae Ire1 is activated by ER stress. Upon activation, Ire1 undergoes trans-autophosphorylation and oligomer-
ization. HAC1 mRNA is spliced by activated Ire1 through its RNase domain. Upon translation, transcription factor Hac1
up-regulates UPR target genes to restore homoeostasis. (B) In S. pombe upon ER stress, Ire1 triggers downstream RIDD;
the protein BiP1′s poly-A tail is recognized and cleaved by RIDD, but BiP1 protein is stabilized despite the cleavage of
its mRNA. BiP1 protein is important for cell survival during stress condition; there are possible unknown candidates also
involved in stress response, either in ER lumen or on ER membrane.

by ERN1 and ERN2 genes, respectively. Ire1α branch of the
UPR has been well studied because of its ubiquitous-expressing
nature. The transcription factor downstream of Ire1α, XBP1, ex-
hibits variance in its primary amino acid sequence with Hac1 but
shares the common Ire1-mediated unconventional splicing activ-
ation of its mRNA and the bZIP (basic leucine zipper) motif.
XBP1 activates similar downstream target genes as Hac1 in Sc,
with the induction of genes involved in protein folding as well as
in the secretory pathway [22]. With considerable redundancies
existing between the three UPR pathways, IRE1–XBP1 pathway
is dispensable to the activation of major chaperones such as BiP
and GRP94 [23], but still plays crucial roles in ER homoeostasis
and metabolic pathways [24].

PERK, which is an ER transmembrane kinase, mediates tran-
scriptional and translational control of the UPR program [25].
Upon ER stress, PERK oligomerizes and phosphorylates itself
together with eIF2α (eukaryotic initiation factor 2α) (Figure 1).
eIF2α phosphorylation results in temporary attenuation of the
overall protein translation and up-regulation of the transcription
factor ATF4. This translation inhibition resultantly decreases the
influx of proteins entering the ER, reducing ER protein fold-
ing load and alleviating ER stress. The absence of the PERK
signalling cascade in Sc disallows the regulation of easing ER
stress when protein integrity is compromised, where continued
protein synthesis occurs even under ER stress. Paradoxically, cer-
tain mRNA are preferentially translated when eIF2α is limiting,
one of which is transcription factor ATF4. Subsequently, ATF4
up-regulates CHOP (C/EBP homologous protein) and GADD34
(growth-arrest and DNA-damage-inducible 34). CHOP promotes
ER stress-induced apoptosis [26] while GADD34 is involved in

a negative feedback loop to counteract PERK by dephosphoryla-
tion of eIF2α, which resumes protein synthesis and sensitize
cells to apoptosis [27]. Interesting, PERK also inhibits ER stress-
induced apoptosis via induction of cIAPs (cellular inhibitors of
apoptosis proteins) [28], and is a critical crosstalk regulator to
influence the entire UPR in determining cell fate under ER stress
[29]. In addition, another study has shown that activation of PERK
could lead to down-regulation of anti-apoptosis protein XIAP,
which could lead to increase in apoptosis [30]. These reports
suggest that even when facing similar stress, cells could respond
to it differently, and other factors might be involved to regulate
how cells respond to various stresses, which could ultimately
determine cell fate.

Upon detection of unfolded protein accumulation, ATF6 is
packaged into vesicles and transported to the Golgi apparatus
[31]. Cleavage of ATF6 lumenal and transmembrane domain
occurs subsequently by S1P and S2P proteases, liberating the N-
terminal cytosolic fragment, ATF6(N), for localization into the
nucleus to activate UPR target genes [32]. A vast array of genes
are activated downstream of ATF6(N), most noticeably BiP, PDI,
and GRP94. Additional studies have shown that ATF6(N) is a
major inducer for downstream response of ER chaperones and
ERAD components [33,34].

