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Abstract

Background: CHIP, the protein encoded by STUB1, is a central component of cellular protein homeostasis and
interacts with several key proteins involved in the pathogenesis of manifold neurodegenerative diseases. This gives
rise to the hypothesis that mutations in STUB1 might cause a far more multisystemic neurodegenerative phenotype
than the previously reported cerebellar ataxia syndrome.

Methods: Whole exome sequencing data-sets from n = 87 index subjects of two ataxia cohorts were screened for
individuals with STUB1 mutations. In-depth phenotyping by clinical evaluation and neuroimaging was performed in
mutation carriers.

Results: We identified four novel STUB1 mutations in three affected subjects from two index families (frequency
2/87 = 2.3%). All three subjects presented with a severe multisystemic phenotype including severe dementia,
spastic tetraparesis, epilepsy, and autonomic dysfunction in addition to cerebellar ataxia, plus hypogonadism in
one index patient. Diffusion tensor imaging revealed degeneration of manifold supra- and infratentorial tracts.

Conclusions: Our findings provide clinical and imaging support for the notion that CHIP is a crucial converging point
of manifold neurodegenerative processes, corresponding with its universal biological function in neurodegeneration.
Further, our data reveal the second STUB1 family with ataxia plus hypogonadism reported so far, demonstrating that
Gordon Holmes syndrome is indeed a recurrent manifestation of STUB1. However, it does not present in isolation, but
as part of a broad multisystemic neurodegenerative process. This supports the notion that STUB1 disease should be
conceptualized not by historical or clinical syndromic names, but as a variable multisystemic disease defined by
disturbed function of the underlying STUB1 gene, which translates into a multidimensional gradual spectrum of
variably associated clinical signs and symptoms.
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Background
Mutations in STUB1, the gene encoding the protein
CHIP (C-terminus of HSC70-interacting Protein), were
recently identified as a cause of autosomal recessive
cerebellar ataxia (ARCA) in several families [1–5]. Most
of the reported individuals with STUB1 mutations had a
relatively circumscribed phenotype, mainly consisting of
an ataxia syndrome with involvement of only one or two
additional neurologic systems. For example, in one index
patient hypogonadotropic hypogonadism was identified
concomitant to ataxia, leading to the notion that STUB1
is a cause of Gordon Holmes syndrome [5, 6]. Yet it re-
mains unclear whether hypogonadism is a systematic
part of the phenotypic spectrum of STUB1 and not just
a coincidental finding in a single family [5].
The current notion of STUB1 as causing a relatively

circumscribed ‘ataxia plus phenotype’ is remarkable,
since CHIP, the protein encoded by STUB1, is a key
component of general cellular protein homeostasis [7, 8]
and interacts with several proteins involved in the patho-
genesis of various neurodegenerative diseases and sys-
tem degenerations, including Tau, α-Synuclein, Parkin2,
LRRK2, Ataxin1, Ataxin3, and ATCAY (for references
and overview, see Figure Additional file 1). Accordingly,
it is to be expected that in patients with STUB1 muta-
tions, disruption of CHIP function might lead to far
more extensive neurodegeneration than the previously
reported cerebellar ataxia syndrome. Specifically, given
the central role of CHIP in protein homeostasis and its
interactions with many neurodegenerative proteins, we
hypothesized that mutant STUB1 should lead to damage
of almost all brain systems.
Here we report the clinical, genetic and imaging findings

from three novel STUB1 patients and four novel STUB1
mutations. We demonstrate that mutant STUB1 leads to
severe multisystemic neurodegeneration affecting almost
all brain tracts and, correspondingly, presenting with a
broad multisystemic phenotype including severe demen-
tia, spastic tetraparesis, epilepsy, and autonomic dysfunc-
tion in addition to cerebellar ataxia. These clinical and
imaging findings correspond with the broad protein inter-
actome of CHIP with other neurodegenerative disease
proteins. Moreover, our data provide the first confirmation
from an independent family showing that hypogonadotro-
pic hypogonadism is indeed a recurrent part of the pheno-
typic spectrum of STUB1 mutations, rendering them an
important cause of Gordon Holmes syndrome; yet not in
isolation, but as part of a broad multisystemic neurode-
generative process. This indicates that STUB1 disease
should not be conceptualized by distinct syndromic
names, but as a variable multisystemic disease defined by
disturbed function of the underlying STUB1 gene, which
translates into a multidimensional gradual spectrum of
variably associated signs and symptoms.

