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ABSTRACT: Druggability assessment of a target protein has emerged in recent years as an important concept in hit-to-lead
optimization. A reliable and physically relevant measure of druggability would allow informed decisions on the risk of investing in
a particular target. Here, we define “druggability” as a quantitative estimate of binding sites and affinities for a potential drug
acting on a specific protein target. In the present study, we describe a new methodology that successfully predicts the druggability
and maximal binding affinity for a series of challenging targets, including those that function through allosteric mechanisms. Two
distinguishing features of the methodology are (i) simulation of the binding dynamics of a diversity of probe molecules selected
on the basis of an analysis of approved drugs and (ii) identification of druggable sites and estimation of corresponding binding
affinities on the basis of an evaluation of the geometry and energetics of bound probe clusters. The use of the methodology for a
variety of targets such as murine double mutant-2, protein tyrosine phosphatase 1B (PTP1B), lymphocyte function-associated
antigen 1, vertebrate kinesin-5 (Eg5), and p38 mitogen-activated protein kinase provides examples for which the method
correctly captures the location and binding affinities of known drugs. It also provides insights into novel druggable sites and the
target’s structural changes that would accommodate, if not promote and stabilize, drug binding. Notably, the ability to identify
high affinity spots even in challenging cases such as PTP1B or Eg5 shows promise as a rational tool for assessing the druggability
of protein targets and identifying allosteric or novel sites for drug binding.

■ INTRODUCTION
Recent genome-wide analyses suggest that 10% of the human
genome is druggable, and among druggable proteins about half
correspond to disease-causing genes.1 Assessing the drugg-
ability of the target protein at a relatively early stage in the drug
discovery process is now becoming common practice, with the
realization that the nondruggability of a target is a major
obstacle in advancing a small molecule from hit to lead.2,3

When evaluating druggability, one often wants to determine the
likelihood of finding an inhibitor for the protein of interest and
make a quantitative estimate of the inhibitor molecular size and
affinity to help assess the risk of specializing on those targets.
Two experimental methods have been particularly useful in

making such assessments: (i) NMR screening of libraries of
small molecules against target proteins4 to identify binding sites
and corresponding achievable affinities and (ii) multiple-solvent
crystal structure (MSCS) determination,5 where a target
protein structure is resolved in complex with small organic
molecules used as a probe to infer potential druggable sites.
Both approaches are based on the premise that probe binding
sites and frequencies correlate with drug-binding sites and
affinities. Hajduk and co-workers demonstrated that sites that
bind a relatively large fraction of fragments (e.g., hit rates of
0.2% or higher for thousands of screened small molecules)
indeed coincide with known high affinity (KD < 300 nM) sites.
On the basis of these observations, they proposed a metric, the
druggability index, for quantifying the druggability of target
proteins. The druggability index is obtained by optimal
assignment of linear and logarithmic weights to structure-

based binding site descriptors to match the hit rates observed in
NMR-based fragment screening.4 The resulting model was
shown to distinguish the correct binding pocket as the most
druggable site in 71% of test proteins.
The physical basis of experimentally observed druggability

behavior has been further established with the help of
theoretical and computational studies performed in recent
years.6−8 Cheng et al. proposed a simpler model that involved
two dominant descriptors, nonpolar surface area and pocket
curvature, to estimate the maximal binding af f inity achievable
by a drug-like molecule, which successfully explained the
behavior of a series of targets.6 Recent in silico screening of a
library of fragment-like molecules and organic probe molecules
against known binding sites also showed that computations
successfully distinguish druggable and nondruggable targets.9 In
particular, the FTMap approach based on fast Fourier
transform correlation methods, combined with clustering
methods and atomic force fields, was found to yield results in
good agreement with MSCS experiments,10,11 in support of the
utility of computations for identifying druggable sites.
Following significant progress in the field, attention has been

drawn to the impact of protein flexibility in binding site
identification and druggability calculations. It has become clear
that experimental data are practically irreproducible when
significant dynamics and conformational changes occur in
binding sites.12,13 Examination of the conformational space
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accessible to Bcl-xL and the β-adrenergic receptor by molecular
dynamics (MD) simulations has exemplified the implications of
protein dynamics. Simulations of Bcl-xL revealed that the
protein undergoes a change from a seemingly nondruggable
conformation to a druggable one, yielding inhibitor-binding
affinities more consistent with experimental data. Similarly,
Ivetac and McCammon used MD simulations to generate an
ensemble of β-adrenergic receptor structures for FTMap
calculations to identify potential allosteric and druggable
pockets,13 which could not be identified by calculations based
on the crystal structure of the protein alone. Many other studies
point to the significance of considering protein dynamics, albeit
at low resolution (e.g., coarse-grained normal-mode analysis),
in computational predictions of inhibitor-binding mecha-
nisms.14−21 On the other hand, the need for protein
conformational sampling remains a debated issue when the
proteins exhibit changes limited to side-chain rearrangements in
their binding site.22−24

Recently, methods based on MD simulations in water and
organic molecule mixtures were introduced for binding site
identification.25−27 Guvench and MacKerell simulated the
dynamics of target proteins in propane, benzene, and a water
mixture to generate a map of protein binding preferences.25,26

Results were evaluated in a qualitative manner by visualization
of probe binding probability maps. Seco and co-workers, on the
other hand, simulated proteins in a mixed solvent box of water
and isopropanol.27 On the basis of previous observations that
small organic molecules tend to bind druggable sites,5,28,29 they
also developed a method to convert isopropanol binding
propensities into achievable binding affinities of drug-like
molecules. The exclusive use of a single probe that contains
hydrophobic and polar groups (or other purely hydrophobic
probes) limits the applicability of these methods. Additionally,
the atomic contributions to binding free energy require careful
evaluation to avoid redundant inclusion of interdependent
interactions. The inclusion of all of the four heavy atoms of
isopropanol molecules in contact with the protein as separate
entities, for example, led to an overestimation of binding
affinities, which were then rescaled by applying a correction
factor.27

In the present study, we propose a novel methodology using
a probe set with diverse physicochemical properties (Table 1)
and a binding free energy estimation methodology with
simplified assumptions. We developed an automated algorithm
for analyzing MD trajectories of target molecules generated in

the presence of diverse probe molecules to make druggability
assessments. Thorough examination and comparative analysis
of the results for five test proteins’ (a total of six different cases)
probe-binding dynamics in the presence of two different probe/
water compositions (shortly referred to as isopropanol-only and
probe-mixture, both in an aqueous medium; presented in Table
2) lends support to the utility of the methodology. We note in
particular the accurate prediction of experimentally observed
binding sites and affinities for challenging targets such as
protein tyrosine phosphatase 1B (PTP1B) and Eg5 kinesin.

