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Abstract

Genes show a bewildering variation in their patterns of molecular evolution, as a result of the action of different levels and types of

selective forces.Thefactorsunderlyingthisvariationare,however, stillpoorlyunderstood. In the lastdecade, thepositionofproteins in

the protein–protein interaction network has been put forward as a determinant factor of the evolutionary rate and duplicability of

their encoding genes. This conclusion, however, has been based on the analysis of the limited number of microbes and animals for

which interactome-level data are available (essentially, Escherichia coli, yeast, worm, fly, and humans). Here, we study, for the first

time, the relationship between the position of proteins in the high-density interactome of a plant (Arabidopsis thaliana) and the

patterns of molecular evolution of their encoding genes. We found that genes whose encoded products act at the center of the

network are more evolutionarily constrained than those acting at the network periphery. This trend remains significant when

potential confounding factors (gene expression level and breadth, duplicability, function, and length of the encoded products) are

controlled for. Even though the correlation between centrality measures and rates of evolution is generally weak, for some functional

categories, it is comparable in strength to (or even stronger than) the correlation between evolutionary rates and expression levels or

breadths. Inaddition,genesencoding interactingproteins in thenetwork evolveat relatively similar rates. Finally,Arabidopsisproteins

encoded by duplicated genes are more highly connected than those encoded by singleton genes. This observation is in agreement

with the patterns observed in humans, but in contrast with those observed in E. coli, yeast, worm, and fly (whose duplicated genes

tend to act at the periphery of the network), implying that the relationship between duplicability and centrality inverted at least twice

during eukaryote evolution. Taken together, these results indicate that the structure of the A. thaliana network constrains the

evolution of its components at multiple levels.

Key words: network evolution, Arabidopsis interactome, natural selection, rates of evolution, gene duplication, network

centrality.

Introduction

Genes and proteins rarely operate in isolation; on the contrary,

they often act as parts of complex functional networks of

interacting molecules. Understanding the function and evolu-

tion of molecular networks is not only a key step toward

understanding organisms’ function and evolution, but it can

also aid applications such as metabolic engineering and drug

discovery and design (for review, see Butcher et al. 2004;

Korcsmáros et al. 2007; Lee et al. 2011). Furthermore, con-

sidering the position of genes and proteins in the networks

in which they participate may provide key insight into the

evolutionary forces governing their evolution. Indeed, several

lines of evidence point to a link between the position of pro-

teins in metabolic and protein–protein interaction networks

(PINs) and the patterns of molecular evolution of their encod-

ing genes (reviewed by Cork and Purugganan 2004; Eanes

2011; Wagner 2012). In particular, proteins’ network position

has an effect on their rate of evolution and on the duplicability

of their encoding genes. Several questions, however, remain

open.

Proteins’ rates of evolution vary across orders of magni-

tude, as a result of the action of different levels and types of

evolutionary forces (Zuckerkandl and Pauling 1965; King and

Jukes 1969; Ohta and Kimura 1971; Li et al. 1985). Identifying

GBE

� The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial

reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

Genome Biol. Evol. 4(12):1263–1274. doi:10.1093/gbe/evs101 Advance Access publication November 18, 2012 1263



and understanding the factors responsible for this variability is

one of the main open questions in Evolutionary Biology.

Purifying selection is expected to act more severely on genes

performing functions that are more important for the organ-

ism’s biological fitness, thus resulting in lower rates of evolu-

tion (Wilson et al. 1977; Kimura 1983); however, the relative

contribution of genes to fitness remains elusive. Over the last

decade, the wealth of genomic and functional data has made

feasible to pursue the formulation of a unifying theory that

explains the variation of the rates of protein evolution (for

review, see Herbeck and Wall 2005; Koonin and Wolf 2006;

McInerney 2006; Pál et al. 2006; Rocha 2006; Wolf et al.

2006). Several factors have been shown to correlate with

the strength of purifying selection acting on genes, with pat-

terns of expression being the most prominent: more highly or

widely expressed genes tend to be more constrained than

those expressed at low levels or in a narrow range of tissues

(Duret and Mouchiroud 2000; Pál et al. 2001; Krylov et al.

2003; Subramanian and Kumar 2004; Wright et al. 2004;

Drummond et al. 2005, 2006; Ingvarsson 2007; Slotte et al.

2011; Yang and Gaut 2011). Other relevant determinants of

genes’ evolutionary rates include the length (Subramanian

and Kumar 2004; Ingvarsson 2007) and function

(Castillo-Davis et al. 2004; Alvarez-Ponce and McInerney

2011) of the encoded products. However, these factors are

poor predictors of evolutionary rates (e.g., Ingvarsson 2007;

Larracuente et al. 2008).

Remarkably, genes acting at the center of the PIN tend to

be more selectively constrained than those acting at the net-

work periphery, a pattern that has thus far been observed in

Escherichia coli, yeasts, worms, flies, and mammals (Fraser

et al. 2002; Jordan et al. 2003; Hahn and Kern 2005; Lemos

et al. 2005; Davids and Zhang 2008; Alvarez-Ponce 2012).

Consistently, proteins involved in complexes tend to be

highly conserved (Teichmann 2002). Similar patterns have

been observed in metabolic networks, whose most connected

enzymes tend to evolve under stronger selective pressures

(Vitkup et al. 2006). In addition, genes encoding physically

interacting proteins tend to evolve at relatively similar rates

(Fraser et al. 2002; Lemos et al. 2005; Alvarez-Ponce et al.

2009, 2011; Cui et al. 2009). Although these trends are sig-

nificant and consistent across all organisms studied to date,

they are often weak, and whether they reflect a direct effect

of network position on genes’ rates of evolution has been the

subject of debate. In particular, some authors have suggested

that these trends might be a byproduct of the distribution of

confounding factors across the network, such as genes acting

at the center of the network being expressed at higher levels

or to biases in interactomic data sets (Bloom and Adami 2003;

Batada et al. 2006) (but see Fraser et al. 2003; Fraser and Hirsh

2004; Fraser 2005; Lemos et al. 2005).