Methods
Genetic sequencing
Whole exome sequencing (WES) data-sets from n = 87
index subjects of two ataxia cohorts (n = 35 from
Tuebingen, Germany; exomes generated from 2014
and 2015; and n = 52 from Antwerp, Belgium exomes
generated from 2012 until 2015) were screened for in-
dividuals with biallelic STUB1 mutations. Cohorts
comprised subjects with early-onset degenerative
ataxia compatible with autosomal inheritance (i.e. pro-
gressive ataxia with onset <40 years with ataxia in no
more than one generation), negative for trinucleotide
repeat expansions causing Friedreich’s ataxia and spi-
nocerebellar ataxia type 1, 2, 3, 6, 7, and 17. WES was
performed using the SureSelect Human All Exon
50 Mb kit (Agilent, Santa Clara, CA, USA) for in-solution
enrichment and the Hiseq2000 instrument (Illumina, San
Diego, CA, USA) as described before [9]. All data were
then annotated and imported into the GENESIS (gem.app)
platform, a web-based tool for next generation sequencing
data analysis (http://thegenesisprojectfoundation.org/)
[10, 11]. Variants were filtered for (i) non-synonymous
homozygous or compound heterozygous mutations in
STUB1 that were (ii) absent or extremely rare (minor
allele frequency <0.5%) in the public databases dbSNP137,
NHLBI ESP6500, 1000Genomes project, and ExAc (60706
exomes; Exome Aggregation Consortium; Cambridge,
MA http://exac.broadinstitute.org) as well as in GENESIS
(<11 heterozygous or homozygous alleles in 5996 subjects
in the GENESIS database), and showed an at least (iii)
moderate conservation (PhastCons score [100 vertebrate
genomes] >0.5 AND phyloP [100 vertebrate genomes]
>1.5) and (iv) moderate genotype quality (quality filter
[QUAL] >35 and genotype quality GQ> 50).
The data collection was approved by the Ethics

Committees of the University Hospital Antwerp and
the University Hospital Tuebingen (598/2011BO1).

In-depth phenotyping
All STUB1 subjects were examined by an experienced
neurologist (Tuebingen patients: M.S.; Antwerp pa-
tients: J.B.) according to a standardized clinical assess-
ment protocol covering all neurological systems,
including scales to capture cognition, spasticity, ataxia,
and overall handicap (Spinocerebellar degeneration
functional score [SDFS]). This SDFS evaluates the
disability stage from 0 to 7 (0: no functional handicap;
1: no functional handicap but signs at examination; 2:
mild, able to run, walking unlimited; 3: moderate, un-
able to run, limited walking without help; 4: severe,
walking with one stick; 5: walking with two sticks; 6:
unable to walk, requiring wheelchair; 7: confined to
the bed) [12].
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Magnetic resonance imaging (MRI)
In addition to clinical routine cerebral imaging, per-
formed in all STUB1 subjects, detailed diffusion tensor
imaging (DTI) was performed on a 3 Tesla scanner
(Skyra, Siemens Healthcare, Erlangen, Germany) with a
32 channel head coil in one STUB1 subject. DTI data
was acquired with 64 diffusion directions (b = 1000 s/mm2)
and one b0 image with an isotropic resolution of 2 mm
and coverage of the whole head. The patient and nine age
and gender matched healthy controls (mean age 32.9 years,
range 27–38 years) were examined at the same scanner
with the same DTI protocol. Data were processed with
Tract-Based Spatial Statistics (TBSS) [13]. TBSS projects
all subjects’ fractional anisotropy (FA) data onto a mean
FA tract skeleton which represents the centres of all tracts
common to the group. Usually, such maps are analysed
voxel-wise for significant differences between groups.
However, given the group size of n = 1 for the patient, a
voxel-wise comparison would lead to many misleading
false positive and false negative results. Therefore, we here
compared the FA of whole tracts defined by the 48 labelled