■ RESULTS AND DISCUSSION
Probe Molecules. Small organic molecules were selected as

probes on the basis of the frequency of occurrence of their
functional fragments, or substructures, in FDA-approved and/
or experimental drug molecules listed in DrugBank.30

Isobutane, isopropylamine (IPAM), acetic acid, and acetamide,
as well as isopropanol groups, were found each to take part in at
least 20% of drug molecules (Table 1). Among these, we have
selected acetamide (representative of polar molecules) as well
acetic acid and IPAM (representative of molecules that are
charged at physiological pH) as probes, to avoid the potential
problem of aggregation observed in the simulations of aliphatic
groups, e.g., isobutane.25 For detailed structure and energy
parameters of probe molecules, see the Supporting Information
(SI) text and Table S1.

Overview of the Method of Approach. Explicit
inclusions of both desolvation effects and the coupled dynamics
of water/probe molecules and the protein are key features of
MD-based druggability simulations.25,27 We describe our
methodology in detail in the Methods section and the SI. We
outline here the main steps, illustrated in Figure 1. We
simulated the target proteins in probe-mixture/water at a fixed
ratio of 20 water molecules per probe molecule (Figure 1A).
This roughly corresponds to 20% probes by volume or a ∼2.3
M concentration of probes and is a reasonable ratio to saturate
druggable sites and detect probe binding events.25,27 Assuming
that probe molecules reach Boltzmann distribution within
nanoseconds, runs of 32−40 ns provide a reference state for
estimating the binding free energy. Using a grid-based
approach27 and the inverse Boltzmann relation, the binding
free energy at voxel i is
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n
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Here, ni/n0 is the ratio of the observed density of probes (ni in
Figure 1B) to the expected density (or the reference state; n0 in
Figure 1C), also referred to as enrichment, R is the gas constant,
and T is the absolute temperature (K). It should be noted that
despite its broad use in docking and folding studies, the
physical basis of inverse Boltzmann relation for relative free
energy calculations is debated.31 Concerns usually arise in cases
where interacting particles are not independent, such as
covalently linked amino acids in a protein.32 However,
situations where it is clearly applicable for relative free energy
calculations include equilibrium systems of independent
particles.31 Thus, we accounted for binding events by
considering probe molecules as whole independent particles.
The resulting relative binding free energy map (Figure 1D) is
refined to identify interaction spots (Figure 1E), each
representing a probe molecule. Interaction spots within close
proximity are clustered into distinct binding sites. Maximal

Table 1. Number of Occurrences of Small Organic
Fragments As Substructures in Drug Moleculesa

fragment name approvedb all drugsc

isobutane 1022 (76%)d 2697 (42%)
isopropanol 768 (57%) 3559 (55%)
isopropylamine (IPAM) 337 (25%) 1483 (23%)
acetic acid 284 (21%) 1862 (29%)
acetamide 280 (21%) 1722 (27%)
acetone 239 (17%) 691 (11%)
urea 61 (5%) 211 (3%)
DMSO 37 (2%) 150 (2%)

aFragments used as probe molecules are highlighted in boldface. bA
total of 1341 approved small-molecule drugs are included, with a
molecular weight less than 800 Da. cA total of 6435 approved or
experimental drugs are included, with a molecular weight less than 800
Da. dPercentage of drugs that contain the fragment as substructures.
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Table 2. Comparison of Predicted Druggable Sites and Binding Affinities to Those Observed in Experiments

experimental data computational data

target binding site best Kd
a iso-propanolb probe mixturec protein hotspotse

MDM2 p53 0.6 nM83 0.4−1.0 nM 0.3−2.0 nM L54, I61, M62, Y67, V93, H96
2nd site na 0.1 μM nd F86, E95, K98

MDM2 NMR p53 0.6 nM84 0.1−1 nM L54, I61, M62, Y67, V93, H96
PTP1B pTyr 2.2 nM41 nd 0.3−0.9 nM R24, Y46, R254, K120, R221, S216

allostericd 8 μM43 2.8 μM 9.5−18 μM L192, F196, F280
IRK interface na nd 43 nM E4, F7, E8, D11, L272, E276
4th site na 4 nM 200 nM V113, M114, L119, A122, R112, R156, H175

LFA-1 induced 18.3 nM47 0.5−0.8 nM 0.03−0.5 nM L132, Y166, V233, I235, I259, Y257
Eg5 allostericd 0.2 nM51 27 nM 0.3 nM E116, I136, P137, Y211, L214

tubulin site na 2 nM 0.2 nM I272, L293, S348, Y352
3rd site na 600 nM 47 nM Q20, M70, V85

p38 ATP 0.05 nM 1−2 nM 0.01−0.12 nM A51, D71, L74, L75, L108, M109
MK2 site na 2−3 nM 2−3 nM T218, R220, L222, L238, V273
MAPK insert na 13−90 nM 5−210 nM I229 L232 Y258, I259

aKd or Ki of the most potent inhibitor. bPredictions based on isopropanol−water environment. cPredictions based on probe mixture−water
environment with 10% of isopropanols replaced with acetamide, acetate, and IPAM. dIC50 values of best inhibitors known to date. eHotspot residues
found here to interact with high-affinity probe interaction spots (LE > 0.4 kcal/mol) at the binding site. nd, not determined; na, not available.

