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Small cell lung cancer (SCLC) is a highly aggressive subtype of
lung cancer that remains among the most lethal of solid tumor
malignancies. Recent genomic sequencing studies have identified
many recurrently mutated genes in human SCLC tumors. However,
the functional roles of most of these genes remain to be validated.
Here, we have adapted the CRISPR-Cas9 system to a well-established
murine model of SCLC to rapidly model loss-of-function mutations in
candidate genes identified from SCLC sequencing studies. We show
that loss of the gene p107 significantly accelerates tumor progres-
sion. Notably, compared with loss of the closely related gene p130,
loss of p107 results in fewer but larger tumors as well as earlier
metastatic spread. In addition, we observe differences in prolifera-
tion and apoptosis as well as altered distribution of initiated tumors
in the lung, resulting from loss of p107 or p130. Collectively, these
data demonstrate the feasibility of using the CRISPR-Cas9 system to
model loss of candidate tumor suppressor genes in SCLC, and we
anticipate that this approach will facilitate efforts to investigate
mechanisms driving tumor progression in this deadly disease.
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SCLC is a highly aggressive neuroendocrine lung carcinoma
that comprises around 13–15% of all diagnosed lung cancer

cases (1). The disease is characterized by rapid growth and early
widespread metastasis with the majority of patients presenting
with extensive stage disease (2). Although SCLC patients often
exhibit robust initial responses to cytotoxic chemotherapy, relapse
almost invariably occurs, and no effective second-line therapies
currently exist (3). Despite decades of research, few new therapies
have demonstrated significantly improved outcomes for SCLC
patients, in contrast to the growing number of options available for
treating non-small cell lung cancer (4).
Genetically engineered mouse models (GEMMs) of SCLC

have been used extensively to study the molecular mechanisms of
tumor progression in SCLC. Based on the fact that inactivating
mutations in the tumor suppressor genes TP53 and RB1 are
found in almost all human SCLC tumors (5, 6), a murine model
of SCLC (mSCLC) was developed by conditionally deleting
Trp53 and Rb1 in the murine lung epithelium (7). This model
faithfully recapitulates the key features of human SCLC, including
histopathological appearance, expression of key neuroendocrine
markers, and pattern of metastatic spread (7). Subsequent studies
have utilized the Trp53/Rb1 double knockout model of SCLC to
functionally investigate additional genes, such as Rbl2 (also known
as p130), Pten, Mycl1, Nfib, Myc, and Crebbp (8–17).
Large-scale cancer genome sequencing studies have generated

an extensive catalog of genes that are mutated in numerous cancer
types (18). It remains a significant challenge to distinguish be-
tween driver and passenger mutations in order to identify genes or
pathways that are truly important for tumor progression. This is
particularly relevant in cancers that have high mutation rates, such

as lung cancer (5, 19–21). One recent study involving SCLC iden-
tified multiple recurrently altered genes in these tumors, including
inactivating mutations in the Notch signaling pathway, which was
subsequently shown to functionally contribute to SCLC tumor
progression (5). However, apart from a few other notable exam-
ples, many of the most frequently mutated genes have yet to be
functionally validated in SCLC.
The development of the CRISPR-Cas9 system for genome

editing in mammalian cells (22–24) has revolutionized the field
of cancer research, enabling rapid validation of candidate oncogenes
and tumor suppressor genes both in vitro as well as in vivo. This has
been especially useful when combined with GEMMs of various
cancers (25–32). By bypassing the need to generate new germline
or conditional alleles for each gene of interest, the CRISPR-Cas9
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system has greatly increased the speed at which candidate genes,
such as those identified from cancer genome sequencing studies or
genetic screens, can be functionally validated in relevant preclinical
models of cancer. These systems also streamline the development
of in vivo models with which to examine the biological effects of
multiple tumor-associated mutations.
In this study, we have adapted the CRISPR-Cas9 system to the

Trp53/Rb1 model of SCLC. We demonstrate the utility of this
system to rapidly model loss of function of candidate tumor sup-
pressor genes in SCLC. In particular, we show that loss of p107
(also known as Rbl1), a member of the retinoblastoma family of
proteins that is recurrently mutated in a subset of human SCLC
tumors (5), significantly accelerates tumor progression in the
Trp53/Rb1-mutant background. Notably, loss of p107 appears to
confer a distinct tumor phenotype compared with loss of p130,
another member of the retinoblastoma family.

