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Abstract: Active carbon-based sorbents are well known and are used in analytical chemistry. Acti-
vated carbon fibers (ACFs) are mainly used as abatement systems in industrial emission pollution
control. The objective of this study was to extend the use of ACFs in analytical chemistry for the
analysis of polychlorodibenzo-p-dioxins (PCDDs), polychlorodibenzofurans (PCDFs), dioxin-like
polychlorobiphenyls (PCBs), and chlorobenzenes (CBs). For this purpose, the extraction efficiency
was evaluated based on the QA/QC criteria defined by EPA/ISO reference methods on 13C-standards
recovery rates. The procedures tested were ultrasonic assisted extraction (UAE), Soxhlet extraction
(SE), accelerated solvent extraction (ASE), and microwave-assisted extraction (MAE). Each experi-
ment was performed in triplicate to ensure the repeatability of the results, and a second extraction
assessed the complete extraction. The comparison of the results of each set of experiments with the
minimum requirements of the reference methods for each class of compounds led to SE being chosen
as the best technique. SE with toluene resulted in a reduction of time and costs and with respect to
the other investigated techniques. The present work demonstrated that ACFs can be used in environ-
mental fields means of both prevention and control (exploiting the adsorbent characteristics) and for
analytical purposes (exploiting the desorption) for the described chlorinated classes of pollutants.

Keywords: extraction; active carbon fiber; PCDD/Fs; PCBs; CBs; ACF; QA/QC

1. Introduction

Activated carbon fibers (ACFs) are a set of promising microporous materials and
are one amongst the most effective adsorbents in adsorption applications [1]. Their high
adsorption capacities are due to their nanostructure, high homogeneous porosity, high
specific surface area (SSA), and narrow pore size distribution [2]. Moreover, the material is
lightweight (low density per m2), it can be wrapped in different textiles (easy to handle),
and it is fireproof [3]. All of these characteristics enable ACFs to be widely used in various
fields such as pollutant removal and air conditioning filters, vapour sensors, biomedical
applications, capacitors, carbon molecular sieves, and electrodes [4–10].

Both the high SSA and the evenly distributed porosity on the surface make ACF a
suitable candidate for reversible mass transfer (adsorption/desorption), especially when
considering the possibility of desorbing identical contaminants that have been previously
adsorbed. This can be an advantageous property that can be used to extract the compounds
trapped within the ACF more easily, resulting in better recoveries [11,12]. Since the
literature data are mostly based on the use of ACFs for environmental remediation and
bioenergy applications and not for analytical purposes [13–15], Cerasa et al. carried out
specific tests to verify the technical files of vendors and studied their chemical and physical
characteristics for analytical use [16].

The reference air sampling methods [17–19] involve the use of a quartz fiber filter
(QFF) and polyurethane foam (PUF) in series to trap the fraction of the pollutants in the
particulate and in the gaseous phase, respectively.

Molecules 2021, 26, 6407. https://doi.org/10.3390/molecules26216407 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-7590-5694
https://orcid.org/0000-0003-4199-418X
https://orcid.org/0000-0002-6050-7984
https://doi.org/10.3390/molecules26216407
https://doi.org/10.3390/molecules26216407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26216407
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26216407?type=check_update&version=1


Molecules 2021, 26, 6407 2 of 9

Based on these considerations, the objective of this work was to establish efficient
extraction procedures for polychlorodibenzo-p-dioxins (PCDDs), polychlorodibenzofurans
(PCDFs), dioxin-like polychlorobiphenyls (PCBs), pentachlorobenzene (PeCB) and hex-
achlorobenzene (HCB) using the most common solvent extraction techniques to compare
the obtained yields and to describe the processes. Considering the requirements of the
standard methods taken as a reference (EPA TO-4A, EPA TO-9A and iso 16000-13), ensuring
the extraction of the aforementioned classes of compounds represents the first step that
needs to be taken before ACF can be considered as a sampling adsorbent and before it can
be compared with a reference.

2. Materials and Methods
2.1. Standards and Reagents

High purity solvents used in extraction and clean-up (toluene, methanol, acetone,
n-hexane (n-HEX), and dichloromethane (DCM)) were purchased from a local distributor,
ROMIL Ltd. (Cambridge, GB).

Stock solutions of 13C-labelled compounds were purchased from a local distributor of
Wellington Labs (Guelph, Canada) and were used in isotopic dilution analysis as follows:

Extraction Standard Solution (ES Solution) containing PCDD/PCDF (EN 1948 ES),
PCBs (WP-LCS), HCB and PeCB (MCBS).

Injection Standard Solution (IS Solution) containing PCDD/Fs (EN 1948 IS) and PCBs
(WP-ISS).