Figure 1. Overview of methodology. (A) The druggability simulation box is prepared by immersing the target protein in a box of water and probe
molecules. (B) After the superposition of frames onto the X-ray structure using Cα atom positions, a grid representation is used to measure the probe
density (ni). (C) A protein-free system is simulated to calculate the expected probe density (n0) used in eq 1. (D) The binding free energy for each
voxel is calculated using eq 1. Note that only the outer layer (weaker) interactions are visible in the map. (E) Interaction spots (small spheres) are
identified by removing the voxels that overlap with the lower energy voxels. The energy scale in this panel holds for panels D and F as well. (F)
Proximal spots are merged to predict maximal affinity. Interaction spots that are in a druggable site are shown as larger spheres color-coded by the
corresponding interaction energies with the target. Molecular graphics in this study are generated using Chimera.79
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achievable binding affinity is calculated for those sites
composed of seven or more spots, by merging seven or eight
of them (28 or 32 heavy atoms) located within 5.5 to 6.5 Å of
each other in a deterministic way (see the Methods section).
The location of such interaction spots is proposed to be a
potential druggable site provided that the corresponding
maximal affinity is 10 μM (with a binding free energy of
−6.86 kcal/mol or stronger). Figure 1F shows such a druggable
site indicated with large, color-coded interaction spots. Maximal
affinity predictions for all druggable sites were compared with
experimentally determined affinity data, as summarized in
Table 2. See the Methods section and SI for more details.
Target Proteins. We selected five test proteins: (i, ii)

murine double mutant-2 (MDM2; truncated N-terminal
domain and solution structure of N-terminal domain in
which C- and N-terminal tails are present), (iii) PTP1B, (iv)
lymphocyte function-associated antigen 1 (LFA-1), (v) kinesin
Eg5, and (vi) p38 mitogen-activated protein (MAP) kinase
(MAPK). These targets offer a set of binding sites with diverse
shapes and physicochemical and dynamic properties. Drugg-
ability simulations were performed with two types of solvent
mixtures: (i) isopropanol-only and (ii) an isopropanol,
acetamide, acetate, and IPAM mixture, both in water, shortly
referred to as “probe-mixture/water”, with varying mole
fractions of probe molecules. See Table 2 for the description
of different runs for the six cases, summing up to a cumulative
simulation time of 1.3 μs. In the following, we present detailed
results for each case.
MDM2 is a negative feedback regulator of the p53 tumor

suppressor33 and features a protein−protein interaction site.
Due to its small size and the availability of extensive
experimental data,34 we used the 109-residue truncated N-
terminal domain of MDM2 for method development and
optimization. We used as input the structure resolved by Kussie
et al.35 We performed 11 MD runs with different probe
compositions and input parameters (Table S2), summing up to
a total of 0.4 μs run time.
All druggability simulations invariably yielded the p53

interaction site of MDM2 as the most druggable site, with
maximal affinities being in the range 0.3 to 3 nM. Figure 2A
displays the interaction spots (spheres) distinguished by their
high binding energy in probe mixture simulations, color-coded
by their interaction strengths with MDM2. Seven of them,
shown as larger spheres, are clustered together in space,
indicating a druggable site. Panel B compares the positions of
the interaction spots with those of the p53 side chains at the
interface of the known MDM2-p53 complex. Notably, the
interaction spots that make the largest contribution to binding
free energy (colored red) overlap with the side-chains of p53
residues F19, W23, and L26, which are mimicked by many
MDM2 inhibitors.36 MDM2 residues that are in contact with
the probes at this high affinity site are L54, I61, M62, Y67, V93,
and H96, consistent with the hotspots previously identified by
computational alanine scanning methodology.37

The maximal binding affinity predicted for MDM2 exhibited
minor dependence on probe composition. Isopropanol/water
simulations (runs 1−1 to 1−3 in Table S2) yielded a maximal
achievable affinity of 0.4−1.0 nM for this site (Figure 2);
simulations in a mixture of isopropanol (70% or 40%),
acetamide (10% or 20%), acetate (10% or 20%), and IPAM
(10% or 20%) in water (runs 1−4 to 1−6) led to 0.3−2.0 nM.
These values are in excellent agreement with experiments: the
affinity of the best known MDM2 inhibitor is 0.6 nM.38

We note that isopropanol molecules contributed by 80% or
more to the predicted maximal binding affinity in the runs
performed with the probe mixture. The maximal affinity
evaluated in earlier work27 with the same probe was 0.02 nM.
This affinity, about 1 order of magnitude higher than current
predictions (and experimental data), has been verified by
independent simulations (run 1−9, Table S2) to result from
the previous assignment of partial charges, which led to an
underestimation of the polarization of isopropanol. This, in
turn, gave rise to more favorable interactions with the
hydrophobic binding pocket of MDM2. We note that a second
binding pocket was observed in earlier work,27 formed by the
rearrangements of F86, E95, K98, and Met102 side chains. The
corresponding maximal affinity (0.05 μM)27 is comparable to
that (0.1 μM) obtained in our runs 1−1 and 1−9. To further
assess the effect of minor changes in force field parameters, we
simulated MDM2 using the CHARMM general force field39

parameters for isopropanol (runs 1−7 and 1−8). Minor
differences in atom types and partial charge distribution were
observed (Table S1). However, the predicted maximal affinities
remained practically unchanged, providing support to the
robustness of our quantitative results with respect to variations

Figure 2. p53 binding pocket confirmed as the single most druggable
site of MDM2. (A) The MDM2 structure35 (1YCR) in ribbon
representation and interaction spots from probe mixture simulation
1−5 (Table S2) as spheres are shown. Coloring is based on binding
free energy. The p53 pocket, identified as a druggable binding site, is
indicated by the large spheres. Some interaction spots with a binding
free energy greater than −1.5 kcal/mol are not displayed for the clarity
of the figure. Coordinates of interaction spots and the protein are
provided as Supporting Information. (B) A closeup view of the p53
binding pocket. p53 is colored yellow, and its labels are italicized.35