Results
Strategy for CRISPR-Mediated Targeting of Genes in mSCLC. We
generated a Cre-activated allele of Cas9 targeted to the Rosa26
locus (Fig. 1A). This allele also coexpresses EGFP and Csy4 (also
known as Cas6f); the latter is a Type I CRISPR-Cas endonuclease
that recognizes and cleaves RNA at a 28-nucleotide sequence (33)
and has previously been used for multiplexed single guide RNA
(sgRNA) expression from a single RNA transcript (34). We crossed
this allele into the Trp53flox/flox; Rb1flox/flox background to generate
Trp53/Rb1/Cas9 animals. To allow for monitoring of tumor pro-
gression in vivo, we also crossed a Cre-activated luciferase reporter
allele into these animals (9, 12).
To restrict CRISPR-Cas9 activity specifically to initiated tu-

mor cells in vivo, we generated an adenoviral vector, Ad5-USEC
(U6-sgRNA-EFS-Cre), that expresses a sgRNA targeting a gene
of interest together with Cre recombinase (Fig. 1B). We chose to
use an adenoviral vector instead of a lentiviral vector due to the
observation that lentiviral-mediated tumor initiation frequently

resulted in the broadening of the tumor spectrum in Trp53flox/flox;
Rb1flox/flox animals, including an increased rate of histiocytic
sarcoma formation. Cre activity in the Ad5-USEC vector was
validated in vitro using the Green-Go reporter cell line pre-
viously generated in our laboratory, in which GFP is activated
upon Cre expression (27) (Fig. 1C). SCLC tumors were initiated
by intratracheal administration of Ad5-USEC into the lungs of
animals (35).

Loss of p107 Accelerates Tumor Progression in SCLC. To validate this
system, we chose to target p107 and p130, both of which are
members of the retinoblastoma family of proteins that are re-
currently mutated in around 6% of human SCLC tumors each
(5). In particular, p130 was chosen as a positive control because
germline p130 conditional alleles have been previously used to
accelerate tumor progression in SCLC (8). We designed sgRNAs
targeting p107 and p130 and validated their activity in vitro in
Green-Go cells that were transduced with a Cas9-expressing len-
tivirus (36), both by deep sequencing of the respective target ge-
nomic loci to assess the efficiency of generation of mutations (SI
Appendix, Fig. S1A) as well as by Western blot to confirm a de-
crease in protein levels (SI Appendix, Fig. S1 B and C).
To test our system in vivo, we infected Trp53/Rb1/Cas9 ani-

mals with Ad5-USEC vectors expressing sgRNAs targeting p107,
p130, or a control unannotated region of the genome (sgp107,
sgp130, and control sg, respectively). At 5.5 mo posttumor ini-
tiation, we performed in vivo bioluminescence imaging to track
tumor progression in these animals. We observed higher luciferase
activity in both sgp130- and sgp107-infected animals compared
with control animals (Fig. 2 A and B), consistent with a significant
acceleration in tumor progression. Furthermore, both sgp130-
(232 d) and sgp107-infected animals (205 d) showed decreased
median survival compared with control animals (267 d; Fig. 2C).
The acceleration of tumor progression that we observed in sgp130-
infected animals recapitulates the results obtained in a previous
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study using conditional Trp53/Rb1/p130 triple knockout SCLC
mice (8).
To determine whether the observed phenotypes were a result

of loss of p130 or p107 gene function, we isolated genomic DNA
from tumors dissected from infected animals, then performed
targeted deep sequencing of the genomic loci targeted by the re-
spective sgRNAs. We observed that the vast majority of detected
sequences contained either frameshift insertions or deletions (Fig.
2 D and E and SI Appendix, Fig. S2), with tumors harboring 1–4
different mutant alleles each. This result is consistent with a strong
positive selection pressure for loss-of-function alleles in these tu-
mors. Collectively, these data validate our approach for modeling
loss-of-function mutations in this model and demonstrate that
p107, like p130, is a functional tumor suppressor in SCLC.

