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Housing unit and urbanization 
estimates for the continental U.S. 
in consistent tract boundaries, 
1940–2019
Scott N. Markley   1 ✉, Steven R. Holloway1, Taylor J. Hafley1 & Mathew E. Hauer   2

Subcounty housing unit counts are important for studying geo-historical patterns of (sub)urbanization, 
land-use change, and residential loss and gain. The most commonly used subcounty geographical 
unit for social research in the United States is the census tract. However, the changing geometries 
and historically incomplete coverage of tracts present significant obstacles for longitudinal analysis 
that existing datasets do not sufficiently address. Overcoming these barriers, we provide housing unit 
estimates in consistent 2010 tract boundaries for every census year from 1940 to 2010 plus 2019 for 
the entire continental US. Moreover, we develop an “urbanization year” indicator that denotes if and 
when tracts became “urbanized” during this timeframe. We produce these data by blending existing 
interpolation techniques with a novel procedure we call “maximum reabsorption.” Conducting out-
of-sample validation, we find that our hybrid approach generally produces more reliable estimates 
than existing alternatives. The final dataset, Historical Housing Unit and Urbanization Database 2010 
(HHUUD10), has myriad potential uses for research involving housing, population, and land-use change, 
as well as (sub)urbanization.

Background & Summary
Social and environmental researchers have long aimed to improve how they analyze and understand changes to 
the built environment. In the United States, investigators frequently rely on multi-decadal, small-area housing 
unit data from the US Census Bureau to estimate the historical pace and extent of (sub)urbanization, analyze 
past geographies of housing loss and gain, categorize (sub)urban land types, examine urban morphology, and 
project future patterns of population growth, development, and land use1–8. Such efforts, however, have long 
been hindered by problems with historical data availability and compatibility. Specifically, the most commonly 
used small-area census geography, the census tract, did not cover the whole country until 1990 and is redrawn 
every ten years9.

Our dataset fills a distinct niche left by existing data products—notably, HISDAC-US, NHGIS, and LTDB—
that attempt to estimate historic subcounty housing units. These datasets, while exceptionally useful and often 
applied in the broader literature, come with shortcomings that HHUUD10 addresses. For example, HISDAC-US 
offers historical building counts and floor areas at unrivalled spatial and temporal resolutions10. Its source data, 
however, comes from contemporary property records, subjecting its estimates to substantial survival bias in 
many cities that underwent “urban renewal” in the mid-to-late twentieth century11–13. Additionally, HISDAC-US 
comes as a raster dataset. Though rasters offer some noteworthy advantages, vector-polygons—namely, census 
tracts—are much more frequently used in social and demographic research.

The National Historical Geographic Information System (NHGIS) and Longitudinal Tract Database (LTDB) 
provide some historical housing unit counts in 2010 tract geometries14,15. Though shown to produce reasonably 
dependable population estimates for 2000 data, these data products only go back to 1990 and 1970, respectively. 
In addition, the LTDB’s pre-1990 data coverage is limited to US cities and metropolitan regions that were tracted 
in those years16. Furthermore, in part because the LTDB focuses on a wide array of variables rather than housing 
units specifically, its pre-1990 housing data are generated using a coarse interpolation method that is highly 
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susceptible to misallocation17. Namely, they rely heavily on error-prone area-weighted interpolation, remove 
only water surfaces in their dasymetric refinement procedure, and use population weights rather than housing 
weights to generate their housing unit estimates14.

Addressing these gaps in the available datasets, we develop a data product that provides housing unit count 
estimates in consistent census tract boundaries for every decennial census year from 1940 to 2010 plus 2019 
for the entire Continental United States. We mitigate many of the common problems associated with spatio-
temporal interpolation—including survivor bias, incomplete coverage, and misallocation—by taking a hybrid 
approach18,19. Combining historical tract records from the NHGIS and land-use polygons from ArcGIS Online, 
as well as two privately distributed ancillary datasets, we blend and modify a series of well-established spatio-
temporal interpolation techniques to generate pre-1990 housing unit estimates in places that contained pre-
1990 tracts. These techniques include dasymetric refinement, selective areal weighting, and two variations of 
target-density weighting20–22. For areas that were not tracted in their respective pre-1990 census year, we employ 
a novel raster overlay procedure that we call “maximum reabsorption.” For 1990 and later, we rely on NHGIS 
time series data.