The interaction spots contributing to the predicted maximal affinity
are shown. We note their overlap with the p53 hotspot residues F19,
W23, and L26.
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in force field parameters or partial charge distributions within
plausible limits.
The MDM2 solution structure, resolved by NMR spectros-

copy,40 features 25 and 10 residue N- and C-terminal tails,
respectively. By visual inspection of 24 models in this structure,
we chose the second model in which the p53 binding site is the
most occluded by the N-terminal tail. We performed two
druggability simulations and one probe-free simulation. In the
druggability simulations (runs 2−1 and 2−2 in Table S2), the
p53 site was identified as a druggable site with maximal affinity
ranging from 0.4 to 1.0 nM (Figure 3A), comparable to those
from the simulations of a truncated structure. Locations of p53
hotspot residues W23 and F19 were also identified by the
probe molecules (Figure 3B). We also compared the dynamics
of the solution structure from druggability simulations to that
from a probe-free simulation (run 2−3). In the absence of
probe molecules, the N-terminal tail remained stretched over
the p53 binding domain occluding the binding pocket (Figure
3D). On the other hand, the binding pocket was accessible to
probe molecules in the druggability simulations (Figure 3C),
demonstrating the adaptation in the protein structure to the
presence of ligands.
PTP1B is a challenging target due to the highly basic

character of its catalytic active site. Known inhibitors of this
target are negatively charged. Consequently, it is not possible to
identify a probe interaction spot at, or in the vicinity of, the
catalytic cavity when only isopropanols are used as a probe
(PTP1B run 3−1; Table S2).27 The probe-mixture/water

simulations indeed indicate many acetate interaction spots at
the catalytic cavity (Figure 4A) in addition to other probes,
mostly isopropanols, in the vicinity. This analysis clearly
highlights the need to adopt probes other than isopropanol for
assessing the druggability of targets that contain polar/charged
sites. Additionally, three more clusters that suggest additional
druggable sites were found (enclosed in ellipses), one of which
coincides with the allosteric site of PTP1B.
The interaction spots that exhibit the highest binding affinity

at the PTP1B catalytic site are coordinated by positively
charged amino acids (K120, R221), along with polar side chains
(Y46, S216) and backbone amides (Figure 4B). We predicted
maximal affinity to range from 0.3 to 0.9 nM (runs 3−2 and 3−
3), by allowing selected interaction spots to have up to 2
absolute total charge. When no more than one integral charge
was allowed, the affinity dropped to 10.5 nM. These predictions
are comparable to the experimental data reported for the best
known catalytic site inhibitor, which is 2.2 nM.41 Our analysis
shows that a major contribution to affinity is made by the
acetate probes. Notably, acetate interaction spots were
observed in the second aryl-phosphate binding cavity
(coordinated by R24 and R254, Figure 4B), known to also
bind catalytic site inhibitors.42 The computed binding affinity
(−1.7 kcal/mol) at this site was weaker than that of acetates at
the catalytic cavity (from −3.1 to −2.9 kcal/mol).
As to the PTP1B allosteric site (Figure 4A), the maximal

affinity deduced from isopropanol-only simulation (2.8 μM;
run 3−1) was comparable to earlier prediction27 (0.5 μM),

Figure 3. Druggability assessment of the p53 binding site when occluded by the MDM2 N-terminal tail. The MDM2 NMR model40 (1Z1M model
2), in ribbon representation, and interaction spots from probe mixture simulation 2−1 (Table S2), as spheres, are shown in panel A. The coloring
scheme is the same as in Figure 2. The p53 pocket identified as druggable is indicated by the large spheres. (B) A closeup view of the p53 binding
pocket from panel A is shown, with similar coloring as in Figure 2B. We note the overlap of p53 hotspot residues F19 and W23 with probe
interaction spots. Panels C and D show 25 evenly spaced snapshots from druggability simulation 2−1 and probe-free simulation 2−3, respectively. In
the presence of probe molecules, the p53 pocket was more accessible, whereas in their absence, the pocket remained occluded by the N-terminal tail.
Coordinate files for interaction spots and simulation snapshots are provided in the Supporting Information.
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whereas the probe-mixture/water simulations yielded an
achievable affinity of 9.5 to 17.6 μM (runs 3−2 and 3−3).
The best known inhibitor for this site has an IC50 of 8 μM.43

The interaction spots at this site are mostly contributed by
isopropanols, with the highest affinity spots making contacts
with L192, F196, and F280 side chains.
In addition to the catalytic and allosteric sites, we identified

two more druggable sites on PTP1B. The first, at the insulin
receptor kinase (IRK) interface,44 yields an achievable affinity
of 43 nM. It mainly consists of favorable isopropanol and IPAM
interactions with E4, F7, E8, D11, L272, and E276, resulting in
positive total charge. Seco et al. reported a druggable site with
an affinity of 180 nM in the vicinity of V184, P187, and R268 at
the IRK interface,27 which is not reproduced in our
isopropanol-only simulations. The other site (labeled fourth
site in Figure 4A) was detected in both probe-mixture (4 nM)
and isopropanol (200 nM) runs. Isopropanols favorably
interacted with V113, M114, L119, and A122 and acetate
molecules with R112, R156, and H175.
LFA-1 is a leukocyte cell surface glycoprotein that promotes

intercellular adhesion and binds intercellular adhesion molecule
1.45 In this case, the binding site of interest is an allosteric
pocket. We have used the ligand-free structure of LFA-146 in
our simulations. In this structure, the allosteric pocket is
occluded by K287 side-chain (Figure 5A), and the entry to the

pocket is partly obstructed by a salt bridge between E284 and
K305 (Figure 5B). Rearrangement of these side chains is
essential to reaching the allosteric site by probe molecules.
Hence, LFA-1 is one of the targets that substantiate the utility
of MD-based druggability assessment.
Our analysis found the allosteric site of LFA-1 as the only