Genes also widely differ in their duplicability (i.e., the pro-

pensity to retain duplicated copies after a gene duplication

event), with some genes remaining as single copies

(singletons) over long evolutionary periods and others being

recurrently duplicated. Genes’ duplicabilities are known to be

affected by a number of factors, including the position of the

encoded proteins in the PIN. However, the direction of the

relationship between gene duplicability and network centrality

is not universal. In the PINs of E. coli, yeast, worm, and fly,

singleton genes tend to occupy more central positions than

duplicated genes (Hughes and Friedman 2005; Prachumwat

and Li 2006; Makino et al. 2009; D’Antonio and Ciccarelli

2011). This trend has been attributed to a fragility of the net-

work to duplications affecting its more connected elements.

Indeed, complexes and pathways are thought to perform

better with balanced concentrations of their members, and

the duplication of a given gene is expected to disrupt the

dosage balance of the interactions in which its encoded prod-

uct is involved (Birchler et al. 2001; Veitia 2002; Papp et al.

2003), which may have more deleterious effects for proteins

with a higher number of interactors. Conversely, human pro-

teins encoded by duplicated genes tend to be more central to

the PIN than those encoded by singleton genes (Liang and Li

2007; Doherty et al. 2012). This is a derived character resulting

from the high duplicability of human hubs originated after the

emergence of Metazoans, implying that the relationship be-

tween centrality and duplicability underwent modification in

the vertebrate lineage (D’Antonio and Ciccarelli 2011). The

factors underlying this shift in the relationship between cen-

trality and duplicability remain, however, unclear.

The relationship between network position and genes’ pat-

terns of molecular evolution has been hitherto investigated

only in the few microorganisms (E. coli and yeast) and animals

(worm, fly, and human) for which interactome-scale protein–

protein interaction data are available. The recent availability of

a relatively high-density interactome for Arabidopsis thaliana

(Arabidopsis Interactome Mapping Consortium 2011; Stark

et al. 2011), together with the availability of the genome se-

quences for this species (Arabidopsis Genome Initiative 2000)

and its close relative A. lyrata (Hu et al. 2011), allowed us to

investigate, for the first time, the relationship between genes’

patterns of molecular evolution and their position in a plant

network. Consistent with patterns observed in other organ-

isms, we found that genes encoding the most central proteins

of the network tend to evolve under stronger levels of select-

ive constraint and that genes encoding physically interacting

proteins evolve at relatively similar rates, pointing to general

trends across all of life. The relationship between centrality

and evolutionary rate is independent of potential confounding

factors (gene duplicability, expression level and breadth, and

the length of the encoded products), suggesting a direct effect

of the network structure on the patterns of molecular evolu-

tion of its components. Even though the correlation between

the measures of centrality and rates of evolution is in general

weak, for some functional categories, it is comparable in

strength to (or even stronger than) the correlation between

evolutionary rates and expression levels or breadths.
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Surprisingly, genes acting at the center of the A. thaliana PIN

are more likely to be duplicated than those acting at the per-

iphery, implying that the relationship between centrality and

duplicability underwent modification not only in vertebrates

but also in plants.

Materials and Methods

Protein–Protein Interaction Data

The PIN was obtained by merging the A. thaliana networks

available from the BioGRID database v3.1.81 (Stark et al. 2011)

and from Arabidopsis Interactome Mapping Consortium

(2011). Only physical interactions among pairs of A. thaliana

proteins were considered. All interactions used in the current

analysis had been determined experimentally in A. thaliana

(i.e., the data set does not contain interactions inferred com-

putationally or derived from other species).

Impact of Natural Selection

For each gene in the network, we attempted to identify its 1:1

ortholog in the A. lyrata genome (Hu et al. 2011) using a best

reciprocal Basic Local Alignment Search Tool (BLAST) ap-

proach (using BLASTP and an E-value cut-off of 10�10). Each

pair of A. thaliana–A. lyrata orthologous protein sequences

was aligned using ProbCons 1.12 (Do et al. 2005), and the

resulting alignments were used to guide the alignment of the

corresponding coding sequences. Estimates of dN, dS, and o
were obtained using the one-ratio model M0 from the PAML

4.4 package (Yang 2007).

Paralogs Identification

Each A. thaliana protein was used as query in a BLASTP

(Altschul et al. 1997) search against the A. thaliana proteome.

Genes were classified as singleton if no hit was obtained with

an E value< 0.1 or as duplicated if at least a homolog was

found that met the following criteria: 1) E value� 10�10; 2)

the aligned region length (L) was �80% of the length of the

query sequence; and 3) amino acid identity was �30% if

L> 150 amino acids or 0.06 + 4.8L�0.32[1 + exp(�L/1,000)] other-

wise (Rost 1999). Duplicated genes were further classified as

whole-genome duplication (WGD) genes if classified as such

in Blanc et al. (2003); otherwise, they were classified as result-

ing from small-scale genome duplication (SSD).

Gene Expression Level and Breadth

Expression data from 79 A. thaliana tissues were obtained

from Schmid et al. (2005). For each gene and tissue, values

were averaged across the three replicates, and the gene was

considered to be expressed if it was annotated as “present” in

at least two of the replicates. For each gene, expression level

was computed as the median across the 79 tissues, and ex-

pression breadth was computed as the number of tissues in

which the gene is expressed. For genes matching multiple

probe sets, the set yielding a higher expression level was

used. Probe sets matching multiple genes were discarded.

Functional Information

Each A. thaliana gene was assigned to one (or sometimes a

few) eukaryotic orthologous group (KOG) categories using the

eggNOG v2 database (Muller et al. 2010).