We call our data product the Historical Housing Unit and Urbanization Database 2010 (HHUUD10).  
It consists of an Esri shapefile and GeoJSON file, as well as.csv,.dta,.xpt, and.v8xpt files in long and wide formats. 
Along with housing unit counts, HHUUD10 includes an estimated “urbanization year” indicating when a given 
tract surpassed a set urbanization threshold based on its housing density and land cover. The ancillary compo-
nents used to estimate the urbanization year are also included in the dataset.

Out-of-sample validation reveals that our multi-method, hybrid approach better predicts past housing unit 
counts in most cases than any one of the component methods alone. We discuss our approach in full in the 
following section.

Methods
Data importation and organization.  In the continental US, there were 72,539 census tracts in 2010. We 
provide housing unit counts in these tracts across nine decades (1940–2010, 2019), or 652,851 (72,539 × 9) indi-
vidual tract-years. Fortunately, the NHGIS provides complete estimates for tracts from 1990 and 2000 in 2010 
boundaries. Therefore, we generate housing unit estimates for the 362,695 (72,539 × 5) tract-years from 1940 to 
1980. We accomplish this by working through the steps outlined in the workflow diagram in Fig. 1. In this subsec-
tion, we discuss the data collection and dasymetric refinement procedure.

Fig. 1   Workflow diagram illustrating the steps we take to produce our housing unit estimates.
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The data we use to initiate the process come primarily from two sources: the NHGIS and Esri’s ArcGIS 
Online. From the NHGIS, we first gather historical census data. These include housing units for every census 
tract in the continental US from 1940 through 1980 plus housing units from the 2010 decennial census and 
the 2015–2019 American Community Survey (ACS)15. In addition, we pull in four other data types from the 
NHGIS. These include year structure built (YSB) data for 1950-1980 tracts and 1990 block groups, 1990 and 
2000 housing unit counts in 2010 tract boundaries from NHGIS’s time series collection (https://www.nhgis.
org/documentation/time-series), a crosswalk file that transfers 1990 YSB data into 2010 block groups (https://
www.nhgis.org/geographic-crosswalks), and an environmental summary table containing National Land Cover 
Database (NLCD) land-use categories (https://www.nhgis.org/user-resources/environmental-summaries)15. We 
use this last dataset to generate our “urbanization year” variable, and we supplement it with Enhanced 1992 
NLCD data23.

From ArcGIS Online, we gather a series of nationwide land-use polygons, which are available to any-
one with a standard ArcGIS user license. These layers include water surfaces (https://www.arcgis.com/
home/item.html?id=84e780692f644e2d93cefc80ae1eba3a); parks (https://www.arcgis.com/home/
item.html?id=578968f975774d3fab79fe56c8c90941); airport grounds (https://www.arcgis.com/home/ 
item.html?id=2706fbe2d7c74b488a609938df8f9578); railyards (https://www.arcgis.com/home/item.htm-
l?id=59d26cbc21534cb1b50a37b44d948a53); and golf courses, cemeteries, and industrial areas (https:// 
www.arcgis.com/home/item.html?id=6ffa5cb05c3b4978bd96b8a4b416ffa6). These polygon surfaces indicate 
which areas likely contained no housing units during our study period. With this information, we are then 
able to dasymetrically refine our dataset by removing these spaces before interpolation, splitting our pre-1990 
tracts into “inhabited” and “uninhabited” zones. Though computationally simple, this binary approach can sig-
nificantly improve estimates, while often performing as well or better than more complicated techniques24–26. 
Moreover, by using vector-polygons rather than the more standard 30-meter NLCD raster cells we improve the 
precision of our dasymetric procedure considerably.

One complication of the Esri data is that it does not indicate when the surface polygons were established. 
However, some of these surfaces have been constructed since 1940, possibly removing housing units in the 
process. Ideally, we would link each polygon to a construction date. Realistically, this is only feasible for airport 
grounds and golf courses. For the former, we obtain each airport’s “activation date” from the Federal Aviation 
Administration (https://adip.faa.gov/agis/public/#/airportSearch/advanced) and then subtract two years to 
account for construction time. For golf courses, we obtain a georeferenced point file with a year-opened attrib-
ute for golf courses in the US that were built by 2000 via private correspondence. These data originate from Golf 
Magazine and have been used in prior research27. Dates for both surfaces are then linked to their respective 
polygons so that dasymetric refinement would only be implemented after their construction. All but two of 
the remaining polygon surfaces are kept as they were for the entire study period. Swamps are removed from 
the water file because they can encompass homes, and we only include parks that are less than five square miles 
because larger parks sometimes do contain residences.