white matter tracts of the ICBM-DTI-81 atlas [14] pro-
vided in FSL (FMRIB Sofware Library, available at http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/) between the patient and the
control group. All labels that covered at least 600 voxels of
the skeleton were evaluated with a t-test for significant
between-group differences between the healthy control
group and the STUB1 patient. To correct for multiple
comparison the Bonferroni method was used and the sig-
nificance level was set at α < 0.0011.
For methods of the western blot analysis, see Addi-

tional file 2. For methods of the CHIP protein-protein-
network analysis, see Additional file 1.

Results
Genetic findings
WES revealed four STUB1 mutations (one nonsense,
three missense), all of them not previously linked to hu-
man disease, in subjects from two different index fami-
lies (2/87 = 2.3% frequency in total cohort) from Central
Europe (family 1: German origin; family 2 Belgian origin).
Subject II.1 of family 1 carried the variant c.355C > T in

Fig. 1 Pedigrees of STUB1 families and domain location of the four novel STUB1 mutations. a Compound heterozygous STUB1 mutations and
pedigrees of the two reported families. In family 1, one affected individual (II.1) carried the compound heterozygeous mutations p.Arg119* and
p.Ile294Phe. In family 2, two affected siblings (II.1 and II.4) both carried the mutations p.Lys145Gln and p.Pro243Leu. b Schematic representation
of CHIP, the protein encoded by STUB1, with the highly conserved N-terminal tetratricopeptide repeat and C-terminal U-box domain. Of the four
novel mutations, two are located in the U-Box domain (p.Pro243Leu and p.Ile294Phe), one in between the conserved domains (Lys145Gln) and
one is predicted to locate to the tetratricopeptide repeat domain (p.Arg119*), which, however, most probably leads to nonsense-mediated decay
on RNA level
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Exon 2, which is predicted to result in a stop codon at
position 119 (p.Arg119*), most probably leading to
nonsense-mediated mRNA decay due to the premature
stop codon. The second variant, c.880A > T in Exon 7,
leads to an amino acid exchange from isoleucine to
phenylalanine at position 294 (p.Ile294Phe) (Fig. 1a),
affecting the highly conserved U-Box domain of the
protein (Fig. 1b). Subjects II.1 and II.4 of family two
carried the STUB1 missense variants, c.433A > C in
Exon 3, p.Lys145Gln, located outside the tetratricopep-
tide repeat sequence and the U-Box domain (Fig. 1b);
and c.728C > T in Exon 6, p.Pro243Leu (Fig. 1a) which
affects the U-Box domain of the protein. All four vari-
ants were absent or very rare in in the Exome Variant
Server (EVS) and in-house databases (Table 1).
All three missense mutations were predicted to be

damaging by at least three different in silico prediction
tools (Table 1). All mutations were confirmed by Sanger
sequencing. Biallelic localization of the respective STUB1
variants in trans was confirmed in both families by testing
for a heterozygous state of the respective variant in the
parents. In line with the fact that affected patients of both
STUB1 families carried at least one missense STUB1 vari-
ant (rather than two truncating variants), no truncation of
the CHIP protein was observed (Additional file 2).

Clinical findings
A summarized overview of clinical symptoms in all three
affected subjects is provided in Table 2 (for detailed case
vignettes, see Additional file 3). Subject II.1, family 1,
presented with slightly delayed early motor development,
generalized tonic-clonic seizures (years 1–2 of life) and
undescended testes (surgery at age 7). He did not show
ataxia symptoms until age 12. Also subject II. 4 of family