Ribosomal Proteins

Proteins were considered to be ribosomal if identified as such

in Barakat et al. (2001), if their description contained the text

“ribosomal protein” or if they were assigned to the Gene

Ontology (Ashburner et al. 2000) terms “large ribosomal sub-

unit” or “small ribosomal subunit.”

Age of Genes

Each of the 5,789 A. thaliana network proteins was used as

query in a BLASTP (Altschul et al. 1997) search against the nr

database (obtained from the National Center for

Biotechnology Information on January 2012). An E-value

cut-off of 10�6 was used. Only hits whose aligned region

length was �80% the length of the query sequence were

considered. Genes presenting hits in prokaryotes or in non-

plant eukaryotes (non-Embryophyta) were deemed as “an-

cient.” The remaining genes were considered to be “land

plant-specific.”

Results

Genes Acting at the Center of the A. thaliana PIN Are
More Selectively Constrained Than Those Acting at the
Network Periphery

We assembled a PIN for A. thaliana by merging all interactions

available in the BioGRID database (Stark et al. 2011) and in

Arabidopsis Interactome Mapping Consortium (2011). The re-

sulting network consisted of 5,789 unique proteins connected

by 14,368 physical binary interactions. For each protein in the

network, we computed three centrality measures: 1) the

number of interactors (degree); 2) the number of shortest

paths between all pairs of proteins of which the protein is

part (betweenness; Freeman 1977); and 3) the inverse of

the average shortest distance to all the other proteins in the

network (closeness). Using a best reciprocal BLAST approach,

we found 1:1 A. lyrata orthologs for 3,868 of the 5,789

A. thaliana network genes. For each pair of orthologs, the

impact of natural selection was inferred from the nonsynon-

ymous to synonymous divergence ratio (o¼dN/dS). Values of

o¼ 1 are expected for genes evolving neutrally, whereas

o< 1 is indicative of the action of purifying selection preser-

ving the sequence of the encoded proteins, and o>1 in a

number of codons is indicative of the action of positive selec-

tion (adaptive evolution) driving the fixation of nonsynon-

ymous substitutions. The estimated o values exhibit a

Protein Evolution in A. thaliana PIN GBE
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median of 0.128, indicating that these genes evolved under

relatively high levels of selective constraint.

We found that the 3,868 genes encoding proteins that are

represented in the network (i.e., those with described inter-

actors) exhibit lower rates of evolution than those not repre-

sented in the network (median o values of 0.128 and 0.183,

respectively; Mann–Whitney test, P<10�15). In addition,

among these 3,868 network genes, o values negatively

correlate with betweenness (Spearman’s rank correlation

coefficient, r¼�0.053, P¼0.001; fig. 1) and closeness

(r¼�0.034, P¼0.035): the larger the values of betweenness

and closeness for a protein, the stronger are the selective

constraints acting on that protein. Although the correlation

is only marginally significant for degree (r¼�0.030,

P¼0.063), the 1,467 genes with degree >1 show signifi-

cantly lower o values than the 2,401 genes with degree¼ 1

(median o values of 0.125 and 0.135, respectively; Mann–

Whitney test, P¼0.005). Taken together, these results

indicate that the most central genes in the A. thaliana network

are subject to stronger levels of purifying selection than those

acting at the network periphery. Similar results were obtained

for dN but not for dS (table 1), indicating that the distribution

across the network of selection at the amino acid level is

the main responsible for the observed trend.

The Relationship between Centrality and Evolutionary
Rate Is Independent of Gene Expression Level and
Breadth, Gene Function, and the Length of the
Encoded Products

Having established an association between proteins’ central-

ities and their rates of evolution, we sought to determine

A B

FIG. 1.—Correlation between o and betweenness.

Table 1

Spearman’s Correlations among the Parameters Considered in the Study

x dN dS Degree Closeness Betweenness Expression Level Expression Breadth

dN 0.732***

dS �0.219*** 0.310***

Degree �0.030 �0.026 �0.019

Closeness �0.034* �0.032* 0.001 0.412***

Betweenness �0.053** �0.051** �0.017 0.875*** 0.436***

Expression level �0.331*** �0.342*** �0.049** �0.013 0.066** 0.046**

Expression breadth �0.245*** �0.264*** �0.072** �0.006 0.024 0.035* 0.692***

Protein length 0.050** �0.009 �0.124*** �0.017 �0.042** �0.023 �0.088*** 0.012

*P< 0.05.

**P< 0.01.

***P< 10�6.
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whether this association reflected a direct effect of net-

work position or, on the contrary, it was the result of the

distribution across the network of a number of factors

that correlate both with rates of evolution and network

centralities.

Levels of selective constraint acting on a gene are known to

depend on a number of factors, among which the level and

breadth of gene expression seem to be the most important

(Duret and Mouchiroud 2000; Pál et al. 2001; Krylov et al.

2003; Subramanian and Kumar 2004; Wright et al. 2004;

Drummond et al. 2005, 2006; Ingvarsson 2007; Slotte et al.

2011; Yang and Gaut 2011). In agreement with previous

reports, we observed that the o and dN values exhibit a

strong negative correlation with both expression level and

breadth in our data set (table 1). Additionally, we observed

that, similar to the PINs of other organisms (Bloom and Adami

2003; Lemos et al. 2005), the most central genes in the

Arabidopsis PIN are more highly and broadly expressed

than those acting at the periphery: expression levels positively

correlate with betweenness and closeness and expression

breadths with betweenness (table 1). Combined, these obser-

vations raise the possibility that the correlation between

centrality measures and evolutionary rates could be driven

by the higher levels and/or breadths of expression of genes

acting at the center of the PIN. However, partial correlation

analysis (supplementary table S1, Supplementary Material

online) shows that the association between o and between-

ness is independent of expression level and breadth

(r¼�0.038, P¼0.026).