Finally, 2010 tracts containing fewer than 10 housing units in 1990 according to the NHGIS’s time series 
table are flagged for potential removal. This step corrects for dramatic changes in how the Census Bureau drew 
tracts during the course of the study period. However, since some of these tracts may have been a site of extreme 
housing loss due to urban renewal, which we aim to capture, we do not remove any tracts overlapping a known 
urban renewal project. A polygon boundary of federally funded urban renewal projects carried out between 
1950 and 1966 is obtained via correspondence with the Digital Scholarship Lab at the University of Richmond28. 
Housing unit values for these removed tracts are later re-entered using a backcasting procedure discussed below.

Following dasymetric refinement, we sort our 362,695 pre-1990 tract-years into three categories. First, there 
are target tracts that were covered by tracts in their respective source year (“tracts present”). Next, there are tar-
get tracts that were not covered by tracts in their source year (“not tracted”). Finally, there are special-case tracts 
with less than 10 housing units in 1990 that do not overlap any known urban renewal boundaries (“sparsely 
populated”). Each of these must be handled in different ways. Figure 2 depicts how tract-years are split into 
these groups and then subsequently treated with an appropriate interpolation method. We discuss each in the 
following sections.

Tracts present.  The basic objective of areal interpolation is to reallocate data from one vector-polygon into 
another. In our case, this entails moving housing unit counts from pre-1990 tracts into 2010 tract geometries. 
The simplest and most direct method for accomplishing this is areal weighting (AW)21. AW is conducted by 
overlaying source and target tracts, and then using the proportion of the overlapping area to distribute housing 
units from the former to the latter. The weakness of this approach is that it assumes housing units are distributed 
uniformly across the source layer, which is rarely the case. Dasymetric refinement is therefore applied to update 
our assumptions about the within-tract spatial distribution of housing units and improve interpolation results 
accordingly20,29.

Dasymetrically refined AW works well in cases where source geographies remain the same size or are aggre-
gated over time. In such cases, AW can indeed be preferred to other methods because it retains original census 
housing unit counts and is thus unaffected by survivorship bias. Ideally, we would conduct AW using the small-
est census geography, the census block, to minimize misallocation19. However, neither census blocks nor block 
groups are available on a national scale before 1990, and there is not a dependable way to tell if 1990 block data 
with few or no housing units had housing units in the past. In order to capture housing unit loss, we proceed 
cautiously and apply dasymetrically refined AW only to tracts that remained the same size or grew over the study 
period (n = 65,510).

AW works less well in cases where tracts are subdivided between census years. These cases are typically 
the result of population growth, which rarely occurs evenly within tract boundaries. To address this problem, 
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Schroeder proposes “target density weighting” (TDW)22. Like AW, TDW begins with an overlay of the source 
and target layers. Instead of using the area overlap to proportionally allocate source-year housing units into their 
target zone (e.g., 2010 tracts) though, TDW assumes that the spatial distribution of housing units in the source 
tract is equivalent to the spatial distribution of a corresponding variable in the target zone. For us, that corre-
sponding variable is the YSB count of housing units built by the source year according to the target-zone data 
(1990 YSB data reapportioned to 2010 block groups). TDW is thus calculated as
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where, in our case, �yt
 is the estimated housing unit count in target zone t (2010 tracts), ys is the housing unit 

count in the source year s, zt is the YSB count for source year s in target zone t, At is the area of target zone t, Ast 
is the area of the overlap between source tract s and target zone t (the “atom”), and τ indexes the individual target 
zones that overlap a given source tract22,30.

Ruther and colleagues find that dasymetrically refined TDW outperformed six other interpolation methods 
when distributing population counts from 1990 and 2000 tracts to 2010 tracts31. However, results from 1990 
were less reliable than 2000, suggesting that this method is sensitive to temporal distance, especially in places 
undergoing either population decline or fast growth. TDW is thus ill-equipped to capture the rapid housing unit 
loss associated with mid-twentieth century urban renewal. However, by already accounting for tracts that stayed 
the same size or grew in size with AW, our use of TDW is limited to source-year tracts that were subdivided 
during the study period. Such tracts typically gained population and hence were unlikely to experience dramatic 
housing loss. And since we use YSB counts from the target zone rather than housing units, the rapid growth 
problem is effectively neutralized.

Temporal distance remains a concern, however. We address it by applying two different types of TDW that, 
when combined, minimize temporal distance where possible. For the first, which we call “TDW-1,” we walk 
housing units from the source year into the tracts in the following decade (s + 1)—provided they were subdi-
vided—with TDW using the latter’s YSB counts. Then, for tracts s + 1 that stay the same size or grow in area 
before the target year, we conduct AW. There are 40,416 cases in which TDW-1 is applied, about 72 percent of 
which are from 1980. Source tracts remaining are those that were subdivided across subsequent decades. For 
these, we apply a more standard TDW using 1990 YSB counts in 2010 block groups. We call this set “TDW-90,” 
and we apply it to 59,658 tract-years.