2 did not present with ataxia as initial symptom, but
with cataracts requiring surgery at the age of 11.
Ataxia did not start before age 20. Only in subject II.1,
STUB1 disease started with ataxia as initial symptom
(age 12 years), followed by spasticity starting at the age
of 20 and cognitive deficits starting at 23 years. All
three subjects developed severe dementia with pre-
dominantly frontal-executive dysfunction and progres-
sive loss of language in the first three decades of life,
leading to mutism in 2/3 cases before the age of 40.
Likewise, all three subjects developed severe pyramidal
tract damage to arms and legs, including incapacitating
tetraspasticity. Extrapyramidal hyperkinetic movement
disorders included choreo-athetotic movements in 2/3
subjects and dystonia in 1/3 subjects. Gait disturbances
were quickly progressive in all three subjects, leading
to wheelchair-dependency 6, 9, and 15 years after re-
spective onset of gait difficulties. All three subjects de-
veloped severe dysphagia, starting between age 20 to
age 35, and necessitating gastric tube feeding in both
subjects from family 2 at the age of 36 and 43, respectively.
This severe multisystemic neurodegenerative disease led
to complete care dependency in all three subjects before
aged 40, and premature death at the age of 40 in one of
them.

Neuroimaging
Routine imaging (cerebral magnetic resonance imaging
[cMRI] in two subjects, cerebral computer tomography
[cCT] in one subject) showed cerebellar atrophy in all
three subjects and, in addition, mesencephalic and
parieto-occipital cortical atrophy in subject II.1, family
1. To reveal the atrophy pattern of different neural
tracts in more detail, diffusion tension imaging (DTI)

Table 1 Summary of the novel STUB1 mutations

Sybject Family 1, II.1 Family 2, II.1 + II.4

Phenotype Dementia, upper motor neuron damage,
hypogonadism, ataxia, epilepsy

Dementia, upper motor neuron damage,
epilepsy, ataxia

Genomic position Chr16:732457 Chr16:731347 Chr16:731512 Chr16:732223

cDNA change c.880A > T c.355C > T c.433A > C c.728C > T

Protein change p.Ile294Phe p.Arg119* p.Lys145Gln p.Pro243Leu

GVS Function missense nonsense missense missense

PhyloP 100 4.5 1.6 7.07 5.85

PolyPhen2 (div) probably damaging NA possibly damaging probably damaging

SIFT D NA D D

Mutation Taster D D D D

ExAc/EVS/1000G 0 0 0.001/0.001/0.001 0/NA/NA

GENESIS allele counts 1 1 6 (het) 1

Overview of the mutations including phenotypic features, rating by the mutation prediction softwares PhyloP, PolyPhen2, SIFT, and Mutation Taster and a
summary of the allele frequency in the databases ExAc/EVS/1000G MAF and GENESIS. Legend: NA not applicable. ExAc Exome Aggregation Consortium, EVS
Exome Variant Server, 1000G MAF 1000 Genomes minor allele frequency, het heterozygous, GVS Genome Variant Server
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imaging was performed in subject II.1. It showed a
widespread atrophy and globally reduced fractional
anisotropy (FA) of literally all brain fiber tracts, from
the corticospinal tract via the corona radiata to the
superior, middle and inferior cerebellar peduncle (Fig. 2).

Discussion
Our findings on four novel mutations in three novel
STUB1 subjects extend the genetic spectrum of STUB1,
corroborating earlier findings that STUB1 mutations
both inside and outside of the tetratricopeptide repeat

Table 2 Summary of clinical, imaging, and laboratory data of the STUB1 patients

Family 1 2 2

Subject II.1 II.1 II.4

STUB1 mutation c.355C > T p.Arg119* + c.880A >
T p.Il294Phe

c. 433A > C p.Lys145Gln +
c.728C > T p.Pro243Leu

c.433A > C p.Lys145Gln + c.728C >
T p.Pro243Leu

Gender M M F

Age at last investigation 34y 35y (patient died aged 40) 45y

First symptom, age of onset epilepsy, 2y ataxia, age 12y cataract surgery left eye, 11y

Ataxia, age of onset 12y 12y 20y

Tendon reflexes increased in UE/LE increased in UE/LE increased in UE/LE

Spacticity +++ in UE and LE + in UE and LE + in UE and LE

Babinski’s sign + bilateral + bilateral + bilateral

Ankle clonus - + bilateral + bilateral

Urge incontinence + + + (40y)