Distinct Consequences of Loss of p107 and p130 in SCLC. To more
closely examine changes in tumor progression upon loss of p107
or p130, we analyzed cohorts of infected Trp53/Rb1/Cas9 mice at
fixed time points posttumor initiation. Analysis of hematoxylin
and eosin (H&E)-stained lung sections from animals 6 mo
posttumor initiation showed that loss of either p107 or p130
increases overall lung tumor burden compared with control an-
imals (Fig. 3 A and B), consistent with our in vivo bioluminescence
imaging result. In addition, there was no significant difference in
tumor burden between sgp107- and sgp130-infected animals (Fig.
3B). However, there was a marked difference in the tumor phe-
notype observed in both groups of animals. sgp107-infected
animals developed fewer tumors but with a larger mean tumor
size, compared with sgp130-infected animals (Fig. 3 C and D).
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Importantly, these differences were also observed in animals an-
alyzed at an earlier time point (4 mo posttumor initiation) when
tumors were still relatively small and distinct (SI Appendix, Fig. S3
A–D). Because tumor numbers in both sgp130- and sgp107-
infected animals were consistent between both time points (Fig.
3C and SI Appendix, Fig. S3C), we concluded that quantification
of tumor number and size was not confounded by the collision of
multiple independent tumors in late-stage animals.
Notably, sgp107-infected animals also displayed a greater in-

cidence of mediastinal lymph node metastasis compared with
sgp130-infected animals at this time point (Fig. 3E). This finding
is consistent with the observation that sgp107-infected animals
showed slightly reduced median survival compared with sgp130-
infected animals despite similar lung tumor burden (Fig. 2C), as
the mediastinal lymph node metastases likely accelerated the
onset of breathing difficulties in these animals.
The differences between sgp130- and sgp107-infected animals

prompted us to perform additional histological analyses. As expec-
ted, tumors that developed in all animals retained the characteristic
histological features of SCLC, including positive immunohisto-
chemical staining for the neuroendocrine markers Ascl1 and CGRP
as well as heterogeneous staining for Hes1 (37) (Fig. 4A), con-
firming that the observed differences were not a result of a change
in tumor spectrum. However, sgp130-infected animals frequently
presented with numerous in situ tumors lining their major airways

at 4 mo posttumor initiation, whereas far fewer in situ tumors were
observed in sgp107-infected animals (Fig. 4 B and C). Overall, a
higher fraction of tumors in sgp130-infected animals were in situ
lesions rather than invasive tumors, compared with sgp107-infected
animals (Fig. 4D). Therefore, loss of p107 results in an altered
distribution of early tumor lesions within the lung compared with
loss of p130, suggesting that p130 loss may lead to the trans-
formation of a broader set of cells compared with p107 loss.
We also analyzed rates of proliferation and apoptosis in tu-

mors from both sets of animals. Late-stage tumors from sgp107-
infected animals displayed higher proliferation rates compared
with tumors from sgp130-infected animals as measured by in-
creased phosphorylated histone H3 (pHH3) staining (Fig. 4E).
Interestingly, this difference was not observed in early-stage tu-
mors (Fig. 4E). Conversely, sgp130 tumors displayed lower ap-
optosis rates compared with sgp107 tumors at both early and late
stages as measured by decreased cleaved caspase-3 (CC3) staining
(Fig. 4E). Collectively, these data demonstrate that p107 loss re-
sults in distinct consequences on SCLC development compared
with loss of p130.
To gain insight into potential mechanisms underlying the distinct

phenotypes observed between sgp107- and sgp130-infected animals,
we performed RNA sequencing (RNA-seq) onmultiple independent
late-stage primary tumors isolated from infected animals (Dataset
S1). We employed independent component analysis (ICA) (38), an
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unsupervised blind source separation technique (see Materials and
Methods), to generate gene expression signatures characterizing
transcriptional profiles within this dataset (SI Appendix, Fig. S4A
and Dataset S2). ICA was performed on autosomal genes as initial
results indicated a dominant gender-specific signature within the
dataset (reflecting a gender bias between sgp107- and sgp130-
infected animals). A statistically significant signature that differ-
entiated between sgp130 and sgp107 tumors was detected (P =
0.0104, Mann–Whitney U test) and further analyzed using gene set
enrichment analysis (GSEA) (39). We observed an enrichment for
several immune-related gene sets in sgp107 tumors (SI Appendix,
Fig. S4B and Dataset S3). To validate this observation, we per-
formed immunohistochemical staining of lung sections from late-
stage animals for several immune markers—CD45, B220, and
CD3. We observed tertiary lymphoid structure (TLS) formation in
the lungs of both sgp107- and sgp130-infected animals (Fig. 5A).
However, sgp107-infected animals harbored more TLS per tumor
compared with sgp130-infected animals (Fig. 5B), even though
there was no significant difference between the total number of
TLS in each animal (SI Appendix, Fig. S5A). In particular, we