For all three of these methods, we include a quality check step that compares the estimate produced with the 
tract’s YSB value for the given source year. In theory, the YSB value from 1990 should never be greater than the 
AW or TDW estimates, except in the relatively infrequent cases wherein a large concentration of older housing 
units was divided into apartments. To correct these likely mistakes without removing the latter, we keep only the 
AW and TDW housing estimates that were 90 percent or greater than the YSB count. Cases failing to meet this 
threshold are handled as if they were non-tracted. Similarly, we keep only the target-zone tracts that were at least 
99 percent covered by their source-year tracts, relegating partial overlaps to the non-tracted group.

Not tracted.  In 1940, the Census Bureau had only drawn tracts for a little over 80 cities9. In each decade after, 
coverage was expanded until the entire country was tracted in 1990 (see Figs. 3 and 4). Missing pre-1990 census 
tract data presents a serious problem for interpolation because the methods described above can only be applied 

Fig. 2  Sankey diagram depicting how our estimation methods are distributed among 1940–1980 tract-years.
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where historical tract boundaries exist. Hammer and colleagues present one solution4,32. They use the YSB data 
in present-day tracts to proportionally allocate county-level housing unit counts available in historical census 
records. This approach is appealing for its simplicity, and unlike the previous methods discussed, it is not subject 
to any error from spatial interpolation. However, as with TDW, the Hammer method is sensitive to temporal 
distance.

A principal assumption guiding us thus far has been that a shorter temporal distance will tend to yield more 
accurate housing estimates than a longer temporal distance. Therefore, we would prefer to gather housing unit 
data from pre-1990 tracts where available. However, we also make a countervailing assumption. Over time, the 
spatial resolution and border accuracy of tracts have generally improved and have grown closer to our target 
geometries (2010 tracts). Thus, YSB counts in more recent tract-years may provide more accurate housing unit 
estimates than older tract-years in some places. Our task is then to balance our conflicting preferences for mini-
mal temporal distance and maximal spatial resolution. We thus develop “maximum reabsorption.”

The first step of maximum reabsorption (MR) is to organize YSB totals for the source year (year s in Fig. 1) 
for tracts in every subsequent decade up until 1980, plus in the 2010 block group polygons with 1990 data. If the 
source year is 1950, for example, the YSB totals for tracts from 1960, 1970, and 1980 and for block groups from 

Fig. 3  Graph of the percentage of the Continental US’s area and population covered by census tracts, 1940–1990. 
Since the Census Bureau initially only targeted cities for tract coverage, only a tiny fraction of the total US land 
area was covered by tracts in the mid-to-late twentieth century, while a considerably greater portion of the total 
population lived in tracts.

Fig. 4  Historical census tract coverage in Ohio, 1940–1990. This map displaying the expansion of tract coverage 
in Ohio is representative of the general trend across the rest of the country. In 1940, only major cities were 
tracted. In 1950, tract expansion was limited to a few other cities and areas immediately surrounding a handful 
of already-tracted places. Over the ensuing decades, tracts were expanded to cover smaller and smaller cities 
and suburban regions until all areas were tracted in 1990.
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1990 would include their respective YSB counts for “1939 and earlier” summed with their YSB counts for “1940 
to 1949.” The resulting total would then indicate the surviving number of housing units built in a given tract 
by 1950. Once this data is organized for every source year (1940–1980), it is then converted to 30 × 30-meter 
raster cells. Each raster cell contains an estimated YSB count, calculated as its tract’s YSB count divided by the 
number of cells contained within that tract. YSB counts are hence assumed to be evenly distributed within each 
dasymetrically refined tract polygon.

Following rasterization, each source year is left with a set number of associated raster layers, each with their 
own YSB-derived housing unit estimates. There are six rasters for 1940 (1940–1990), five for 1950 (1950–1990), 
and so on. Here, we arrive at that crucial juncture: how do we weigh temporal distance against spatial resolu-
tion? Our solution is to overlay each raster layer for each source year and then extract the maximum housing 
unit count by raster cell. The logic is the same as before: YSB counts for a given source year in a future tract-year 
should theoretically never be greater than the original housing unit counts, except where there is a high concen-
tration of older homes that have been divided into multiple units or where formerly non-residential buildings 
are converted into apartments or condominiums. However, since these practices have historically been observed 
in urban centers, these cases have mostly been handled by AW or TDW33,34. Therefore, the only reason a more 
recent YSB count should be greater than an older YSB count in remaining raster cells is if the more recent cen-
sus geometry covers a smaller area than the older tract. Using the maximum thus favors spatial resolution over 
temporal distance in these cases and the reverse in all other cases.