Another potential confounding factor is protein length,

as it correlates positively with o (i.e., genes encoding shorter

proteins tend to be more selectively constrained; Subramanian

and Kumar 2004; Ingvarsson 2007; table 1) and negatively

with closeness (i.e., genes acting at the center of the network

tend to encode shorter proteins, in agreement with previous

observations in Drosophila; Lemos et al. 2005; table 1).

However, the correlation between o and both between-

ness (r¼�0.052, P¼0.001) and closeness (r¼�0.032,

P¼0.048) remains significant when protein lengths are con-

trolled for (supplementary table S1, Supplementary Material

online), indicating that the tendency for central genes to

evolve under strong levels of selective constraint is also inde-

pendent of protein length. Furthermore, the correlation be-

tween o and betweenness remains significant when protein

length and expression level and breadth are simultaneously

controlled for (r¼�0.037, P¼ 0.028; supplementary table

S1, Supplementary Material online).

Genes performing different functions are subject to differ-

ent levels of selective constraint (e.g., Castillo-Davis et al. 2004;

Alvarez-Ponce and McInerney 2011) and encode proteins with

different network centralities (Kunin et al. 2004; Cotton and

McInerney 2010; Alvarez-Ponce and McInerney 2011).

Consistently, we found that genes in different categories

exhibit different o and centrality values (Kruskal–Wallis

test, o: P< 10�15; degree: P< 10�15; betweenness:

P¼1.17�10�11; closeness: P¼ 7.32�10�10). Therefore,

the observed correlation between centrality and evolutionary

rate (table 1) could conceivably be the result of these differ-

ences. To discard this possibility, the correlation between

evolutionary rate and degree was evaluated separately for

genes involved in each of the KOG functional categories

(Tatusov et al. 2003) (similar results were obtained for

betweenness and closeness; data not shown). The analysis

was restricted to the 20 KOG categories comprising more

than 25 A. thaliana network genes. Remarkably, the correl-

ation coefficient was negative for 18 of the 20 categories

(table 2). The correlation was significant for only five of

these categories, probably as a result of the reduced statistical

power resulting from partitioning the data set. These observa-

tions indicate that, in spite of the fact that genes with different

functions exhibit differento and centrality values, the negative

correlation between centrality and o is largely independent of

gene function.

Remarkably, correlation coefficients are highly variable

across the different KOG categories (table 2). First, pairwise

comparison shows that 10 pairs of categories exhibit signifi-

cantly different correlation coefficients (supplementary

table S2, Supplementary Material online). Second, for each

functional category, we compared the correlation coefficient

for genes within that category with the correlation coefficient

for all other genes (i.e., all network genes not belonging

to that category); this analysis shows that categories

“signal transduction mechanisms” (P¼ 0.009) and “chroma-

tin structure and dynamics” (P¼0.025) exhibit significantly

higher correlation coefficients than the rest of the net-

work (table 2). Taken together, these results indicate that

the extent to which sequence evolution is affected by protein

centrality is dependent on gene function. In fact, some cate-

gories exhibit strong negative o-degree correlations that

are comparable in strength to (or even stronger than) the

o-expression level and the o-expression breadth correlations

(tables 1 and 2).

Finally, because genes encoding ribosomal proteins are

highly conserved, and presumably highly connected, the as-

sociation between centrality and evolutionary rate observed

here could potentially be due to these genes. However,

when these genes are eliminated, the correlation between

o and betweenness remains significant (r¼�0.062,

P¼1.34� 10�4) and the correlation between o and

degree—which was not significant in the complete data set

(table 1)—reaches significance (r¼�0.041, P¼0.011).

Furthermore, these correlations remain significant when ex-

pression level, expression breadth, and protein length are sim-

ultaneously controlled for (degree: r¼�0.038, P¼ 0.029;

betweenness: r¼�0.042, P¼0.014).

Taken together, these observations point to a direct effect

of the position of proteins in the A. thaliana PIN on the rates of

evolution of their encoding genes.

Protein Evolution in A. thaliana PIN GBE
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Genes Encoding Physically Interacting Proteins Are
Subject to Similar Levels of Selective Constraint

We considered whether interacting proteins in the A. thaliana

network are subject to relatively similar levels of selective con-

straint compared with random protein pairs. For that purpose,

we computed the normalized absolute difference between

the evolutionary rates of all pairs of interacting genes in the

network (X):

X ¼
1

m

Xm

i¼1

joi1 � oi2j

ðoi1 +oi2Þ=2

Here, m is the number of interactions in the network, and oi1

and oi2 are the o values of the two genes involved in inter-

action i. Self-interactions (i.e., interactions among proteins

encoded by the same gene, a total of 383 in the data set)

were not considered in this analysis, as PINs are enriched in

such interactions, which can inflate the average similarity be-

tween interacting genes (Ispolatov et al. 2005; Alvarez-Ponce

and McInerney 2011). The observed value (X¼ 0.892) was

compared with a null distribution obtained from a collection

of random networks with the same proteins, number of inter-

actions, and degree for each node, which we generated from

the original network by repeatedly switching pairs of edges

(as in Luisi et al. 2012). Out of 10,000 random networks, only

426 showed an X value lower or equal to the observed one,

indicating that interacting proteins exhibit rates of evolution

that are more similar than expected from a random network

(P¼ 0.0426; fig. 3). Random networks exhibit an average X

value of 0.900, indicating that the o values for interacting

genes are 0.8% more similar than random pairs of proteins.

Ribosomal proteins might also represent a source of con-

founding bias, as they are subject to strong levels of purifying

selection and are highly connected to each other. However,

significant results were obtained when ribosomal proteins

were also removed from the network (X¼ 0.889, P¼0.039).

Centrality and Duplicability in the A. thaliana PIN

Finally, we studied the effect of proteins’ network position on

the duplicability of their encoding genes. Among the 5,789

genes encoding the A. thaliana PIN, 883 were found to be

singleton, and 3,532 were deemed as duplicated based on

similarity searches (the rest of the genes remained unclassified;

see Materials and Methods). Among duplicated genes, 1,540

are the result of one of the WGD events that took place in the

Arabidopsis lineage (Blanc et al. 2003; De Bodt et al. 2005),

and 1,992 were deemed as the result of SSD events.