observed an increase in intratumoral and peritumoral TLS, but
not extratumoral TLS, in sgp107-infected animals compared with
sgp130-infected animals (Fig. 5C and SI Appendix, Fig. S5B). There-
fore, these data are consistent with the RNA-seq results and indicate
an increase in immune cell infiltration in sgp107 tumors compared
with sgp130 tumors.

Discussion
Functional studies in GEMMs have long been hampered by the
need to generate new germline or conditional alleles for each
new gene of interest. Approaches such as gene targeting in
embryonic stem cells derived from GEMMs (11) have reduced
the time needed to generate new mouse models but still require
the dedication of significant time and resources. The ability
of the CRISPR-Cas9 system to generate genomic alterations in
somatic cells in vivo with high efficiency allows this process to be
bypassed (40). In this study, we have demonstrated the feasibility
of this approach in SCLC by modeling loss of p107 and p130 in
the Trp53/Rb1 double knockout model of SCLC, showing that
loss of p107 significantly accelerates tumor progression to a similar
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extent as loss of p130. However, we also observed several differ-
ences in tumor phenotype between p107-mutated and p130-
mutated tumors, indicating potential biological differences be-
tween SCLC tumors with these genotypes.
CRISPR-mediated knockout of genes has been particularly

useful for modeling loss-of-function mutations in tumor suppres-
sor genes, such as those as demonstrated here, as well as in other
models (25, 27, 30, 32). Other studies have demonstrated the
ability to generate gain-of-function alterations, such as chromo-
somal rearrangements (26), as well as homologous recombination-
mediated activation of oncogenes (25), albeit at a very low effi-
ciency in the latter case. The adaptation of CRISPR-Cas9 for
transcriptional activation or inhibition (41–46) has further ex-
tended the utility of the CRISPR-Cas9 system for modeling ad-
ditional gain-of-function mutations. In particular, the ability to
perform in vivo transcriptional activation using wild-type Cas9 has
been reported (47). We expect that similar approaches will also be
possible in SCLC using our system.
The use of autochthonous models of cancer, including SCLC,

to study metastasis has led to key insights into the molecular
determinants of metastatic spread (13, 48–50). In animals harboring
multiple independent primary tumors, the use of barcoding tech-
niques enables metastatic tumors to be matched to their respective
seeding primary tumors, so as to distinguish primary tumors based

on their metastatic potential (48, 49). By taking advantage of the
imprecise repair of CRISPR-mediated double-stranded breaks in
the cell by nonhomologous end joining, we observed that the
different combinations of mutant alleles within each tumor could
also be used as a barcode to match primary and metastatic tumors
within the same animal (SI Appendix, Fig. S6). Although the use of
single target sites, such as those presented in our study, may leave
some ambiguity in matching metastatic tumors to primary tumors,
the inclusion of additional sgRNAs targeting different genomic
locations can significantly reduce this ambiguity; similar ap-
proaches have been used to trace cell lineages both in vitro and
in vivo (51–53).
Due to the flexibility afforded by the CRISPR-Cas9 system, we