Recent efforts to understand the involvement of factors parti-
cipating in the UPR have shown little progress. Being intimately
intertwined together, it would be hard to investigate the effect of
individual factors, where compensation by other UPR branches
could set in. The UPR has also been shown to be tightly linked
to ERAD as well as lipid regulation [35], hence there is difficulty
in isolating and understanding the UPR in cell physiology.
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Figure 3 Solved protein structures of the UPR activation pathway
(A) Schematic representation of yeast Ire1, human Ire1α and mouse PERK proteins. Ss (Signal sequence), TM (transmem-
brane domain), KEN domain. (B) Ribbons representation of dimerized cLD (amino acids 111–449) of Sc (S. cerevisiae) Ire1
[PDB (Protein Data Bank) code: 2BE1]. (C) Ribbons representation of the dimerized cytosolic domain of Sc Ire1 (PDB code:
3FBV). (D) Ribbons representation of human Ire1α luminal domain. The dimer adapts a back to back orientation (PDB
code: 2HZ6). (E) Ribbons representation of PERK protein kinase domain from mouse (PDB code: 3QD2). All structures
were drawn using PyMOL (www.pymol.org).

UPR ACTIVATED FROM LIPIDS

Many lipid synthesis genes are up-regulated from the UPR activ-
ation programme [36], indicating interconnection between lipid
composition and ER stress. Inositol, which is an important reg-
ulator of lipid metabolism in yeast, is regulated by the UPR
[37,38]. Moreover, deletion of fatty acid and sphingolipid bio-
synthesis genes such as SUR4 and phospholipid synthesis genes
such as OPI3 or INO1 activate the UPR [39,40]. The UPR can
control lipid synthesis genes in order to balance membrane lipid
composition through the IRE1–RIDD pathway [41]. Changes
in membrane lipid composition may lead to the activation of the
UPR. Previously, we demonstrated that the UPR remodels protein
homoeostasis network, in yeast cells, instead of restoring lipid
composition under global lipid disequilibrium [40]. Lipid imbal-
ance also contributes to the disruption of calcium homoeostasis
in mammals [42]. Other than causing accumulation of misfolded
proteins, calcium metabolic imbalance results in the accumula-
tion of free fatty acids causing the activation of the UPR [43]. Al-
ternately, membrane lipid composition imbalance can be directly
sensed by Ire1 protein resulting in UPR activation. An Sc Ire1
mutant failing to bind unfolded proteins, bZIP Ire1, was observed
to activate the UPR normally during lipid imbalance [44]. This
study suggested, for the first time, that Ire1 can sense stress from
its transmembrane or cytosolic domains. More recently, a novel
mechanism of UPR activation, during lipid perturbation, was pro-
posed in mammalian cells [45]. Ire1α and PERK proteins lacking
their luminal domain sense saturated lipids and they are sufficient

to activate the UPR in mammalian cells (Figure 3A). Both ac-
tivators undergo phosphorylation, and activate their downstream
pathways similarly to their respective full-length protein. In ad-
dition, PERK was shown to directly sense exogenous saturated
fatty acid by in vitro liposome reconstitution [45]. Thus, lipid
and protein metabolisms are tightly regulated and share common
regulatory pathways.

IRE1 STRUCTURE AND ACTIVATION

To better understand the pathways leading to UPR activation,
substantial efforts have been made to solve protein structures, in
particular the ER stress transducers. However, due to the variable
hydrophobicity within membrane proteins and the difficulty to
solubilize them, it has been challenging to obtain structures at
high resolution [46]. The first reported structure of UPR trans-
activator was the cLD (core lumenal domain, amino acids 111–
449) of Ire1, from Sc at 2.98 Å resolution [47] (Figure 3B). cLD
dimer exhibits a groove similar to MHC (major histocompatib-
ility complex). From this observation, it was proposed that the
direct binding of unfolded proteins to Ire1 lumenal domain is
sufficient to activate the UPR in yeast.

Before acquisition of the Ire1 lumenal domain structure in Sc,
it was accepted that Ire1 is activated by the release of Hsp70 mo-
lecular chaperone BiP from its lumenal domain. The importance
of ER-resident Hsp70 family proteins, during stress conditions,
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was reported by several groups where they are up-regulated under
ER stress [1,48,49]. Moreover, overexpression of BiP is sufficient
to attenuate the UPR to stress [50]. In Sc, BiP was reported to
serve as a negative regulator of the UPR [51]. BiP keeps Ire1
inactive by directly binding its lumenal domain but during ER
stress, it dissociates to bind unfolded proteins resulting in Ire1
activation.