The next step in the process is to “reabsorb” the new “maximum” cells back into target tracts. This is con-
ducted in ArcGIS Pro using zonal statistics to sum each cell value in its 2010 tract boundary, producing a hous-
ing estimate for each source year in their respective target tract. These figures are not final, however. Using 
maximums implies that housing counts are overestimated in some places. To mitigate this potential issue, we 
use our MR estimates as weights to proportionally distribute historical county-level housing unit counts into 
2010 tract boundaries. Counties that changed size or shape during the study period (e.g., many of Virginia’s 
county-equivalent cities) are amassed into larger county-units to ensure proper allocation.

We call this first cut “County-based Maximum Reabsorption,” or “CMR,” However, there are two potential 
adjustments to be made. First, there are cases in which the proportional allocation procedure reduces the CMR 
value below 90 percent of its YSB value. In these cases, the unadjusted maximum was likely the more dependable 
value, so we either kept it unadjusted (UMR) or used the Hammer method (HM) instead. We choose the value 
that is closer to the 1990 YSB count because this generally yields the more conservative estimate. In 9,859 cases, 
this leaves us with the UMR count, and in only 439 cases, it gives us the HM count. After subbing in these new 
values, CMR estimates for the remaining tracts are recalibrated.

The second adjustment looks to improve our MR estimates with “Tract-based Maximum Reabsorption,” or 
“TMR.” By subtracting AW and TDW estimates from county totals, we can reduce the number of MR-estimated 
tract-years in need of reallocation. This should, in theory, improve our maximum reabsorption figures in all 
county-years with partial tract coverage. Unfortunately, census data itself is not always consistent, especially 
in older census years (https://www.nhgis.org/frequently-asked-questions-faq#1960_Data)15. For example, since 
tracts are nested within counties, county housing counts should equal the sum of their tract counts. However, 
there are some significant discrepancies. In the worst of these cases—Kings County, NY (Brooklyn) in 1960—
there are over 35,000 more housing units in the county-level census file than in the sum of that county’s census 
tracts.

Unless TMR comes back as a negative value, there are few ways to identify which method yields the more 
dependable result. To help us in this task, we employ Kalman filtering for tracts with at least one source year rely-
ing on maximum reabsorption. Kalman filtering is a univariate time series approach that forecasts—or, in our 
case, backcasts—estimates using existing observations35. Thus, we use the 2019, 2010, 2000, and 1990 housing 
unit counts already in our dataset, in addition to any other produced by AW, TDW, UMR, or HM, to generate 
a predicted housing count for a given tract-year. Then, we select the CMR or TMR estimate that is closer to the 
Kalman estimate. Since this approach requires observed data on both ends of the projection to work properly, 
we impute missing 1940 values by selecting either the CMR or TMR estimates that is closer to the HM estimate. 
These procedures yield 149,231 CMR estimates and 33,087 TMR estimates.

Sparsely populated.  The final tract-years in need of estimation represent only slightly more than one per-
cent of the total (n = 4,495). These special cases are primarily constituted by large sparsely populated zones—
including airports, parks, commercial or industrial districts, federal lands, and the like—that were assigned their 
own tract by the Census Bureau in 2010. Assigning these sparsely populated zones to their own tract, rather than 
subsuming them in their neighbor’s populated tract, is a relatively recent practice. Thus, when redistributing data 
from old census tracts to recent ones, there is a high risk of misallocation in these instances if not appropriately 
managed.

We specified how we identified these cases above. These are tracts with less than 10 housing units in 1990 
that did not overlap a known urban renewal area. We handle these rare cases by removing them from the dataset 
before interpolation before reintroducing them after. We then perform the Hammer method using their YSB 
estimates and the YSB estimates from all other tracts in their county equivalent.

Urbanization estimation.  Our final task is to provide urbanization year estimates in each 2010 tract. We 
do this in two cuts. First, following the common practices of housing researchers, we define a tract as “(sub)
urbanized” when it surpasses 200 housing units per square mile36–38. Notably, the area used for calculation is a 
tract’s populated dasymetric zone not including its “industrial areas.” We call this “UY1” (Urbanization Year One), 
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and it spans from 1940 to 2019. Once a tract surpasses this threshold, our definition does not allow it to become 
“unurbanized,” though HHUUD10 users can easily change this feature if they wish.