Ready-to-use calibration kit for PCDD/Fs and PCBs.
The clean-up was conducted using microcolumns packed with MP EcoChromTM Alu-

mina B—Super I for Dioxin Analysis purchased from a local distributor of MP Biomedical
LLC (Santa Ana, CA, USA).

2.2. Active Carbon-Based Material

The physical-chemical characterization of the active carbon-based material (Kynol®

novoloid fibers, Kynol Europa GmbH, Hamburg, Germany) used in this work was de-
scribed by Cerasa et al. [16]. Briefly, the material (ACF) is based on cured phenol-aldehyde
fibers that have a specific surface area of about 2500 m2/g and a microporosity that is
uniformly distributed on the surface. The chemical-physical characteristics reported here
are strictly related to the extraction tests. The adsorbing capacity of the activated carbon
fibers (ACF) and the reversibility of the process are mainly related to its porosity (size,
uniformity, and distribution), to the specific surface area, and to the active chemical groups.

The ACF filters were cut to the same dimensions as the quartz fiber filter (QFF) used
on a high-volume sampling head, i.e., 102 mm diameter (1.564 ± 0.002 g). The filters were
pre-cleansed in Soxhlet with toluene for 24 h and were left to dry overnight at 150 ◦C under
N2 flow.

2.3. Extraction Procedures

The extraction procedures tested in this paper were (a) ultrasonic assisted extrac-
tion (UAE), (b) Soxhlet extraction (SE), (c) accelerated solvent extraction (ASE) and (d)
microwave-assisted extraction (MAE).

In all the cases, the ACF filters were spiked with the ES Solution, and the extraction
was performed after 10 min. Each experiment was performed in triplicate, and the data
were subjected to calculations of the mean ± standard deviation. The mean values were
used to create the graphs.

A second extraction was repeated once more on the same filter to assess the complete
extraction. According with ISO method “the extract of a repeated extraction procedure
shall not contain more than 5% of the amount of any individual native congener compared
with the first extraction” [20]. This test was fundamental to ensure the capability of this
material to be used for analytical aims.
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2.3.1. Ultrasonic Assisted Extraction (UAE)

Two pre-spiked ACF filters were placed in separate volumetric flasks with 50 mL of
toluene and both were immersed in an ultrasonic bath at 40 ◦C. One was sonicated for
5 min, and the other one was sonicated for 10 min. The two supernatants were filtered with
a paper filter and were collected in two different vials; the whole procedure was repeated
two more times, with each fraction being collected separately.

2.3.2. Soxhlet Extraction (SE)

A pre-spiked ACF filter was placed in a paper thimble and was extracted using Soxhlet
with toluene for 36 h. Given the hygroscopicity of the ACF, tests with the mixture of 10%
(v/v) methanol or acetone in toluene were included. Since there were no improvements in
the results attributable to this test, the data are irrelevant for the purposes of this research
and will be omitted.

2.3.3. Accelerated Solvent Extraction (ASE)

The extractions were performed with toluene in 11 mL stainless-steel cells at 100 atm
pressure by three static cycles, which were conducted at 200 ◦C for 5 min. After the static
time, toluene was flushed through the cell to remove the extracted analytes. The amount of
solvent used for the flush was about 70% of the volume of the cell used for the extraction,
and a third of the total flush volume was pumped through the cell at the conclusion of each
static cycle. The extracted analytes were purged from the sample cell using pressurized
nitrogen for 100 s and were collected in a 40 mL vial.

2.3.4. Microwaves Assisted Exaction (MAE)

The extraction was conducted with a microwave (ETHOS 1-Microwave Diges-
tion/Extraction Labstation, Milestone Srl, Bergamo, Italy) in toluene. The program
temperature was set as follows: initial temperature and hold 19 ◦C for 0 s; initial ramp to
120 ◦C at 20 ◦C per minute (800 W); second hold 120 ◦C for 20 min (800 W); 10 min of
ventilation (0 W).

2.4. Clean-Up

The extracts were concentrated with a rotary evaporator and were then placed under
a gentle N2 flow in a thermostatic bath that was between 45 ± 5 ◦C. The clean-up consisted
of an alumina microcolumn to separate the PCDD/Fs from dl-PCB and CBs.

A Pasteur microcolumn that had been manually packed with alumina was washed
with 10 mL n-HEX:DCM (50:50 v/v) and conditioned with 10 mL n-HEX.

The sample was loaded at the head of the column and 20 mL n-HEX (not collected)
washed the nonpolar interferents. CBs and PCBs were eluted with 20 mL n-Hex:DCM
(94:6 v/v) and PCDD/PCDFs with 20 mL di n-HEX:DCM (50:50 v/v).