druggable site with a maximal achievable affinity in the range
0.8 to 0.03 nM irrespective of the probe type (Tables 2 and S2;
runs 4−1 to 4−4). Like MDM2, most of the interaction spots
are populated by isopropanols, consistent with the hydrophobic
character of the LFA-1 allosteric site. Residues interacting with
high affinity spots are L132, Y166, V233, I235, I259, and Y257.
Previous simulations predicted a maximal affinity of 27 nM,27

and indeed the best inhibitor with known Kd reported at the
time that binds this site has an affinity of 18.3 nM (it inhibits
LFA-1/ICAM interaction with an IC50 of 10.3 nM).47 Our
simulations suggest, however, that a higher affinity binding is
achievable at this site. We searched the binding databases48 for
better inhibitors of LFA-1 based on reported IC50 values. We
found that a compound with an IC50 of 0.35 nM has been
identified as a validated hit in a study of a series of meta-aniline
based compounds (compound 20).49 Key to the stabilization of
the ligand was the formation of a salt bridge between E301 and
K287, allowing for amino-aromatic interaction between the
K287 side chain and the ligand (Figure 5B and C).

Kinesin Eg5. Allosteric inhibitors of Eg5 are known to bind
a ligand-induced pocket 12 Å away from the catalytic cavity.
The pocket is lined by helix α3 and the insertion loop 5 (L5) of
helix α2 after its displacement by 7 Å toward helix α3
(rectangular box in Figure 6A).50 The absence of an accessible/
open binding pocket in the unbound form constitutes a
challenge for druggability assessment studies that use a static
structure of Eg5. However, our simulations consistently located
the allosteric pocket as a druggable site, irrespective of probe
type or composition. The calculated achievable affinities were
0.3 nM in probe-mixture and 27 nM in isopropanol-only
simulations. An IC50 of 0.2 nM has been reported for the best
inhibitor of Eg5, in agreement with the probe-mixture
prediction.51 High affinity probes were observed therein to be
stabilized by interactions with E116, I136, and P137 on helix α2
and Y211 and L214 on helix α3. Other favorable interactions
included those with W127, D130, and R119 on L5.
Figure 6B shows the overlay of predicted interaction spots

for Eg5 with a known inhibitor.52 The interaction spots
identified in the allosteric site contain both positively and
negatively charged probes, with the total charge not exceeding
one electronic unit (absolute). However, in the isopropanol-
only simulation, while the calculated achievable affinity was 27
nM, only four of the seven probes are actually located in the
allosteric pocket; on the basis of these probes, the computed
affinity at the allosteric site would be 45 μM. The additional
probes that contributed to the calculated high affinity bound
the exposed surface of helix α3. Thus, the probe-mixture is
required here in order to accurately capture the binding affinity
at the allosteric site. Another interesting observation is that two
IPAM probes were stabilized at a position that closely mimics
that of the nitrogen of the piperidine moiety in the ligand
bound to Eg5 (Figure 6B). The closest interaction spot, 2.3 Å
away from the nitrogen of piperidine, was contributed by the
amine 23% of the time.
In addition, we identified two more nM sites (0.2−20 nM

and 47−600 nM), enclosed by ellipses in Figure 6A. The first,
labeled as the tubulin-binding site, is located between helices α4

Figure 4. Four druggable sites identified for PTP1B. (A) PTP1B
structure80 (PDB ID: 1PH0) ribbon diagram and four druggable sites
(indicated by color-coded, large interaction spots) found in PTP1B
probe-mixture simulations. In addition to the catalytic site (rectangular
box, magnified in panel B) and the allosteric site, two other potentially
druggable sites (labeled as IRK interface and 4th site) were identified.
(B) Closeup view of the catalytic site. An active site inhibitor
(compound 6 in previous work80) with two negative charges is shown
in stick representation. The interaction spots predicted to make the
largest contribution to binding affinity overlap with the charged groups
of the inhibitor. Acetate interaction spots are indicated by a negative
sign.
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and α6. It has a rather shallow surface geometry typical of
protein−protein interfaces. Yet, a binding affinity of 0.2−20 nM
site is predicted resulting from tight interactions with two
groups of residues: (i) I272, L293, and S348 and (ii) G296,
T300, Y352, and A356. A comparison of the Eg5 structure to
tubulin-bound structures of other kinesins53,54 revealed that the
first group is part of the tubulin-binding interface. The second
group, on the other hand, is part of the binding site for the ATP
competitive allosteric inhibitor GSK-1.55 The probe molecules,
however, do not penetrate deep enough into the pocket to
interact with the GSK-1-binding residues L295, I299, and I332.
Finally, we detect a 47 nM site in proximity to Q20, M70, and
V85, which has not yet been observed to bind a ligand.
p38 MAP kinase is involved in inflammatory diseases56 and

is an extensively studied drug target. The best known p38
inhibitor has 50 pM affinity.57 The achievable affinity deduced
from our isopropanol/water simulations is in the range 1−2
nM (Figure 7, Tables 2 and S2). Isopropanol molecules filled in
only the adenine- and ribose-binding pockets in runs 6−1 and
6−2; they were not observed to bind the allosteric site, which is
a hydrophobic cavity lined by L74, L75, M78, and F189.58 In
probe-mixture/water simulations, on the other hand, probes
were observed to bind the allosteric cavity (Figure 7B) with a
maximal affinity of 10 to 120 pM (Tables 2 and S2), in
agreement with experimental measurements for the best known

inhibitor. Probes at high-affinity spots were observed to closely
interact with A51, E71, L74, L75, L108, and M109. The
adenine/ribose pocket was also occupied by all types of probes,
but preferentially by acetamide, isopropanol, and IPAM
molecules. The contribution of this pocket to affinity was
−5.13 kcal/mol. The allosteric pocket, mainly populated with
isopropanols, contributed an additional −4.4 kcal/mol.
These results again demonstrate that a mixture of polar

probes better captures the druggability of the p38 allosteric site
than isopropanol alone does. Our results diverge from previous
work27 where isopropanol binding to the adenine/ribose
pocket alone is estimated to contribute as much as −11.6
kcal/mol, leading to 2−3 orders of magnitude higher affinity
than those found here with isopropanol-only simulations.27