However, several other studies contradict this model and sup-
port the direct binding model. An Sc Ire1 lumenal domain de-
letion mutant was generated to disrupt BiP binding [52]. In this
mutant, the UPR activation level appeared normal during ER
stress. It indicates that BiP Ire1 interaction is not required to ac-
tivate Ire1. Thus, the dissociation of BiP and self-association of
Ire1 is not sufficient to activate the UPR suggesting that more
steps are involved in the activation pathway [53]. Interestingly,
several studies reported that Ire1 directly binds unfolded proteins
and prevent protein aggregate formation [44,54–56]. In addition,
Ire1 preferentially binds to peptides enriched in basic and hy-
drophobic residues reinforcing its affinity for misfolded proteins
(Gardner and Walter[54], #23). The binding pattern was pro-
posed to be like ligand–receptor interaction in which BiP serves
by preventing Ire1 oligomerization [49].

The cytosolic domain of Ire1 has two functional domains with
kinase and RNase enzymatic activities [57] (Figure 3A). Struc-
tural studies of Ire1 cytosolic domain helped in dissecting the
cascade of events of the UPR activation. The first crystal struc-
ture of Ire1 cytosolic domain was at 2.4 Å resolution [58] (Fig-
ure 3C). Based on its motif folding, RNase domain was redefined
as the KEN (kinase-extension nuclease) domain. KEN domain
possesses ribonuclease activity after trans-autophosphorylation
of its adjacent kinase domain. Interestingly, there is no known
protein other than Ire1 with both kinase and RNase activities. Ire1
KEN domain is similar to mammalian RNase L, which cleaves
endogenous and viral RNA within the cell upon activation from
interferon [59,60]. Four key residues (Y1043, R1056, N1057 and
H1061) of Ire1 form the RNase active site and they are con-
served in RNase L [58]. The oligomerization of Ire1 cytosolic
domain is essential to its enzymatic activity, which is driven by
the oligomerization of Ire1 lumenal domain [61]. Together with
the structural information of Ire1′s RNase inactive mutant [62], it
was revealed that the kinase activity of Ire1 is not required during
the UPR activation cascade but essential in Ire1 deactivation [63].
On the contrary, RNase activity is essential for the same process.

In both yeast and human, dimerized Ire1 form MHC-like
grooves [64]. However, the Ire1α groove is thought to be too
small to accommodate unfolded proteins (Figure 3D). Gln105
of Ire1α, which forms hydrogen bond to adjacent residues, pre-
vents direct binding of unfolded proteins. Thus, it supports the
conventional indirect UPR activation model. In this model, BiP
dissociates from Ire1α and triggers its oligomerization and phos-
phorylation. After activation, Ire1α adopts a face-to-face orienta-
tion when its phosphorylation is prevented with ATP competitor
sunitinib [65]. In contrast, dimerized Sc Ire1 RNase domain holds
a back-to-back orientation when activated. As a result, face-to-
face orientation of Ire1α would compromise the activation of the
UPR by failing to splice XBP1. The different activation mech-

anism of Ire1α lumenal domain, compared with Sc Ire1, might
confer greater specificity in responding to ER stress and thus
complementing the other two branches of the UPR. It is worth
mentioning that there is still no full-length structure of Ire1 re-
ported yet. Structural information of Ire1 transmembrane domain
would be valuable to give us a better understanding of its role in
sensing lipid perturbation [44,45].

PERK AND ATF6 STRUCTURES

Recently, the structure of PERK’s kinase domain was solved at
2.8 Å resolution [66] (Figure 3E). Upon activation of PERK, its
cytosolic kinase domain adapts a back-to-back dimer structure,
and its dimerization is driven by PERK ER lumen domain dimer-
ization. This further activates PERK’s kinase domain resulting
in trans-autophosphorylation [57]. Trans-autophosphorylation of
PERK activation loop (residues 953–990) is indispensable for its
activity [66]. PERK kinase domain shares sequence similarity
with PKR (protein kinase R). It was reported before that PKR
phosphorylates eIF2α at Ser51, leading to inhibition of transla-
tion [67]. Thus, it is not surprising that activated PERK also
phosphorylates eIF2α to alleviate ER stress [66].