were able to rapidly compare the effects of loss of p107 with loss
of p130 in SCLC progression, which has not been performed
previously. Both genes are mutated in about 6% of human SCLC
tumors in a predominantly mutually exclusive fashion (5). We
found that loss of p107 in the Trp53/Rb1-mutant background
resulted in fewer but larger tumors compared with loss of p130.
Furthermore, loss of p107 also accelerated the development of
metastatic spread in these animals. These suggest that the 2
genes may play different roles in SCLC development, with loss of
p130 appearing to promote tumor initiation and loss of p107
promoting tumor progression. p107 and p130 have been shown
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to exhibit different timings of expression and interaction with
E2F family proteins during the cell cycle (54, 55), as well as to
interact with different downstream effectors (56). p107 and p130
have also previously been reported to have distinct roles in lung
epithelial development (57). Deletion of Rb1 in the lung epi-
thelium of p107−/− animals results in increased pulmonary epi-
thelial proliferation in E18.5 embryos compared with deletion of
Rb1 in p107+/+ animals, while having no effect on apoptosis.
Conversely, deletion of Rb1 in p130−/− animals results in de-
creased apoptosis but has no effect on proliferation. We dem-
onstrate that p107 and p130 play similar roles in the context of
SCLC development, with loss of p107 in SCLC tumors resulting
in increased proliferation and loss of p130 resulting in decreased
apoptosis. This provides a potential explanation for the observed
differences in tumor phenotypes. Loss of p130 may allow for
nascent transformed cells to escape apoptosis, resulting in an
increase in the number of initiated tumors, whereas loss of p107
results in an increase in proliferation rate of developing tumors
and, hence, larger tumor size without affecting tumor initiation.
In addition, we observed a difference in the number of tumor-

associated TLS formed in the lungs of sgp107-infected animals
compared with sgp130-infected animals. TLS represent sites of T
and B cell priming and have been associated with a positive
prognosis in many tumor types (58, 59). Previous work has dem-
onstrated that TLS can be induced by several different cytokines,
including IL-17, TNFα, and IL-6 (60). Collectively, the difference
in tumor-associated TLS suggests that there are alterations to the
inflammatory nature of the microenvironment in p130- and p107-
mutant tumors and may indicate differences in the overarching
antitumor immune response. Collectively, these alterations may
have therapeutic implications, potentially influencing the response
of these tumors to various types of immunotherapy, although more
work will be needed to establish the relevance of this observation.
To summarize, we have demonstrated the feasibility of using

the CRISPR-Cas9 system for modeling loss of tumor suppressor
genes in an autochthonous mouse model of SCLC. This opens
the door for rapid functional validation of other candidate genes
of interest that are frequently mutated in SCLC. In addition, we
anticipate that this approach, combined with ongoing advances
in CRISPR-based tools for genetic and transcriptomic pertur-
bations, as well as developments in the use of lentiviral vectors
with in vivo models of SCLC (61), will also be useful for vali-
dation of therapeutic targets for SCLC in the future.

Materials and Methods
Animal Studies. All animal studies were approved by the MIT Institutional
Animal Care andUse Committee. All miceweremaintained on amixed C57BL/
6;129/Sv background. Trp53flox/flox; Rb1flox/flox; Rosa26LSL-Luciferase/LSL-Luciferase mice
have been described previously (9, 12). Tumors were initiated by intratracheal
delivery of 2 × 108 plaque-forming units of adenovirus expressing Cre
recombinase as previously described (35). Animals were infected at ∼8–12 wk
of age. Adenovirus stocks were prepared and titered as described below. For
in vivo bioluminescence imaging, mice were anesthetized by isoflurane in-
halation, administered with 150 mg/kg of D-luciferin (PerkinElmer #122799) by
i.p. injection, then imaged 10-min postadministration using the IVIS Spectrum
In Vivo Imaging System (PerkinElmer). Visualization and quantification of the
bioluminescence signal was performed using Living Image (PerkinElmer).

For all animal studies, at least 7 animals were used per condition for each
experimental cohort. We estimated that this would be sufficient to detect a
biologically relevant difference in survival, based on the observed variation in
tumor progression from previous studies (7, 9). No animals were excluded
from analyses. Animals were allocated randomly across different conditions
with approximately even distribution based on sex and age.

Generation of Rosa26-CAGGS-LSL-Cas9-GFP-Csy4 Allele. The Rosa26-CAGGS-
LSL-Cas9-GFP-Csy4 targeting vector was generated using constructs gener-
ated for the Gibson assembly-based modular assembly platform (GMAP) as
described previously (62). In brief, the 3xFLAG-NLS-hSpCas9-2A-GFP-2A-Csy4
gene C fragment was cloned into the CAG-driven R26TV LSL backbone tar-
geting vector by Gibson assembly using the conditions described for GMAP.