This difference is attributed to the overestimation of atomic
binding energies in their method, as will be discussed in the
next subsection. In the present simulations, the binding free
energy contributions are spread over a larger volume, and the
positions of the interaction spot clusters show good overlap
with the space experimentally observed to be occupied by
inhibitors.
In addition to the ATP site, our simulations detected two

more druggable sites on p38 (Figure 7A). The first is on the
MAPK-activated protein kinase 2 (MK2 site in Figure 7A)
activation loop and stabilizes the loop conformation assumed

Figure 5. The only druggable site identified for LFA-1: a partially obstructed allosteric pocket. (A) LFA-1 structure46 (PDB ID: 1ZOP) in ribbon
representation and probe interaction spots from the probe-mixture simulation as spheres are shown. The box indicates the location of the allosteric
inhibitor binding pocket found to be the only druggable site. Larger spheres indicate interaction spots used to predict maximal affinity. (B) Close up
view of the allosteric binding pocket, with the larger spots from panel A, superposed on the structure of a bound antagonist of LFA-1 (black sticks;
compound 1 in Crump et al.47) in the bound LFA-1 structure (yellow; PDB ID: 1RD4).47 Bound (yellow) and unbound (green) conformations of
E284, K287, E301, and K305 side chains are also compared. (C) Snapshots at 2 ns intervals from LFA-1 simulation 4−3 (rainbow, from blue to red)
superposed onto the inhibitor-bound LFA-1 structure (gray), with the inhibitor shown in pink ball-and-stick. Probe molecules stabilize the C-
terminal helix in bound form, break the salt bridge between K305 and E284, and induce the formation of the K287-E301 salt bridge. (D) Snapshots
from probe free LFA-1 simulation 4−5 (coloring scheme same as panel C), showing the collapse of the C-terminal helix onto the allosteric binding
pocket.
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upon MK2 binding.59,60 The maximal affinity for this site is
found to be 2 nM, mostly contributed by isopropanol
interactions with T218, L222, L238, and V273 and acetate
interactions with R220. The second site coincides with a lipid
binding site formed by the MAP kinase insert (Figure 7A),61

which is also a binding site for some inhibitors.62 The maximal
affinity for this site varied from 5 to 90 nM, contributed by
isopropanol interactions with I229, L232, Y258, and I259. For
these two sites, we did not find experimental affinity data.
Discussion of the Simulation Protocol and Length.

The initial configurations of target systems contained very few
probes interacting with the protein, and all known binding sites
were free of probe molecules. Prior to the productive
simulations, we performed 0.4 to 0.6 ns of annealing (protein
non-hydrogen atoms were constrained to prevent unfolding)
and 0.4 to 0.6 ns of equilibration (no constraints) simulations
(details are given in Table S2). In the annealing step, the
temperature of the system was raised to 600 K. This was
particularly useful for targets with partially occluded binding
sites such as the LFA-1 and MDM2 solution structure.
Acceleration in solvent dynamics at high temperatures allowed
probe molecules to locate drug/inhibitor binding sites before
their collapse (LFA-1) or further occlusion (MDM2). The
LFA-1 binding site (Figure 5D), for example, collapsed in a
fraction of a nanosecond due to the hydrophobic nature of the
binding pocket. The annealing step thus allowed for shorter

equilibration times. As to the production runs, we performed
32 to 40 ns simulations. Multiple simulations have shown that
the length was adequate for reproducing the binding site and
maximal affinity predictions. It is also possible to combine
independent simulations to get a consensus density map or
probe interaction spot distribution. We have combined
simulations performed using same probe compositions. The
predicted affinities (Table S2) as well as the distribution of
probe binding spots did not change in support of the adequacy
of 32−40 ns simulations for sampling.

Intrinsic Dynamics of the Target Protein and the
Effect of Probe Molecules. We presented results for six test
cases exhibiting three different levels of flexibility at the binding
sites: (i) local motions limited to side-chain fluctuations and
isomerizations (MDM2 and PTP1B), (ii) local motions also
including loop/helix rearrangements (LFA-1 and Eg5), and (iii)
global motions involving lobe opening/closing (p38) or large
scale terminal tail motions (MDM2 solution model).
At level i, comparable side-chain motions were observed in

both druggability and probe-free simulations, as typified by
MDM2 and PTP1B, although the recognition of druggable sites
may require the use of a probe-mixture depending on the
specificity of the detected surface (e.g., the catalytic site of
PTP1B which is predominantly basic). At level ii, probe
molecules successfully induced structural changes in the target
to gradually approach the known inhibitor-bound forms. For

Figure 6. Significance of conformational flexibility in identifying the allosteric pocket of Eg5 as a druggable site. (A) Interaction spots identified for
Eg5 structure63 (PDB ID: 1II6) in probe-mixture simulation 5−2. Three druggable sites are observed: the allosteric site (0.3 nM; rectangular box)
and two additional sites of maximal affinities 0.2 nM (tubulin binding site) and 47 nM (3rd site). (B) Closeup view of the inhibitor binding to the
allosteric site. A pyrrolotriazine-4-one analog (compound 24 in Kim et al.;52 PDB ID: 2FKY) is shown in stick representation. Interaction spots
include both negatively and positively charged probes as labeled. (C) Snapshots at 4 ns intervals for Eg5 probe-mixture simulation 5−2 (rainbow
from blue to red) superposed onto the inhibitor-bound structure (gray; inhibitor in pink stick-and-ball). Inhibitor binding induces a displacement in
the W127 side-chain by 10 Å (from blue to gray, see also in panel D) to approach its bound conformation. (D) Snapshots from probe-free Eg5
simulation 5−3. The loop 5 does not display rearrangements, in contrast to motions observed in the presence of probes in panel C.
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example, the probes were able to locate and stabilize the
allosteric pocket of LFA-1 in a conformation similar to its
inhibitor-bound form (Figure 5C). Conversely, in probe-free
simulations, the C-terminal helix of LFA-1 collapsed over the
pocket within the first nanosecond of both runs and remained
collapsed until the end of the simulations, thus obstructing the
access to the binding site (Figure 5D). The presence of organic
probe molecules thus appears to be a requirement for enabling
the solvent-exposure of the allosteric site. For Eg5, we focused
in particular on the tip residue Trp127 of loop 5 (L5) that is
displaced by 10 Å between the inhibitor-bound and -unbound
structures.52,63 Probe molecules induced a reconfiguration at