Unexpectedly, proteins encoded by duplicated genes have

more interactors in the network (average degree of 5.18)

than those encoded by singleton genes (average degree of

4.10) (Mann–Whitney test, P¼ 0.008; fig. 2). These differ-

ences remain significant when self-interactions and inter-

actions among proteins encoded by paralogs are removed

from the analysis (P¼ 0.049), or when genes are classified

as duplicated or singleton based on whether they present

annotated paralogs in the Ensembl plants database release

14 (Kersey et al. 2012) (P¼1.62� 10�4). Furthermore,

degree positively correlates with the number of paralogs

annotated in Ensembl plants (r¼0.089, P¼1.02� 10�11),

even when only duplicated genes are considered (r¼ 0.086,

P¼5.85� 10�9). This observation is in agreement with the

patterns observed in the human interactome (Liang and Li

2007; D’Antonio and Ciccarelli 2011; Doherty et al. 2012)

but in contrast with those observed in E. coli, yeast, worm,

and fly, whose duplicated genes tend to encode lowly con-

nected proteins compared with singleton genes (Hughes and

Friedman 2005; Prachumwat and Li 2006; Makino et al. 2009;

D’Antonio and Ciccarelli 2011). Among duplicated genes,

those resulting from WGDs are more highly connected in

the Arabidopsis network than those resulting from SSD

X
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0.88 0.89 0.90 0.91

40
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FIG. 3.—Normalized absolute difference between the o values of

pairs of interacting genes in the network (X). The arrow points to the

observed value and the histogram represent the null distribution obtained

from 10,000 random networks.
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FIG. 2.—Average number of interactors for proteins encoded by

singleton, whole-genome duplication (WGD), and small-scale duplication

(SSD) genes. Error bars represent the standard error of the means.
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events (average degree of 5.70 and 4.78, respectively; Mann–

Whitney test, P¼5.63� 10�6; fig. 2).

D’Antonio and Ciccarelli (2011) found that the relationship

between centrality and duplicability was different among an-

cient and metazoan-specific human genes: among genes of

premetazoan origin, duplicated genes are less central than

singleton genes, whereas among genes that are specific to

metazoans, duplicated genes tend to occupy more central

positions than singleton genes. We considered whether the

relationship between centrality and duplicability observed in

Arabidopsis also depended on the age of the genes. For that

purpose, genes were classified as “ancient” (if they had

homologs in prokaryotes or in nonplant eukaryotes) or as

“land plant-specific” (otherwise). A total of 3,114 network

genes were classified as ancient, and the remaining ones

were deemed as plant specific. We found that, among

plant-specific proteins, those encoded by duplicated genes

are more highly connected than those encoded by singleton

genes (average degrees of 5.39 and 3.85, respectively; Mann–

Whitney test, P¼ 4.73�10�6). This difference, however, is

not significant among ancient genes (average degrees for

proteins encoded by duplicated and singleton genes: 5.06

and 4.41 interactions, respectively; P¼ 0.484). Therefore,

the relationship between centrality and duplicability observed

in Arabidopsis seems to be specific to plant-specific genes.

Because duplicated Arabidopsis genes are more selectively

constrained than singleton genes (Yang and Gaut 2011),

the lower evolutionary rates of genes central to the A. thaliana

PIN could potentially be a by-product of their enrichment

in duplicated genes. However, the correlation between o
and both betweenness (r¼�0.050, P¼0.015) and closeness

(r¼�0.049, P¼ 0.016) remains significant when only dupli-

cated genes are considered. Although these correlations

are not significant for singleton genes (r¼�0.044,

P¼0.288 for betweenness; r¼ 0.043, P¼0.293 for close-

ness), this might result from the small number of genes in

this category (n¼883).

Analysis of a High-Quality Subnetwork Provides
Consistent Results

Currently available interactomes are the result, to a high

extent, of the application of high-throughput techniques of

protein–protein interaction discovery. As a result, interactomic

data sets are subject to high rates of false positives and nega-

tives (Bader et al. 2004; Deeds et al. 2006). Given the potential

that this could be affecting our observations, we repeated

our analyses in a high-quality subset of the A. thaliana inter-

actome, containing only reliable interactions. Similar

to D’Antonio and Ciccarelli (2011), we filtered our data set,

retaining only interactions that had been determined using

low-throughput techniques (i.e., more accurate analysis of

protein interactions on a one-by-one basis), and those that

had been identified by two or more high-throughput analyses

independently. The filtered network consisted of 4,808 inter-

actions connecting 2,798 proteins, out of which 1,842 are

encoded by genes with 1:1 orthologs in A. lyrata. This repre-

sents a dramatic decrease in the amount of data when

compared with the full data set (only 48.3% of the proteins

and 33.5% of the interactions were present in the high-

quality subnetwork), which potentially involves a decrease in

statistical power but also an increase in the signal-to-noise

ratio.

Although the correlation between degree and o is not sig-

nificant in this reduced data set (r¼ 0.003, P¼ 0.907), o
values significantly correlate with both betweenness and

closeness, with correlation coefficients that are higher in mag-

nitude than those observed in the entire data set (between-

ness: r¼�0.061, P¼ 0.008; closeness: r¼�0.108,

P¼3.22� 10�6). The correlation between o and closeness

remains significant when the effects of expression level and

breadth, and protein length, are simultaneously controlled for

(r¼�0.061, P¼ 0.013). Furthermore, genes encoding pro-

teins that are represented in the network are more selectively

constrained than those that are not represented in the net-

work (median o values of 0.120 and 0.176, respectively;

Mann–Whitney test, P< 10�15).