Parkinsonism hypomimia - -

Hyperkinetic movements
(dystonia/athetosis)

focal dystonia upper limb intermittend ballistic athetotic
movements

intermittend ballistic athetotic
movements

Epilepsy GTCS in early childhood GTCS (onset 35y) GTCS? (onset 42y)

Muscle atrophy distal UE/LE, possibly secondary
to disuse

generalized UE/LE atrophy
secondary to disuse

distal UE/LE, possibly secondary
to disuse

Sense of vibration cannot be tested reliability due
to dementia

cannot be tested reliability due
to dementia

cannot be tested reliability due
to dementia

Cognitive impainment severe severe, mutism, PEG at 36y severe, mutism, PEG at 43y

Neuropsychology not testable anymore due to
too severe cognitive deficits

not testable anymore; TIQ 85
(WAIS) at 32y

not testable anymore; MMSE 29/30
at 24y, work as secretary in early 20ies

SDFS 6 6 6

SARA 36 40 40

SPRS 36 34 40

Nerve conduction studies sural and tibial nerve normal sural and tibial nerve normal sural and tibial nerve normal

Motor evoked potentials n/a normal normal (SSEP’s and BAEP also normal)

Cerebral imaging cerebellar, mesencephalic and
parieto-occipital cortical atrophy

cerebellar atrophy severe cerebellar atrophy, vermis and
hemispheric, brainstem normal (33y)

Hypogonadism + secondary sex characteristics
present

secondary sex characteristics present

Hormones Testosteron 5,2 nmol/I; LH 0,8 IU/I;
FSH 0,8 IU/I

normal (36y) n/a

Testicular volume (sonography) right testicle: 4.2 ml left testicle:
3.9 ml

n/a not applicable

Legend: M male, F female, y years, n/a not applicable, UE upper extremity, LE lower extremity, GTCS generalized tonic-clonic seizure, TIQ total intelligence quotient,
WAIS Wechsler Adult Intelligence Scale, MMSE Mini Mental State Examination, SDFS Spinocerebellar Degeneration Functional Score. This score was used to evaluate
the disability stage from 1 to 7 (0: no functional handicap; 1: no functional handicap but signs at examination; 2: mild, able to run, walking unlimited; 3: moderate,
unable to run, limited walking without help; 4: severe, walking with one stick; 5: walking with two sticks; 6: unable to walk, requiring wheelchair; 7: confined to
the bed). SARA, Scale for the Assessment and Rating of Ataxia, reaching from 0 to 40, with higher scores indicating more severe ataxia [17]; scores <3 points are
considered unspecific. SPRS, Spastic Paraplegia Rating Scale, reaching from 0 to 52, with higher scores indicating more severe spastic paraplegia [18] (please note,
however, that several items of the SPRS scale increase also with more severe ataxia); SSEP, somatosensory evoked potential; BAEP, brainstem auditory evoked
potentials; LH, luteinizing hormone; FSH, follicle-stimulating hormone
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and U-Box domain of CHIP can lead to neurodegenera-
tive disease [1]. The approximate frequency estimate of
2.3% confirms our previous data from an independent
early-onset ataxia cohort that STUB1 is a recurrent, but
overall rare cause of early-onset ataxia (previous fre-
quency estimate: 1.8%; [1]).
More importantly, however, our findings provide evi-

dence for a severe multisystemic neurodegenerative
disease, corresponding with the universal protein func-
tion of CHIP in neurodegeneration (see Figs. 2, 3, and
Figure Additional file 1). Specifically, in line with the
universal biological role of CHIP as a crucial converging
point of multiple pathways important for neuronal
homeostasis (Additional file 1), the disease phenotype is
not limited to an ataxia syndrome with minor involve-
ment of one or two additional systems, but rather in-
volves almost all brain tracts (Figs. 3 and 2). This is
evidenced clinically by the fact that ataxia is only one
feature of a broad multisystemic phenotype which in-
cludes severe dementia advancing to mutism, epilepsy,
profound pyramidal tract damage including tetraspasti-
city, and extrapyramidal hyperkinetic movement disor-
ders. In fact, ataxia was not even the first feature in the