UY1 captures most tracts one would expect. However, it still leaves conspicuous holes on the urban land-
scape (see Fig. 5). There are many places typically considered “urban” that do not contain many housing units 
and have not been removed during dasymetric refinement, such as large commercial and industrial districts.  
To account for these other urban land uses, we pull in NLCD categories from 1992, 2001, and 2011. 
Conveniently, the NHGIS has distributed 2001 and 2011 NLCD land cover types in 2010 tract boundaries. To 
estimate the percentage of land area covered by an urban land use, we simply sum the four “Developed” land 
cover classifications and then divide them by the total land area minus “Open Water” and “Perennial Ice/Snow.” 
This produces a “percent developed” category we use to update UY1 into UY2.

NLCD data from 1992 is not as conveniently packaged. It is only available in its original raster format. For 
that data, we replicate the methods of the NHGIS to aggregate NLCD classifications into our target tracts and 
then perform the same tasks outlined above. The major distinction is that the NLCD calculated and named the 
1992 classifications slightly differently. Rather than using “developed” classifications, we approximate urban land 
uses by summing “Low” and “High Intensity Residential,” “Commercial/Industrial/Transportation,” “NLCD/
LULC Forested Residential,” and “Urban/Recreational Grasses”23.

The output from these procedures are three data columns in our dataset indicating the percentage of land 
that was developed in 1992, 2001, and 2011. With that information, we identify tracts for each NLCD year with 
an urban land coverage above 50 percent and an urbanization year later than 1990, 2000, and 2010, respectively. 
For these special cases, we calculate a UY2 value using the weighted average of their neighbors’ UY1 values. 
The weights in this equation are their shared border lengths. For purposes of averaging, tracts that were not yet 
urbanized are given a pseudo UY1 of 2035.

Following these modifications, we conduct an urban smoothing technique that assigns tracts surrounded 
by neighbors with earlier urbanization years a new UY2 value using the latest bordering UY2 value. For 
example, a 2000 UY2 tract surrounded by 1970 and 1980 UY2 tracts would receive a new UY2 value of 1980.  

Fig. 5  Maps comparing three ways to define urbanization years (UY) in Greater Los Angeles. All use 200 
housing units per square mile. (a) Hammer-generated UY. (b) HHUUD10-generated UY using housing units 
only (UY1). (c) HHUUD10-generated UY supplemented with NLCD and tract adjacency information to 
account for non-residential urbanized tracts (UY2). (d) Map elements.
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The theoretical basis here is that these islands are less likely to be categorically distinct from their neighbors than 
to be the result of the inherent limitations of using vector polygons to capture urban development. Following 
this step, we have the final data product, presented in map form in Fig. 6. It includes housing unit counts and the 
“inhabited” surface areas from 1940 to 2019; a “percent developed” category for 1992, 2001, and 2011; and two 
urbanization years, one solely housing density based (UY1), the other corrected to include non-housing unit 
urban land uses (UY2).

Data Records
All HHUUD10 data are available for download at the Open Science Foundation (OSF)39. This repository 
includes an Esri shapefile and GeoJSON file, as well as.csv,.dta,.xpt, and.v8xpt files in long and wide formats. 
The data contained in each file are identical. Table 1 defines and summarizes the data columns in the long 
HHUUD10 file.

Fig. 6  HHUUD10 Urbanization Years by tract for (a) the Continental US, (b) Greater Atlanta, GA, (c) the 
Baltimore-Washington, DC-MD-VA Area, and (d) Greater Chicago, IL-IN-WI.
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Technical Validation
To evaluate how our HHUUD10 method performs against other methods, we apply three validation tests. The 
first two compare results from our hybrid method against those from its component methods. The third shows 
the distribution of the estimated error in tracted and non-tracted spaces in our validation sample. To con-
duct these tests, we use nine sample counties to generate 1990 housing unit estimates in 2010 tract geometries 
with NHGIS time series data as the “observed” data. Although this dataset itself is imperfect, it is the industry 
standard and has been shown to outperform alternative datasets16.

Other than the historical availability of tract data, the main factor that can skew our estimates is the rate at 
which an area gains or loses housing units between the source and target years. Thus, following previous stud-
ies, we run our validation on a sample of counties with different growth trajectories from 1990 to 2015–1930,31.  
We include three counties that experienced housing unit decline in that time, three that experienced rapid 
growth, and three that were relatively stable. Table 2 shows the breakdown.