Consistent with the observations in the full interactome,

duplicated genes are more highly connected than singleton

genes (average degrees of 3.58 and 2.83, respectively) in the

high-quality subnetwork. Although the degrees of both

groups are not significantly different (Mann–Whitney test,

P¼0.132), the duplicated/singleton degree ratio is equivalent

to that observed in the full data set (1.27), suggesting that the

lack of significance in the analysis of the high-quality subnet-

work may result from the reduced statistical power resulting

from trimming the data set.

Discussion

Results presented here provide multiple evidences linking the

position of proteins in the A. thaliana PIN and evolutionary

forces acting on their encoding genes. Remarkably, genes

acting at the most central positions of the network (measured

as degree, betweenness, or closeness) are subject to stronger

levels of purifying selection than those acting at the network

periphery. The trend is independent of the distribution across

the network of potential confounding factors (patterns and

levels of gene expression, gene duplicability, function, and

protein length), suggesting that network position has a

direct effect on levels of selective constraint. The observation

that proteins with more interacting partners are subject to

stronger levels of selective constraint suggests that direct pro-

tein–protein interactions impose constraints on protein se-

quence evolution. Nonetheless, closeness, and in particular

betweenness, seem to be better predictors of evolutionary

rates than degree (fig. 1 and table 1). These are global meas-

ures of network centrality that take into account not only

Alvarez-Ponce and Fares GBE
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the immediate network context of a protein (as degree does)

but rather its position in relation to the entire network.

Therefore, the evolutionary rate of a given protein does not

only depend on the number of direct interactors but also on its

broader network context. In particular, betweenness is a

measure of how the flow of information through the network

depends on each individual protein (Jeong et al. 2000;

Wagner and Fell 2001). Proteins bridging the gap between

parts of the network tend to exhibit a high betweenness

(Ravasz et al. 2002). Therefore, our observations suggest

that proteins exerting a high degree of control on information

flow across the network are particularly relevant for the or-

ganism’s fitness. These results are in agreement with previous

observations in organisms for which dense PINs are readily

available (E. coli, yeast, worm, fly, and human; Fraser et al.

2002; Teichmann 2002; Jordan et al. 2003; Hahn and Kern

2005; Lemos et al. 2005; Davids and Zhang 2008;

Alvarez-Ponce 2012), which show that genes acting at the

center of the network, or those participating in protein com-

plexes, are more selectively constrained, thereby suggesting

a general trend across all of life. Furthermore, our results are in

agreement with previous observations in yeast, worm, and fly

that betweenness is a better predictor of rates of evolution

than degree (Hahn and Kern 2005)—a pattern that has been

also observed in the yeast metabolic network (Lu et al.

2007)—suggesting a general trend at least in Eukaryotes.

Further evidence for the relationship between position of

proteins in the A. thaliana PIN and rates of evolution is pro-

vided by the observation that genes encoding interacting pro-

teins tend to be subject to similar levels of selective constraint

(fig. 3), consistent with previous observations in other inter-

actomes (Pazos and Valencia 2001; Fraser et al. 2002; Lemos

et al. 2005; Alvarez-Ponce et al. 2009, 2011; Cui et al. 2009).

This similarity might in part result from the mutational com-

pensatory dynamics between amino acids involved in protein–

protein interactions (Codoñer and Fares 2008; Fares et al.

2011). It should be noted, however, that covariation in the

evolutionary rates of proteins can obey to other factors such as

these proteins performing shared biological functions or ex-

hibiting correlated patterns of expression (Clark et al. 2012).

These alternative explanations—covariation due to mutational

compensation, shared function, or coexpression—are not mu-

tually exclusive.

Although our analyses reveal a clear association between

network position and evolutionary rates, the trend is generally

weak in comparison with other correlates of rates of evolution

such as gene expression (Duret and Mouchiroud 2000; Pál

et al. 2001; Krylov et al. 2003; Subramanian and Kumar

2004; Wright et al. 2004; Drummond et al. 2005, 2006;

Ingvarsson 2007; Slotte et al. 2011; Yang and Gaut 2011)—

compare, for instance, the o-degree correlation (r¼�0.030)

with theo-expression level (r¼�0.331) and theo-expression

breadth (r¼�0.245) correlations (table 1). This is in good

agreement with previous analyses linking network position

and rates of evolution, which often recover weak effects

(for review, see Cork and Purugganan 2004; Rocha 2006).

The weakness of these effects may be the result of the rela-

tively low fraction of amino acids participating in protein–pro-

tein interactions. It is remarkable, however, that the strength

of the correlation between degree and rates of evolution is

highly variable across the different functional categories.

Indeed, for some categories, the correlation coefficients of

the o-degree correlation attain values that are comparable

with (or even surpass) those for the o-expression level and/

or the o-expression breadth correlations (table 2). This sug-

gests that for certain functional categories, protein–protein

interactions strongly constrain protein evolution. The

o-degree correlation is significantly higher for proteins in func-

tional categories “signal transduction mechanisms”
(P¼ 0.009) and “chromatin structure and dynamics”
(P¼ 0.025) than for the rest of the network (supplementary

table S2, Supplementary Material online). Consistently, it has

been recently observed that degree is a strong correlate of

rates of evolution among genes involved in the human signal

transduction network (Alvarez-Ponce 2012).

Despite the weak effect of network position on rates of

evolution, a much stronger effect is observed on gene duplic-

ability. On average, proteins encoded by duplicated genes

exhibit 26%–27% more interactors than those encoded by

singleton genes (fig. 2). This higher connectivity of duplicated

genes has been also observed in humans (Liang and Li 2007;

D’Antonio and Ciccarelli 2011; Doherty et al. 2012), but the

opposite pattern was observed in E. coli, yeast, worm,

and fly—in which genes acting at the periphery of the net-

work are the ones that tend to undergo duplication (Hughes

and Friedman 2005; Prachumwat and Li 2006; Makino et al.

2009; D’Antonio and Ciccarelli 2011).