evolution of the disease in two out of the three affected
subjects.
The notion of aberrant CHIP function leading not only

to ataxia syndromes, but to a broad neurodegeneration,
is further evidenced by DTI imaging. In line with the
clinical findings, DTI demonstrates neurodegeneration
of almost all brain fiber tracts, from the corticospinal
tract via the corona radiata to the cerebellar peduncles.
Taken together, our findings of widespread neurodegener-
ation affecting manifold brain systems provide clinical and
imaging evidence that CHIP seems to be an important
protein for cell survival in various neuronal cell types.
Finally, our data provide the first confirmation from

an independent family showing that hypogonadotropic
hypogonadism is indeed part of the phenotypic cluster
of STUB1 mutations. So far, only one STUB1 family has
been reported to include also hypogonadism as part of
the clinical phenotype [5]. Our description of a second,
independent case from a different ethnic background
now confirms hypogonadism as part of the disease
spectrum. It adds further support of STUB1 as one im-
portant cause of Gordon Holmes syndrome [6], which
shows a substantial genetic heterogeneity as it can also

Fig. 2 MR imaging features of an individual with STUB1/CHIP mutation. a Top: illustration of the FA differences between patient II.1, family 1
versus the healthy control group, overlaid onto a standard brain available in FSL. The mean FA skeleton was calculated voxelwise over all 9
control subjects, and then subtracted from the FA skeleton of the STUB1 patient. Red color encodes a negative difference, i.e. a decreased FA in
the STUB1 subject compared to the mean FA of the controls. Yellow color encodes an increased FA in the STUB1 subject compared to the mean
FA of the controls. Individual FA can theoretically range from 0 to 1, in vivo FA usually ranges between 0.05 in GM and 0.9 in large WM tracts.
Over the whole skeleton negative values are much more common, in line with the statistical evaluation of whole fiber tracts: Bottom: corresponding
list of all brain tracts, and the results of a t-test of the voxels of each tract comparing the STUB1 subject with the healthy control group. Tracts with
gray background are statistically significant. b Sagittal T2 MRI showing marked cerebellar degeneration and global cerebral atrophy with an emphasis
on the parietal and occipital lobes in subject II.1 of family 1 (arrows). FA, fractional anisotropy; FSL, FMRIB Sofware Library; GM, gray matter; WM,
white matter
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be caused by mutations in e.g. PNPLA6 [9]. Importantly,
we demonstrate here that STUB1 causes the Gordon
Holmes syndrome (early onset ataxia plus hypogonadism)
not in isolation, but rather as part of a broad multisyste-
mic neurodegenerative process (see Fig. 3). It thus resem-
bles also other genes which cause Gordon Holmes
syndrome as part of a multisystemic disease spectrum, e.g.
PNPLA6 [9].
Correspondingly, in line with the reclassifications of

other neurodegenerative diseases [15, 16], we suggest
viewing STUB1-associated disease not in terms of syn-
dromic names (e.g. “ataxia-dementia-hypogonadotrop-
ism syndrome” or “Gordon Holmes syndrome”); rather,
it should be conceptualized as a fluid, complex, multi-
systemic neurodegenerative disease affecting various re-
gions and/or systems of the nervous system (cerebellar,
extrapyramidal, pyramidal, cortical, endocrine) defined
by disturbed STUB1 function that translates phenotypic-
ally into a multidimensional gradual spectrum of vari-
ably associated signs and symptoms (Fig. 3).

Conclusion
Our findings provide clinical and imaging support for
the notion that CHIP is a crucial converging point of
widespread multisystemic neurodegenerative processes,
thus corresponding with its universal biological function

in neuronal homeostasis. Further, we show that Gordon
Holmes syndrome presents as part of this widespread,
variable multisystemic neurodegenerative process.
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Additional file 2: Western blots of CHIP in mutation carriers. (DOCX 241 kb)

Additional file 3: Case vignettes. Detailed medical history and clinical
examination data of the three STUB1 patients. (DOCX 14 kb)
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