The assembled Rosa26-CAGGS-LSL-Cas9-GFP-Csy4 targeting vector was
linearized by digestion with BsmBI (New England Biolabs). Around 40 μg of
the linearized vector was transfected by electroporation into mixed B6;129
embryonic stem cells, followed by selection with 350-μg/mL G418 (Life
Technologies) for 7 d. Clones were screened by PCR and sequencing to
confirm correct targeting into the Rosa26 locus, then injected into CD1 do-
nor blastocysts to generate chimeric mice. High-degree chimeric mice were
crossed into the Trp53flox/flox; Rb1flox/flox; Rosa26LSL-Luciferase/LSL-Luciferase background
to obtain stocks of Trp53flox/flox; Rb1flox/flox; Rosa26LSL-Cas9-GFP-Csy4/LSL-Luciferase mice
for experiments.

Generation of Ad5-USEC Vectors. To generate a GMAP-compatible adenoviral
vector, a filler sequence containing site #1 (GATCAGTGTGAGGGAGTG-
TAAAGCTGGTTT) and site #5 (AAACGTTGTTGTTTGGGGTTGAATTACTCT) was
amplified by PCR using lentiCRISPRv2 (36) as a template and the Ad5-GMAP-
filler-F and Ad5-GMAP-filler-R primers, digested with XhoI and EcoRI (New
England Biolabs), then ligated into XhoI/EcoRI-digested pacAd5 shuttle vec-
tor (63). The resulting vector was linearized with BspEI (New England Biolabs)
for subsequent Gibson assembly. Primer sequences are listed in SI Appendix,
Table S1.

sgRNAs targeting p107, p130, and a control unannotated region on
mouse chromosome 4 were designed using the Broad Institute sgRNA de-
signer tool (64). sgRNA sequences are listed in SI Appendix, Table S2. sgRNAs
were cloned into lentiCRISPRv2 using the recommended protocol (36).
GMAP-compatible U6-sgRNA cloning fragments for each sgRNA were am-
plified by PCR from the corresponding lentiCRISPRv2-sgRNA vectors using
the U6-pA-F and tracrRNA-gA-R primers (SI Appendix, Table S1). Ad5-USEC
vectors were assembled by Gibson assembly using the BspEI-linearized ad-
enoviral vector, U6-sgRNA cloning fragments, as well as pEFS promoter B
and NLS-Cre gene B parts from the GMAP collection (62). All vectors were
verified by sequencing before use. Adenoviral vectors were packaged at the
Viral Vector Core of the Horae Gene Therapy Center, University of Mas-
sachusetts Medical School.

Cell Culture. All cell lines were maintained in DMEM (Corning #10–013-CV)
supplemented with 10% FBS, 2-mM L-glutamine (Gibco #25030), and 50-μg/mL
gentamicin (Gibco #15710). Lentiviral vectors were generated in HEK293T cells.
In brief, cells were plated 1 d before transfection, then cotransfected with
lentiviral constructs and packaging plasmids psPAX2 and pMD2.G (Addgenes
#12260 and #12259; both plasmids were gifts from Didier Trono). Viral su-
pernatant was harvested 48 and 72 h after transfection, then frozen at −80 °C.
Green-Go reporter cells (27) were transduced with lentiCas9-Blast virus
(Addgene #52962; plasmid was a gift from Feng Zhang), then selected with 20-
μg/mL blasticidin S (Gibco #A11139) for 7 d. All cell lines were tested and found
to be negative for mycoplasma contamination before experiments.

Flow Cytometry. Cells were trypsinized, centrifuged at 1,000 rpm (∼200 × g)
for 5 min, resuspended in FACS buffer (PBS, 0.5% FBS, 2-mM EDTA), then
filtered through a 35-μm cell strainer (Corning #352235). Samples were
sorted on a BD FACSAria III system (BD Biosciences).