The differential pattern observed in the human interactome

has been shown to be the result of the high duplicability

of hubs originated after the emergence of Metazoans

(D’Antonio and Ciccarelli 2011). Human ancient genes

(those of premetazoan origin), however, exhibit the same ten-

dency as observed in E. coli, yeast, worm, and fly: duplications

tend to occur in genes acting at the periphery of the network

(D’Antonio and Ciccarelli 2011). This indicates that the par-

ticular trend observed in the human interactome is a derived

character and hence that the relationship between centrality

and duplicability shifted in the vertebrate lineage. Our obser-

vations that, also among A. thaliana novel (i.e., plant specific)

genes, duplicated genes are more connected than singleton

genes indicate that the relationship between duplicability

and centrality shifted not only in vertebrates but also in the

Arabidopsis lineage.

The higher duplicability of proteins acting at the periphery

of the E. coli, yeast, worm, and fly PINs has been attributed to

the fragility of the network to duplication of its more con-

nected elements. Indeed, the duplication of a given gene is

expected to disrupt the dosage balance of the interactions in
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which it is involved (Birchler et al. 2001; Veitia 2002; Papp

et al. 2003), which may have more deleterious effects for

genes with a higher number of interactors. On the other

hand, highly connected proteins may play a key role in main-

taining the robustness of the network, thereby making

networks fragile to mutation or loss of these genes (Albert

et al. 2000; Jeong et al. 2001). Hence, duplication of highly

connected proteins might be favored, as they increase the

robustness of the system (Ekman et al. 2006). These and

other competing forces probably act with different strengths

in different organisms, resulting in the contrasting overall

trends observed in available interactomes.

Major evolutionary transitions (from prokaryotes to unicel-

lular eukaryotes, to multicellular eukaryotes, and to land

plants and vertebrates) were accompanied by reductions of

orders of magnitude in effective population sizes. As a result,

vertebrates and land plants exhibit effective population sizes

that are smaller than those for E. coli, yeast, worm, and fly

(Lynch 2007). In populations with a small effective size, natural

selection is less efficient, and hence, the fate of mutations is

largely determined by random genetic drift. In such popula-

tions, natural selection may have small power in removing

duplicates of genes involved in a large number of interactions,

in spite of the fact that duplication of such genes are expected

to be deleterious according to the dosage balance hypothesis

(Birchler et al. 2001; Veitia 2002; Papp et al. 2003). This can

result in a (partial) suppression of the negative relationship

between duplicability and centrality predicted by the dosage

balance hypothesis. It is possible that, under such conditions,

factors promoting a positive duplicability–centrality relation-

ship can manifest, thereby resulting in the patterns observed

in the human (Liang and Li 2007; D’Antonio and Ciccarelli

2011; Doherty et al. 2012) and Arabidopsis (current work)

interactomes. The future availability of the interactomes of

a broader range of organisms, with different effective popu-

lation sizes, may enable a better understanding of the effect

of this factor on the relationship between centrality and

duplicability.

Among A. thaliana duplicated genes, those resulting from

the WGD events that took place in this lineage (Blanc et al.

2003; De Bodt et al. 2005) are more highly connected in the

PIN than those resulting from SSD events (fig. 2). This result is

in concert with the dosage-balance hypothesis, which predicts

that duplication of a gene with interactors may be deleterious

unless its interacting partners simultaneously coduplicate

(Birchler et al. 2001; Veitia 2002; Papp et al. 2003). Under

this scenario, highly connected genes are more likely to retain

duplicated copies if they are the result of WGDs, as simultan-

eous duplication of the entire genome maintains the stoichi-

ometry of all balanced sets (Veitia 2004, 2005).

The current analysis represents, to our knowledge, the first

interactome-level evaluation of the relationship between

the structure of the A. thaliana PIN and the patterns of mo-

lecular evolution of its components. Taken together, results

presented here indicate that the network imposes constraints

on the patterns of molecular evolution of its components at

multiple levels, from sequence evolution to gene duplication.

Therefore, genes do not evolve independently but as pieces of

a more complex system. Currently, the availability of protein–

protein interaction data for A. thaliana is limited in comparison

with other model organisms (Stark et al. 2011). As more data

become available, the emergence of a more detailed map of

the A. thaliana interactome will enable a more detailed under-

standing of its evolution.

Conclusions

Results presented here provide multiple evidences linking

the position of proteins in the A. thaliana PIN and evolutionary

forces acting on their encoding genes. In agreement with

previous observations in other organisms, genes acting at

the most central positions of the network are subject to

increased levels of selective constraint, and genes encoding

interacting proteins exhibit correlated rates of evolution.

Duplicated genes tend to be more central than singleton

genes, in agreement with the patterns observed in humans,

but opposite to those observed in E. coli, yeast, worm,

and fly, thereby indicating that the relationship between cen-

trality and duplicability underwent modification not only in

vertebrates but also in plants. Taken together, these results

indicate that the A. thaliana PIN impose constraints in the

patterns of molecular evolution of its encoding genes at

multiple levels.

Supplementary Material

Supplementary tables S1 and S2 are available at Genome

Biology and Evolution online (http://www.gbe.oxfordjournals.

org/).
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Korcsmáros T, Szalay MS, Böde C, Kovács IA, Csermely P. 2007. How to

design multi-target drugs: target search options in cellular networks.

Exp Opin Drug Discov. 2:799–808.

Krylov DM, Wolf YI, Rogozin IB, Koonin EV. 2003. Gene loss, protein

sequence divergence, gene dispensability, expression level, and inter-

activity are correlated in eukaryotic evolution. Genome Res. 13:

2229–2235.

Kunin V, Pereira-Leal JB, Ouzounis CA. 2004. Functional evolution of the

yeast protein interaction network. Mol Biol Evol. 21:1171–1176.

Larracuente AM, et al. 2008. Evolution of protein-coding genes in

Drosophila. Trends Genet. 24:114–123.