this region, to sample conformations departing by 4 to 5 Å
from the inhibitor-bound form (Figure 6C). In probe-free
simulations, however, no L5 rearrangement was observed
(Figure 6D). These observations point to the ability of Eg5
loop 5 to expose a druggable pocket that accommodates the
bound inhibitor. The predisposition of the loop to undergo
such conformational changes was higher with polar/charged
probe molecules, as opposed to isopropanols exclusively.
The dynamics of p38 typifies group iii. p38 can undergo

concerted opening/closing of N- and C-terminal lobes enabled
by hinge-like flexibility near the ATP-binding site, comple-
mented by movements at the glycine-rich loop, the C-helix and
the activation loop, and side chain isomerizations.16,20 We
compared the conformations sampled in druggability simu-
lations to a set of 134 experimentally resolved structures (with a
variety of inhibitors).64 We observed that residues at the
binding pocket and glycine rich loop sampled conformations
comparable to those assumed by the bound forms resolved by
X-ray crystallography; e.g., probes were observed to bind to the
allosteric pocket in the close neighborhood of the ATP-binding
site. Although, the global closure of N-terminal and C-terminal
lobes to form a compact/buried site upon inhibitor binding was
not observed in the druggability simulations (6−1 to 6−4 in
Table S2), the RMSD (averaged over all Cα-atoms) between
the MD conformations and experimental bound structures
came close to 1.0 Å. Two additional simulations in the absence
of probe molecules also yielded RMSDs of 1.1 and 1.2 Å.64 The
qualitative and quantitative agreement observed in these
simulations with experimental data suggests that druggability
runs of tens of nanoseconds do provide reasonable estimates of
binding sites and affinities, despite their limitations with regard
to sampling global motions.

Evaluation of Maximal Achievable Binding Affinity.
This methodology utilizes a physics-based atomistic simulation
and is therefore independent of any training set. In principle,
the binding free energy of probe molecules should be
comparable to the affinities typical of drug-like molecules.
Ligand efficiency (LE)65 provides a metric for comparison of
binding affinities. LE is defined as the binding free energy per
atom, LE = −ΔG/Na, where Na is the number of non-hydrogen
atoms in the molecule. For a drug-like molecule of 500 Da
(∼30 heavy atoms) with an affinity of 10 pM to 10 μM (or a
binding free energy of −15.10 to −6.86 kcal/mol, at T = 300K),
the LE is 0.23 to 0.5 kcal/mol. The LEs for the interaction
spots that we identified vary between 0.25 to 0.8 kcal/mol,
consistent with the LE range typical of drug molecules. In
previous work,27 the methyl carbons and hydroxyl oxygen of a
given isopropanol molecule were taken as independent entities;
i.e., their contributions to binding free energy were assumed to
be additive. This resulted in an overestimation of binding
affinity, leading to LE values higher than 1.5 kcal/mol, which
has been estimated to be the limit for the contribution made
per atom to binding energy.66 To avoid such overestimation in
achievable affinities, the calculated free energies were rescaled,
in addition to manual pruning of merged grid elements.27 In
the present study, binding free energies are evaluated in a fully
automated way, with no need for user intervention or
additional rescaling. See the Methods section for a detailed
description of the methodology.

Dealing with False Positive and False Negative Sites.
Simulations of target proteins at high probe molecule
concentration yield large numbers of binding spots. By
considering energy and charge contributions of binding spots,

Figure 7. Identification of three potentially druggable sites on p38
kinase. (A) In addition to the ATP binding site (enclosed in
rectangular box, magnified in panel B), two other druggable sites are
identified at the MK2 binding site and at the MAPK insert. p38
structure81 (PDB ID: 1P38) was used in the simulations. (B) Close up
view of the ATP binding site, with an inhibitor (compound 30 in
Wrobleski et al.;82 PDB ID: 3BV2) in black stick representation.
Adenine/ribose binding and allosteric pockets are indicated.
Acetamide and IPAM interaction spots are labeled as A and +
respectively.
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the number of false positive sites, i.e., sites with no known
binders, can be minimized. We observed that all binding sites
with high affinity (submicromolar IC50 or Ki) inhibitors were
bound by at least 6 probe interaction spots, chosen as roughly
matching the volume of an average small molecule, with a
relative binding free energy of −1.2 (LE 0.3) kcal/mol or
better. Hence, we evaluated clusters of six or more probes with
LEs of 0.3 kcal/mol or better. This threshold resulted in
potential false positives for PTP1B (fourth site in Figure 4A)
and eg5 kinesin (third site in Figure 6A). The selection of a
subset of spots in a binding site for maximal affinity calculation
is further described in the Methods section. A second criterion
that helped eliminate potential false positives was limiting the
number of charged probes (max. 3) and the absolute total
charge (max. 2e−) in each cluster. For example, we eliminated a
cluster of six high affinity acetate binding spots for eg5 kinesin
located between side chains of four arginine residues (R192,
R305, R312, and R317, available as Supporting Information).
The stringent criterion that we applied resulted in missing

some sites with binding information but not with known high-
affinity inhibitors. These sites include the IRK interface and
allosteric site on PTP1B and the MK2 site and MAPK insert on
p38. In line with the unavailability of high affinity inhibitors for
these sites, the clusters that we identified at these sites
contained four or less probes with a LE of 0.3 kcal/mol or
better. We calculated the maximal affinity for these sites by
linking clusters (MAPK insert and MK2 site) or augmented
lower affinity spots (IRK interface and PTP1B allosteric site).
Available binding spots in the PTP1B allosteric site with a LE of
better than 0.25 kcal/mol covered only part of the site resulting
in predicted maximal affinity of 75 μM, compared to the 8 μM
IC50 of the best inhibitor. The incorporation of two lower
affinity spots with energies of −0.5 and −0.33 kcal/mol
(available as Supporting Information) improved the predicted
maximal affinity to 17.6 μM.