Immunoblotting. Cells were lysed with RIPA lysis buffer (Thermo Scientific
#89900) supplemented with a 1× protease and phosphatase inhibitor mix-
ture (Thermo Scientific #78440), rotated at 4 °C for 30 min, then centrifuged
at 13,000 × g for 30 min. Protein concentration was quantified using the
bicinchoninic acid assay (Thermo Scientific #23225). Around 40 μg of protein
was run on a 4–12% Bis-Tris gradient gel (Invitrogen #NP0335), then trans-
ferred onto a nitrocellulose membrane. The following primary antibodies
were used for immunoblotting: rabbit anti-p107 (Santa Cruz #sc-318, 1:500),
rabbit anti-p130 (Santa Cruz #sc-317, 1:500), and rabbit anti-β-actin (Cell Sig-
naling Technology #4970, 1:10,000). Primary antibodies were detected with the
following fluorescent secondary antibodies: IRDye 680RD donkey anti-rabbit
IgG (LI-COR #926–68073, 1:10,000), IRDye 800CW donkey anti-rabbit IgG (LI-
COR # 926–32,213, 1:10,000). Immunoblots were imaged using the LI-COR Od-
yssey infrared imager and quantified using Image Studio (LI-COR).

Genomic DNA Isolation and Deep Sequencing of Target Loci. Tumor tissues
were dissected from lungs, lymph nodes, or liver tissue upon necropsy, snap-
frozen in liquid nitrogen, then stored at −80 °C until subsequent processing.
Genomic DNA was isolated from tumors using the Gentra PureGene tissue
kit (QIAGEN #158667). Genomic loci were amplified by PCR using either
Herculase II Fusion DNA Polymerase (Agilent #600675) for control sgRNA
samples or KAPA HiFi DNA polymerase (KAPA Biosystems #KK2601) for sgp107
and sgp130 samples. Primer sequences are listed in SI Appendix, Table S3.
Amplified samples were purified using the QIAquick PCR purification kit
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(QIAGEN #28104), then submitted for deep sequencing using the CRISPR
sequencing service at the DNA Core of the Center for Computational & In-
tegrative Biology (CCIB), Massachusetts General Hospital. Sequence variant
detection was performed by the CCIB DNA Core using their standard
algorithm.

RNA Isolation and RNA Sequencing. Snap-frozen tumors stored at −80 °C were
disrupted and homogenized using the Geno/Grinder (SPEX SamplePrep),
then total RNA and genomic DNA were isolated using the AllPrep DNA/RNA
mini kit (QIAGEN #80204). RNA samples were submitted for sequencing li-
brary preparation by the MIT BioMicro Center using the KAPA mRNA
hyperprep kit, and RNA-seq was performed on an Illumina HiSeq 2000 sys-
tem (40-nt single-end reads).

Gene Expression Signature Analyses. Illumina HiSeq 2000 40-base single-end
reads were mapped to the UCSC mm9 mouse genome build (http://
genome.ucsc.edu/) using Bowtie (65), and expression counts were quantified
using RSEM (66). Raw estimated expression counts were upper-quartile nor-
malized to a count of 1,000 (67). Genes with low normalized counts (upper
quartile of a gene’s expression across all samples <20) were filtered out as
lowly expressed and eliminated from further analyses.

A high-resolution signature discovery approach, independent component
analysis (ICA), was employed to characterize global gene expression profiles,
as described previously (68–72). This unsupervised blind source separation
technique was used on this discrete count-based expression dataset to elu-
cidate statistically independent and biologically relevant signatures. ICA is a
signal processing and multivariate data analysis technique in the category of
unsupervised matrix factorization methods. Conceptually, ICA decomposes
the overall expression dataset into independent signals (gene expression
patterns) that represent distinct signatures. High-ranking positively and
negatively correlated genes in each signature represent gene sets that drive
the corresponding expression pattern (in either direction). Each signature
is, thus, 2 sided, allowing for identification of up-regulated and down-
regulated genes for each signature within each sample. Formally, utilizing
input data consisting of a genes-samples matrix, ICA uses higher order
moments to characterize the dataset as a linear combination of statistically
independent latent variables. These latent variables represent independent
components based on maximizing non-Gaussianity and can be interpreted
as independent source signals that have been mixed together to form the
dataset under consideration. Each component includes a weight assignment
to each gene that quantifies its contribution to that component (signature
or latent variable matrix). Additionally, ICA derives a mixing matrix that
describes the contribution of each sample toward the signal embodied in
each component. This mixing matrix can be used to select signatures among
components with distinct gene expression profiles across the set of samples.
The R implementation of the core joint approximate diagonalization of
eigenmatrices (JADE) algorithm (73–75) was used along with custom R util-
ities. Signatures were visualized using the Hinton diagram (R plotrix library),
and statistical significance of biologically relevant signatures was assessed
using the Mann–Whitney–Wilcoxon test (α = 0.05).