Lee JW, Kim TY, Jang YS, Choi S, Lee SY. 2011. Systems metabolic en-

gineering for chemicals and materials. Trends Biotechnol. 29:370–378.

Lemos B, Bettencourt BR, Meiklejohn CD, Hartl DL. 2005. Evolution

of proteins and gene expression levels are coupled in Drosophila and

are independently associated with mRNA abundance, protein length,

and number of protein-protein interactions. Mol Biol Evol. 22:

1345–1354.

Li WH, Wu CI, Luo CC. 1985. A new method for estimating synonymous

and nonsynonymous rates of nucleotide substitution considering the

relative likelihood of nucleotide and codon changes. Mol Biol Evol. 2:

150–174.

Liang H, Li WH. 2007. Gene essentiality, gene duplicability, and protein

connectivity in human and mouse. Trends Genet. 23:375–378.

Lu C, Zhang Z, Leach L, Kearsey MJ, Luo ZW. 2007. Impacts of yeast meta-

bolic network structure on enzyme evolution. Genome Biol. 8:407.

Luisi P, et al. 2012. Network-level and population genetics analysis of the

insulin/TOR signal transduction pathway across human populations.

Mol Biol Evol. 29:1379–1392.

Lynch M. 2007. The origins of genome architecture. Sunderland (MA):

Sinauer Associates.

Makino T, Hokamp K, McLysaght A. 2009. The complex relationship of

gene duplication and essentiality. Trends Genet. 25:152–155.

McInerney JO. 2006. The causes of protein evolutionary rate variation.

Trends Ecol Evol. 21:230–232.

Muller J, et al. 2010. eggNOG v2.0: extending the evolutionary genealogy

of genes with enhanced non-supervised orthologous groups, species,

and functional annotations. Nucleic Acids Res. 38:D190–D195.

Myers L, Sirois MJ. 2006. Spearman correlation coefficients, differences

between. In: Kotz S, editor. Encyclopedia of statistical sciences.

New York: John Wiley and Sons. p. 7901–7903.

Ohta T, Kimura M. 1971. On the constancy of the evolutionary rate of

cistrons. J Mol Evol. 1:18–25.

Pál C, Papp B, Hurst LD. 2001. Highly expressed genes in yeast evolve

slowly. Genetics 158:927–931.

Pál C, Papp B, Lercher MJ. 2006. An integrated view of protein evolution.

Nat Rev Genet. 7:337–348.

Papp B, Pál C, Hurst LD. 2003. Dosage sensitivity and the evolution of gene

families in yeast. Nature 424:194–197.

Pazos F, Valencia A. 2001. Similarity of phylogenetic trees as indicator of

protein-protein interaction. Protein Eng. 14:609–614.

Prachumwat A, Li WH. 2006. Protein function, connectivity, and duplic-

ability in yeast. Mol Biol Evol. 23:30–39.

Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL. 2002.

Hierarchical organization of modularity in metabolic networks.

Science 297:1551–1555.

Rocha EP. 2006. The quest for the universals of protein evolution. Trends

Genet. 22:412–416.

Rost B. 1999. Twilight zone of protein sequence alignments. Protein Eng.

12:85–94.

Schmid M, et al. 2005. A gene expression map of Arabidopsis thaliana

development. Nat Genet. 37:501–506.

Slotte T, et al. 2011. Genomic determinants of protein evolution and

polymorphism in Arabidopsis. Genome Biol Evol. 3:1210–1219.

Stark C, et al. 2011. The BioGRID Interaction Database: 2011 update.

Nucleic Acids Res. 39:D698–D704.

Subramanian S, Kumar S. 2004. Gene expression intensity shapes evolu-

tionary rates of the proteins encoded by the vertebrate genome.

Genetics 168:373–381.

Tatusov RL, et al. 2003. The COG database: an updated version includes

eukaryotes. BMC Bioinformatics 4:41.

Teichmann SA. 2002. The constraints protein-protein interactions place on

sequence divergence. J Mol Biol. 324:399–407.

Veitia RA. 2002. Exploring the etiology of haploinsufficiency. Bioessays 24:

175–184.

Veitia RA. 2004. Gene dosage balance in cellular pathways: implications

for dominance and gene duplicability. Genetics 168:569–574.

Veitia RA. 2005. Paralogs in polyploids: one for all and all for one? Plant

Cell 17:4–11.

Vitkup D, Kharchenko P, Wagner A. 2006. Influence of metabolic network

structure and function on enzyme evolution. Genome Biol. 7:R39.

Wagner A. 2012. Metabolic networks and their evolution. Adv Exp Med

Biol. 751:29–52.

Wagner A, Fell DA. 2001. The small world inside large metabolic networks.

Proc Biol Sci. 268:1803–1810.

Wilson AC, Carlson SS, White TJ. 1977. Biochemical evolution. Annu Rev

Biochem. 46:573–639.

Wolf YI, Carmel L, Koonin EV. 2006. Unifying measures of gene function

and evolution. Proc Biol Sci. 273:1507–1515.

Wright SI, Yau CB, Looseley M, Meyers BC. 2004. Effects of gene expres-

sion on molecular evolution in Arabidopsis thaliana and Arabidopsis

lyrata. Mol Biol Evol. 21:1719–1726.

Yang L, Gaut BS. 2011. Factors that contribute to variation in evolutionary

rate among Arabidopsis genes. Mol Biol Evol. 28:2359–2369.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood.

Mol Biol Evol. 24:1586–1591.

Zuckerkandl E, Pauling L. 1965. Molecules as documents of evolutionary

history. J Theor Biol. 8:357–366.

Associate editor: Takashi Gojobori

Alvarez-Ponce and Fares GBE

1274 Genome Biol. Evol. 4(12):1263–1274. doi:10.1093/gbe/evs101 Advance Access publication November 18, 2012