■ CONCLUSION
Protein−ligand recognition is a complex phenomenon
involving many balancing factors.67 It has been noted for
some time now that one can identify hotspots in protein
binding sites, i.e., regions where protein residue/ligand moiety
interactions make the largest contributions to the overall
binding free energy.68 However, a major obstacle to accurate
estimation of binding affinities, and, in some cases, to
identification of binding sites, has been the lack of adequate
inclusion of the intrinsic dynamics of the target protein. The
flexibility of the target usually allows for favorable enthalpic
contributions due to the adaptability and optimal positioning of
interacting groups, which, in many instances, more than offset
the adverse entropic cost. Computationally inexpensive rigid
docking methods perform poorly when benchmarking the
computed affinities against experimental measurements.69 Nor
do they provide an adequate description of the observed affinity
of organic molecules on target proteins.70 Simulation-based
methods and comprehensive sampling of the ligand and protein
conformational space taking into account entropic effects are
recognized to improve binding affinity predictions.71−73 The
success of the current druggability method owes to the natural
incorporation of target, solvent, and probe entropic effects into
the estimation of binding affinities.
Notably, the use of a mixture of probes featuring diverse

physicochemical properties is shown here to yield consistently
better predictions of achievable affinities, in addition to a more

complete identification of druggable sites on targets. The probe
mixture simulations yielded more accurate ranges for the
maximal achievable binding affinity for Eg5 and p38, and
charged probes allowed us to accurately predict the achievable
affinity for the PTP1B catalytic site. These observations suggest
that the methodology suits a broad range of binding sites. This
is an important improvement as marketed drug molecules more
often than neutral are singly charged. For instance, a recent set
of 2056 orally available drugs assembled for analysis included
35% neutral molecules with the remaining either charged or
zwitterionic.74

The present study also highlights the utility of MD
simulations with explicit probe molecules in the aqueous
environment when dealing with flexible targets. In our test
cases, high affinity interaction points are observed in pockets
inaccessible in the unbound form, such as the LFA-1 induced
site and p38 allosteric pocket in the ATP site. The approach
rigorously accounts for the time-dependent molecular driving
forces involved in ligand recognition, including entropic factors
and desolvation. As it is physics-based and not trained on
particular target classes, the method is virtually applicable to all
types of protein targets within the limitations of current
molecular mechanics force fields and solvent models. The
simplified assumptions and refined algorithm makes inter-
mediate results easily interpretable and applicable to guiding
structure-based drug design. Using parallel platforms and
software, calculations can be performed within a few days for
most protein targets to make an assessment of druggability,
potential for binding sites, and achievable affinities. This
methodology appears to be especially useful for identifying
allosteric binding sites with limited structural data on alternate
protein conformations.

■ METHODS
MD Simulations. Simulations were performed using

NAMD75 software and the CHARMM76 force field. Productive
simulation times ranged from 32 to 40 ns. See the Supporting
Information and Table S2 for details.

Construction of Grids Based on Probe Locations. MD
snapshots were superposed onto the reference PDB structure of
the protein using Cα atoms. Probe molecules having a non-
hydrogen atom within 4.0 Å of protein atoms were considered
to interact with the protein. For each probe type, individual
occupancy (number density) grids were calculated using their
central carbon atoms with VMD77 Volmap. Grid calculations
for combined trajectories (Table S2) were performed using
Python packages ProDy78 and NumPy. In both cases, grid
resolution was set to 0.5 Å. To reduce grid artifacts, the
occupancy value in each voxel was averaged with its neighbors.
When more than one type of probe was used, grids of
individual probes were combined. In this case, each probe was
assigned a f ractional occupancy value (ranging from 0 to 1) for a
given voxel. Fractional occupancy was obtained by dividing its
occupancy by the total occupancy at the voxel.

Evaluation of Binding Free Energies of Interaction
Spots. Occupancy grids are converted to binding free energy
grids (Figure 1D) using eq 1 and the expected occupancy
described in the Supporting Information. Interaction spots
(Figure 1E) are defined as voxels satisfying three criteria: (i) An
interaction spot does not overlap with other interaction spots.
(ii) The binding free energy of the interaction spot is lower
than a predefined upper limit for probe binding free energy.
(iii) The binding free energy of an interaction spot is less than
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those of the surrounding voxels; that is, in a given volume
matching the size of a probe molecule, the lowest energy voxel
is selected as the interaction spot representing the probe. We
set the value of the upper limit to −1 kcal/mol (LE = 0.25 kcal/
mol). Starting from the voxel with lowest binding free energy
value (central interaction spot), other voxels within the ef fective
radius of the central interaction spot were eliminated. This was
repeated for the next voxel with the lowest binding free energy
until no pairs of overlapping voxels remained. When multiple
probe types were used, the effective radius of a voxel was
defined as the sum of effective radii (Table S3) of probes
weighted by their fractional occupancies. In the case of charged
probes, the ef fective charge of an interaction spot is calculated as
the fractional occupancy weighted sum of probe charges. For
example, an interaction spot occupied in half of the simulation
time by isopropanol molecules, and the other half by acetate
molecules, was assigned an effective charge of 0.5 electronic
units.
Maximal Achievable Affinity Calculation. Druggable

sites were identified by merging proximal interaction spots as
follows: (i) The lowest energy interaction spot in a distinct
binding site is selected as a seed. (ii) The next lowest energy
interaction spot within 6.2 Å of the seed and satisfying the
ef fective charge constraint is merged to the seed. (iii) The
second step is repeated until a desired number of interaction
spots are merged. The total ef fective charge in a druggable site
was restricted to be less than or equal to 2e−. Maximal affinity
of the druggable site is estimated from the sum of binding free
energies of selected interaction spots.
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