Initial signature analysis with all chromosomes detected a strong gender-
based signature reflecting the known gender bias within the sample set.
Subsequent analysis was restricted to autosomes and detected a biologically
relevant (sgp107 vs. sgp130) statistically significant (P = 0.0104) signature,
which was used for downstream enrichment analysis.

All RNA-seq analyses were conducted in the R Statistical Programming
language (http://www.r-project.org/). GSEA was carried out using the pre-
ranked mode with default settings (39).

Histology and Immunohistochemistry (IHC). Harvested tissues were fixed with
zinc formalin (Polysciences #21516) overnight at room temperature, then
transferred to 70% ethanol until subsequent paraffin embedding. H&E
staining was performed on 4-μm tissue sections using the Varistain Gemini
ES Automated Slide Stainer (Thermo Shandon).

For IHC staining, antigen retrieval was performed in sodium citrate buffer
(10 mM, pH 6.0) at 125 °C for 5 min. Endogenous peroxidase activity was
blocked at room temperature for 30 min using the Dako dual endogenous
enzyme block (Dako #S2003). Slides were stained using the ImmPRESS HRP
anti-rabbit IgG (peroxidase) polymer detection kit (Vector Laboratories #MP-
7401), the ImmPRESS HRP anti-rat IgG, mouse adsorbed (peroxidase) poly-
mer detection kit (Vector Laboratories #MP-7444), or the mouse on mouse
ImmPRESS HRP (peroxidase) polymer kit (Vector Laboratories #MP-2400).
The following primary antibodies were used: antiphosphohistone H3
(Ser10; Cell Signaling Technology #9701, 1:200), anti-CC3 (Asp175; Cell Sig-
naling Technology #9661, 1:200), anti-Ascl1/Mash1 (BD Biosciences #556604,
1:200), anti-CGRP (Sigma-Aldrich #C8198, 1:2,500), anti-Hes1 (D6P2U; Cell
Signaling Technology #11988, 1:200), anti-CD45 (Abcam #ab10558, 1:1,000),
anti-CD3 (Cell Marque #103A-7, 1:200), and anti-CD45R/B220 (RA3-6B2;
BioLegend #103201, 1:100). The staining was visualized with DAB (Vector
Laboratories #SK-4100), and slides were counterstained with hematoxylin.

Tumor Burden Analysis and IHC Quantification. H&E-stained and IHC-stained
slides were imaged using the Aperio AT2 slide scanner (Leica Biosystems) and
visualized using either Aperio ImageScope (Leica Biosystems) or QuPath (76).
Tumor regions and total lung area were outlined and quantified in either
ImageScope or QuPath. Tumor burden was calculated as the percentage of
tumor area over the total lung area as measured from the largest cross-
sectional region of the lung lobes. Quantification of pHH3 and CC3-positive
cells was performed using the positive cell detection analysis tool in QuPath.
All analyses were performed in a blinded fashion with the investigator being
unaware of the experimental condition while outlining tumor regions for
each slide.

Statistical Analyses. All statistical tests were performed using Prism software
version 7.02 (GraphPad). P values for comparisons between 2 groups (in Figs.
2–5 and SI Appendix, Figs. S3 and S5) were determined by the 2-tailed Stu-
dent’s t test. Outlier analysis (in Fig. 3D) was performed using the Grubbs’
test with a significance level of 0.001. P values for survival analyses (in Fig.
2C) were determined by the log-rank (Mantel–Cox) test. P values for con-
tingency tables (in Fig. 3E) were determined by Fisher’s exact test. For all
statistical tests, a P value of <0.05 was used to denote statistical significance.
All error bars denote the SD except for Fig. 2B where error bars denote
95% CI.
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