The collected fractions were concentrated under N2 flow in a thermostatic bath at
45 ± 5 ◦C, and IS Solution was added prior to injection into the GC-MS/MS.

2.5. Quality Assurance/Quality Control (QA/QC)

Before the samples were analyzed, a calibration curve was injected with five stock
solutions that contained all of the native and 13C-labelled PCDD/PCDFs, PCBs, and CBs in
triplicate. It was used to calculate the relative response factors of the analytes (rrfi) with
respect to the corresponding labeled compounds. The RRFs of the CBs were calculated in
reference to 13C-PeCB and 13C-HCB.

The extraction efficiency of the tested methods was assessed through the comparison
of the recovery rates (R%) of the compounds contained in the ES Solution, as defined by
the reference (Table 1).
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Table 1. Method precision is determined by %RSD for each tested technique and is based on triplicate tests. The criterion of
acceptance is <15%.

Compounds Recovery Rates (%) Reference Method
13C-dl-PCB 20–150

ISO 16000-14 [20]13C-TeCDD/Fs, 13C-PeCDD/Fs, 13C-Hx CDD/Fs 50–130
13C-HpCDD/Fs, 13C-OCDD/Fs 40–130

13C-PeCB, 13C-HCB 60–120 EPA TO4A [17]

3. Results

To evaluate the different extraction methods, the applicability, reliability, reproducibil-
ity, and overall efficiency were compared. The applicability and the reliability of the
methods were assessed based on the compliance with the minimum requirements pro-
vided by standard reference ISO and EPA methods. The reproducibility was assessed on
the overall average reproducibility of each method and within each compound. The overall
efficiency was assessed by considering the time, the cost, and the environmental impact of
each method.

Figures 1–3 show recovery rates and the relative standard deviation on triplicate
analysis, and the minimum requirements of reference methods (red dashed line) for each
class of compounds that were studied.
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Figure 1. Recovery rates (%) and standard deviation of 13C-dl-PCBs (labeled with “L”) by ultrasonic assisted (UAE), Soxhlet
(SE), accelerated solvent (ASE), and Microwave assisted (MAE) extractions. Each procedure was performed in triplicate.
The dashed red line is the minimum acceptable recovery rate (ISO16000-14).

For PCBs, the extraction techniques yielded comparable results, and the overall
average extraction recovery rate was 90%, as observed in Figure 1. On the other hand,
the results for PCDD/Fs were generally low, with the exception of SE, which complied
with the minimum requirements (Figure 2). Soxhlet is also the extraction method that has
been confirmed for chlorobenzenes (Figure 3), as it is the only method that quantitatively
extracts PeCB. No recoveries were obtained from the microwave technique since the
high temperatures that were reached could have become degraded or lost due to the
volatilization of the analytes.

Regarding PCDD/Fs, MAE performed worse than ASE. Although the method is quite
reproducible for PCDD/Fs (low SD and RSD%), the R%s do not meet the requirements
imposed by the reference methods. Furthermore, the average R%s vary according to the
congener, as shown by the SD of the total recovery to be equal to 30%. If the higher
recoveries obtained with the extraction in Soxhlet compared to the ASE for PCDD/Fs
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justified the preference of the former, the advantage is even greater when compared to
microwave: the Soxhlet extracted about 63% more PCDD/Fs than the microwave technique
did, with a variability on the total Rs of PCDD/Fs of only 8%.
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Soxhlet (SE), accelerated solvent (ASE), and Microwave assisted (MAE) extractions. Each procedure was performed in
triplicate. The dashed red line is the minimum acceptable recovery rate (ISO16000-14).
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The RSD values of PCBs for SE, ASE, and MAE were about 10%; the values of the
PCDD/Fs for SE were about half those of ASE and MAE. It can therefore be argued
that SE is the technique among those tested that produces better or the most comparable
recoveries and provides a lower relative standard deviation (index of greater precision of
the technique).
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4. Discussion

Comparing the average percentage recoveries for each class of contaminants (Figure 4),
it can be observed that the Soxhlet extraction technique (SE) is the best method among
those that were tested.
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Figure 4. Average overall recovery rates of 13C-PCDD/Fs, 13C-dlPCBs and 13C-CBs by ultrasonic assisted (UAE), Soxhlet
(SE), accelerated solvent (ASE) and Microwave assisted (MAE) extraction.