For our first validation test, we compare our hybrid model of dasymetrically refined (DR) AW, TDW-1, 
and TDW-90 against DR-AW and DR-TDW alone. Results are presented in Table 3. We use two statistics of 
comparison: Median Absolute Percent Error (MdAPE) and symmetric Mean Absolute Percent Error (sMAPE). 
Unlike Mean Absolute Percent Error (MAPE), these measures avoid having to divide by zero and are more 
resilient against extreme values40. In all growth scenarios, as well as among the total, our HHUUD10 method 
performs better by these measures than both DR-AW and DR-TDW alone. The differences between HHUUD10 
and DR-TDW are quite close, however. One reason this may be is that the NHGIS relies heavily on DR-TDW 
to produce their estimates—though they do this at the block level, use housing counts instead of YSB, and 
employ a different DR process—so there is some risk of tautology15. While DR-AW performs nearly on par with 
HHUUD10 and DR-TDW in declining and stable counties, its large errors in growing counties demonstrate why 
AW should only be used in specific cases.

For our second validation test, we mimic historical census tract availability by removing two-thirds of 1990 
tracts and one-third of 2000 tracts. Following historical patterns, we include only those tracts around the urban 
center in 1990 and then radiate outward from there. Though imperfect, this scenario allows us to compare 
HHUUD10 against CMR and HM estimates. Additionally, it allows us to see how substituting HM estimates in 
for CMR estimates would change our HHUUD10 counts. Table 4 reports the results.

Errors in this test are considerably higher than their counterparts in the previous test. This reflects what 
happens to the accuracy of estimates when historical tract data is unavailable. Still, the HHUUD10 method out-
performs the other methods by both measures among declining and stable counties and overall. In fast growing 

Variable Description

STATE State abbreviation.

COUNTY County name.

GISJOIN10 Unique tract ID in NHGIS format.

GEOID10 Unique tract ID in Census Bureau format.

YEAR Year of HU & SQMI data (1940-2019). In wide format, the last two digits in the year trail the variable 
name (e.g., hu40, sqmi40, etc.).

HU Tract housing unit estimate by year.

SQMI Area of dasymetrically refined tract in sq. mi. by year. These values are constant throughout the study 
period except are reduced when an airport or golf course is constructed.

pdev92 Percent of a tract’s land area that was covered by an urban land use according to the NLCDe 1992.

pdev01 Percent of a tract’s land area that was covered by an urban land use according to the NLCD 2001.

pdev11 Percent of a tract’s land area that was covered by an urban land use according to the NLCD 2011.

UY1 Urbanization year according to when a tract surpassed 200 HU / sq. mi. in its dasymetrically refined area.

UY2 Same as UY1, except urbanized non-residential areas identified by the pdev variables and tract adjacency 
are included.

Table 1.  Data description for HHUUD10.

Growth Trajectory County Primary City Housing Units (1990) Housing Units (2015-19) Change

Declining

Orleans Par., LA New Orleans 225,573 191,808 −33,765

St. Louis city, MO St. Louis 194,919 176,729 −18,190

Wayne Co., MI Detroit 832,710 815,102 −17,608

Growing

Orange Co., FL Orlando 282,686 535,981 253,295

Tarrant Co., TX Fort Worth 491,152 767,808 276,656

Riverside Co., CA Riverside 483,847 840,501 356,654

Stable

Allegheny Co., PA Pittsburgh 580,738 600,399 19,661

Essex Co., NJ Newark 298,710 317,314 18,604

Hamilton Co., OH Cincinnati 361,421 379,402 17,981

Table 2.  Nine county sample used for validation.
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counties, HHUUD10 has the lowest MdAPE, but the Hammer method has a slightly lower sMAPE. This is likely 
due to the fact that the Hammer method is not subject to any error associated with areal interpolation, and 
although the HM is affected by survivorship bias, that is much less of a concern in fast-growing places in this 
time period. Applying the HM over a longer time period when housing demolition was more rampant, such as 
during the height of urban renewal in the 1950s and 1960s, would assuredly yield less reliable estimates.

Our third test separates tracted from non-tracted spaces to demonstrate the distribution of their errors 
around zero (see Fig. 7). The error metric used here is the Algebraic Percent Error (ALPE), which is the same 
as sMAPE shown above, except it does not take the absolute value41. The density plots in Fig. 7 show that, as we 
would expect, the error for tracted spaces tends to be much smaller on average than the error in non-tracted 
spaces. This is especially true in declining counties where the areal interpolation methods are best at predict-
ing housing counts. The distribution of errors is much wider in non-tracted spaces for all growth trajectories, 
suggesting that HHUUD10’s estimates are likely less dependable, on average, in earlier census years and in less 
populated counties where tract coverage was less complete.