The 3D structure of ATF6 remains to be elucidated. ATF6 is
synthesized as a precursor protein (p90ATF6), which is localized
at the ER in unstressed cells. In response to ER stress, ATF6 is
packaged into vesicles and transported to the Golgi apparatus and
the N-terminal fragment is cleaved off (p50ATF6) [31,32].

UPR AND DISEASES

Proteins are the key regulators of cellular diversity in function,
performing numerous roles such as enzymatic reactions, mech-
anical support, transport of substrates and signal transduction.
The UPR maintains the integrity of protein synthesis and allevi-
ates ER stress through the regulation of various proteins. Hence,
UPR signalling is involved deeply in numerous physiological pro-
cesses besides protein quality control [68]. Several diseases such
as diabetes, NAFLD (non-alcoholic fatty liver disease), cystic
fibrosis, PD (Parkinson’s disease), HD (Huntington’s disease),
AD (Alzheimer’s disease), inflammation, cancer and liver failure
are associated with the UPR pathways [69] (Figure 4). Implica-
tions of the UPR in metabolic diseases, cancer and neurodegen-
erative diseases will be reviewed in this section.

NAFLD is an emerging and now the most common cause of
chronic liver enzyme elevations and cryptogenic cirrhosis be-
cause of the prevalence of obesity [70]. The failure of the UPR
to rapidly re-establish ER homoeostasis via genetic ablation of
eIF2α, IRE1α or ATF6α results in hepatic steatosis, where the
capacity to oxidize fatty acids is impaired [71]. This is further
exacerbated by dysfunction in the lipoprotein secretion pathway.
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Figure 4 Diseases linked to ER stress
During ER stress, misfolded proteins arising in the ER is assisted with chaperones for refolding, and failure to be refolded
to their native state would result in their degradation via the ERAD pathway. The UPR is activated with the accumulation
of unfolded or misfolded proteins, which would then halt protein translation and induce stress-response genes. Under
prolonged ER stress, apoptosis is initiated by the UPR. Diseased states often arise from the failure of the UPR to respond
well under ER stress, or from an accumulation of unfolded proteins. Inadequate response of the UPR could result when
elements in the UPR signalling cascade is down-regulated and hence, a sufficient response could not be mounted to
alleviate ER stress. Diseases such as NAFLD, T2D (type II diabetes) and cancer are implicated in this model. Mutations in
protein coding genes could cause proteins synthesized to be misfolded and form aggregates rapidly. This could be severe
that the ERAD fails to degrade the proteins adequately and the UPR is unable to compensate for the ER stress. This model
often includes degenerative diseases such as PD, HD and AD.

It was reported in another study that heterozygous ATF4 mice be-
nefitted in protection from diet-induced obesity and diet-induced
hepatic steatosis [72]. Overexpression of mediators involved in
UPR such as GRP78 improves insulin action and hepatic ste-
atosis [73]. Other metabolic diseases such as type 2 diabetes
could also be the consequence of ER dysregulation. ER stressor
deficiency in XBP1 induces the development of insulin resistance
[24], where body cells fail to respond to insulin in uptaking gluc-
ose. In other studies to reveal the mechanism of how ER stress
develops in obesity, the authors have found that free fatty acids
could be the trigger of ER stress via perturbation of ER mem-
brane integrity [74,75]. Increased mTOR (mammalian target of
rapamycin) signalling pathway, which regulates cell proliferation
and survival, is also found in most obese patients to block insulin
signalling pathways [76]. Additionally, disruption of signalling
between p85s and XBP1 occurs in obesity, where p85 serves
to activate XBP1 after insulin simulation, resulting in decreased
localization of XBP1 to the nucleus for the activation of the UPR
[77]. Thus, the UPR appears deeply intertwined with lipid ho-
moeostasis, where dysregulation in the UPR is often manifested
in various metabolic diseases.