Usage Notes
HHUUD10 provides housing unit counts and urbanization estimates for every census tract in the continental 
US in consistent boundaries. The data itself may be used for a longitudinal study directly addressing questions 
about housing, (sub)urbanization, or land-use change, or it may provide a useful input or control variable for 
studies focusing on other pertinent questions. This data may also help researchers reallocate other census varia-
bles into consistent tract boundaries. For any of these potential uses, users should keep three limitations in mind.

First, users of HHUUD10 should note that our dataset includes the sum total of housing units in a given 
tract-year. Thus, HHUUD10 does not allow for an exact assessment of how many housing units were demolished 

County Type Method MdAPE sMAPE tracts (n)

Declining

HHUUD10 0.003 0.027

891DR-AW 0.004 0.053

DR-TDW 0.003 0.032

Growing

HHUUD10 0.061 0.228

1017DR-AW 0.241 0.452

DR-TDW 0.137 0.293

Stable

HHUUD10 0.013 0.056

834DR-AW 0.016 0.073

DR-TDW 0.014 0.056

Total

HHUUD10 0.012 0.111

2742DR-AW 0.018 0.207

DR-TDW 0.016 0.136

Table 3.  Comparing 1990 housing unit estimates in 2010 tract geometries: HHUUD10 vs. DR-AW and 
DR-TDW using Median Absolute Percent Error (MdAPE) and symmetric Mean Absolute Percent Error 
(sAPE).Italicized figures indicate the lowest errors in their group.

County Type Method MdAPE sMAPE Tracts (n)

Declining

HHUUD10 0.046 0.123

891
HHUUD-HM 0.074 0.151

CMR 0.068 0.140

HM 0.136 0.211

Growing

HHUUD10 0.106 0.211

1017
HHUUD-HM 0.110 0.217

CMR 0.117 0.229

HM 0.114 0.206

Stable

HHUUD10 0.050 0.093

834
HHUUD-HM 0.058 0.114

CMR 0.072 0.113

HM 0.080 0.148

Total

HHUUD10 0.066 0.146

2742
HHUUD-HM 0.083 0.164

CMR 0.083 0.165

HM 0.106 0.190

Table 4 .  Comparing 1990 housing unit estimates in 2010 tract geometries: HHUUD10 vs. HHUUD-HM, 
CMR, and HM using Median Absolute Percent Error (MdAPE) and symmetric Mean Absolute Percent Error 
(sAPE). Italicized figures indicate the lowest errors in their group.
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or constructed. For example, if ten housing units were demolished and subsequently replaced with twenty hous-
ing units within a census decade, HHUUD10 only registers the additional ten units. It does not register ten units 
lost and twenty gained. Researchers using HHUUD10 should design their studies with this in mind.

Second, we recommend that users acknowledge the intention and limitations of our “urbanization year” 
calculation. This estimate is designed to be used primarily as an input variable in studies involving (sub)
urbanization, land-use change, and the like. It hence reflects a specific, density- and land-use-based defini-
tion of “urbanization” that does not allow tracts to ever become “unurbanized.” Researchers aiming to capture 
“de-urbanization,” for example, can use the other variables in the dataset to construct an alternative urbanization 
definition that is more suitable for their needs.

Finally, at every step in our interpolation procedures, we choose the method previous studies and our own 
expertise suggest will produce the most accurate possible estimate. Still, no data interpolation process is without 
error, and as our validation tests show, this is especially true in our case when there is no historical tract data 
available. Users should be aware of this.

To help data users assess our procedures, we publish all R and Python code used to construct this dataset 
and its validation (see below). Those wishing to run this code must register for a free account with the NHGIS 
(https://uma.pop.umn.edu/nhgis/user/new), request a free API key from the US Census Bureau (https://api.
census.gov/data/key_signup.html), and obtain a standard Esri user license (https://pro.arcgis.com/en/pro-app/
latest/get-started/about-licensing.htm) through their institution or via purchase. They will also need to install 
recent versions of R, ArcGIS Pro, and ArcGIS Desktop on their computers. We recommend that users run this 
code on an external hard drive with at least half a terabyte of memory, and we advise users that running the 
entire code will take several days. Further instructions are provided in our repository’s README files. These 
must be followed carefully for the code to run properly.

Code availability
All source code used in this analysis is available on Open Science Framework (OSF)39. This code was run using  
R 4.0.5, ArcGIS Pro 2.8 (with Python 3), and ArcGIS Desktop 10.7.
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