Neurodegenerative diseases frequently arose from the accu-
mulation of misfolded proteins, leading to the death and loss of
neurons necessary for physiological functions [78,79]. In PD, the
Parkin gene which encodes an E3 ubiquitin ligase is mutated and
results in the failure of substrate degradation. This subsequently
leads to unfolded protein accumulation, causing UPR activation
and eventually apoptosis of neurons through the action of CHOP
[80,81]. The accumulation of abnormally long huntingtin protein
from the increase in CAG nucleotide repeats in the huntingtin
gene results in HD [82]. Accumulation of aggregates impairs the
proteasome degradation system, contributing to the accumulation
of other misfolded proteins and subsequently triggering ER stress
[83]. Other evidence such as elevated expression of UPR target

genes; CHOP, GRP78 and Herp are found in patients with HD
[84], and perturbation of ER calcium homoeostasis is linked to a
mutant huntingtin gene [85]. This suggests that the mutant hunt-
ingtin continuously activates UPR target genes and have wide
spread consequences on other facets of ER homoeostasis. AD is
characterized by aggregation of fibrous insoluble proteins, com-
monly the amyloid-β peptide [86]. Accumulation of unfolded
proteins, elevated ER stress, and activation of the UPR are com-
monly found in many cases of patients with AD [87,88], compel-
ling a model where there is accumulation of misfolded proteins
instead of dysregulation of the UPR. PS (presenilin) are highly
conserved transmembrane proteins which regulates the cleavage
of other proteins at their transmembrane domain, and is involved
in ER calcium trafficking and homoeostasis [89]. They are re-
vealed to have as many as 100 mutation variations in familial
AD, signifying the importance of PS in its contribution to AD.
Neurons are particularly sensitive to toxic aggregate-prone pro-
teins, and hence neurodegenerative disease often arises from the
buildup of such protein plaques. The accumulation of aggregates
in the cytosol could indicate similar approaches in therapeutic
treatment, and further understanding of the involvement of the
UPR in the development of the disease could provide clues.

The involvement of the UPR in tumourigenesis is intimate yet
complex. Following the onset of malignancy and rapid tumour
growth, inadequate vascularization could subsequently result in
microenvironmental stress such as hypoxia and depletion of nu-
trients. Additionally, tumour-intrinsic stress factors such as de-
fects in synthesis of biomolecules arising from mutations in the
genes could elevate ER stress further [90,91]. The paradox of the
UPR in tumourigenesis begins, where UPR up-regulates protein
folding capacity and ensures the continued integrity of protein
folding, upholding cell survival [92]. The UPR has been shown
to contribute in this fashion to protect tumorigenic cells from
undergoing apoptosis under hypoxia conditions [93]. GRP78 is
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found as a critical factor in promoting cancer; increasing prolifer-
ation, avoiding apoptosis and the promotion of angiogenesis [94].
However, when chronic ER stress sets in, failure to restore ER
homoeostasis causes the UPR to activate the apoptotic cascade in
tumour cells. CHOP is a key regulator [95] but not the sole factor
[26] involved in inducing apoptosis, in which the alteration of
several genes by CHOP leads to activation of various apoptotic
pathways [92,96].

CONCLUSION AND PERSPECTIVE

The recognition that the UPR is deeply associated with various
diseases, especially in metabolic and neurodegenerative diseases,
allows us to appreciate the UPR pathways better. However, inter-
actions between the three branches are not well characterized, and
more has to be done in order to elucidate a more detailed mech-
anistic understanding of the UPR elements. This would allow for
the effective manipulation of factors involved in the UPR, which
could prove extremely valuable in developing therapeutic treat-
ments for such diseases. While there is no universal treatment,
it will be useful to draw parallel approaches to treatment when
diseases are found to share conspicuous characteristics or causes.
Identifying and targeting the UPR elements, which fail to per-
form before the development of chronic ER stress would be ideal.
Induction of such UPR factors naturally or artificially via exogen-
ous means could prevent the progression of UPR-related diseases.
In less preferred but still beneficial cases, artificial means such as
chemical chaperones [76] could ease mild ER stress or prolong
the onset of diseases. Alleviating ER stress via increasing ER-
folding capacity could be beneficial for obesity or cystic fibrosis
[76] by increasing insulin sensitivity or reducing the secretion of
mutated proteins. In other circumstances, targeting the UPR to
promote the apoptotic cascade would be ideal for diseases such as
in cancer and TSC (tuberous sclerosis complex) [92,97]. Novel
methodological approaches in regulating or influencing the UPR
would allow greater flexibility and sensitivity to be applied to
various diseases implicated by the UPR.
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