A phenomenon that was observed during MAE was the high temperature in point-like
areas, specifically at the borders of the ACF membranes to be extracted, which produced
distortions in the microwave Teflon (TFM) vessels. The interaction between microwaves
and ACF, which is an electrical conductor, sees the free delocalized electrons moving freely
on the surface of the material, and this flow can heat the material on its own (Maxwell–
Wagner effect) [21–24]. Despite the ACF being immersed in toluene (boiling point 110 ◦C),
the Teflon vessels presented deformation and fissures at the end of the extraction cycle.
This means that locally, the temperature could have reached values higher than those of
the maximum Teflon temperature (260◦C, according to the manufacturer’s specifications).
Although the extractions were set up in the same way, the results were not comparable. The
boiling reached by the solution due to the rise in temperatures raised the ACF disks, causing
them to come out of the solution. This did not allow (1) the transfer of thermal energy to
the extraction solvent or (2) a comparable extraction of the homogeneous ES Solution.

In general, when extracting these contaminants from solid samples (i.e., soils, foods, etc.)
ASE and MAE yield higher results compared to SE, and the highest recovery rates are deter-
mined for the more Cl-substituted congeners, which have large octanol-water partitioning
coefficients (Kow) [25,26]. In this work, this is not true, and this phenomenon could depend
on the interactions between the contaminants and the matrix, i.e., ACF.

The chemical surface characterization of ACF caused by Boehm titration showed a
strong acidic component that was specifically linked to the carboxyl groups and had a
strong basic component due to the pyrone groups, whose oxygens confer a negative charge
to the material [9,13,14,27–30].

Guo et al. (2016) supposed that the adsorption reaction between chlorinated hydro-
carbons and the carbon surface is due to the lactone groups. PCDD/Fs and PCBs are
polychlorinated compounds, and ACF has few lactone groups [31]. It is reasonable to
assume that desorption of these compounds is related to the proportion between the acid
and the basic component. It is also interesting to underline that the acidic groups are
related to the adsorption ratio, which is directly proportional to pH values [32].

The extent of adsorption/desorption is also dependent on the molecular diameter of
the analyte and the porous diameter of the adsorbent.
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According to literature, when considering large organic molecules such as PCDD/Fs
and PCBs, the reversibility of the adsorption on ACF is possible because the pore width
(about 1.2 nm) is narrower than the adsorbed molecules. Furthermore, pore shape does
not allow these planar molecules to be trapped in the micropores of the material [33].
Although the structure of PCBs differs according to the number of chlorine substitutions,
the molecular size is approximately 1.4 nm along the major axis and 0.8 nm along the minor
axis and is 0.4 and 0.8 nm thick. The study by Kawashima et al. demonstrated that materials
with an SSA of 700 and 1200 m2/g and a pore diameter of approximately 0.7 and 0.8 nm are
suitable for the adsorption of PCBs [32]. According to Li et al., however, the pore diameter
of the adsorbent should be of the mesopore order (2 and 5 nm) in order to completely
remove PCDD/Fs (whose diameter is approximately 0.35 and 1.37 nm) and PCBs [34]. In
addition to the porous diameter, its distribution and pore type is the second aspect to be
evaluated for molecule desorption. Therefore, if the porosity is deeply branched and if the
pores have different sizes, the compounds can penetrate and can be trapped in the larger
pores. This is the reason why ACF has good reversible adsorption on both PCDD/Fs and
PCBs. The pores have a diameter of 1.3 nm and are evenly distributed on the surface, which
does not allow these compounds to penetrate deeply, favouring surface adsorption [16].
Moreover, the texture greatly influences the contact points so that the adsorption sites can
increase according to the armour. Adsorption/desorption are phenomena that depend
not only on physical but also on chemical interactions. Unsaturated carbon atoms with
unpaired electrons characterize the basal planes of the ACF surface. Oxygen-containing
heteroatoms are usually bonded to these electrons. Aromatic compounds are adsorbed on
activated carbon surfaces through π-π dispersion interactions with graphene layers [15].
The functional oxygen groups at the edges of these layers provide sites for the adsorption
of hydrophilic species and can affect the adsorption of the hydrophobic compounds on
the graphene layers. This is exactly what happens to PCDD/Fs and PCBs: the carboxyl
groups tend to attract the p-electrons of the graphene basal plane, which, by reducing
the donation of the π-π electrons, reduce the adsorbate–adsorbent interaction strength.
The lower the SSA, the more the π-π interactions (involved in electron donation from
carbon to aromatic adsorbate) are weakened by the functional groups at the head of the
graphene layers. The enthalpy of the adsorption augments higher surface coverage because
it influences the π-π adsorbate–adsorbate interactions. As it is well known, chlorine
is characterized both by a weak resonance effect (which makes the electronic pair of
the halogen able to interact with the electronic system of the benzene ring) and by a
more important and prevalent inductive effect, which depletes the aromatic system. The
nature of the predominant electron withdrawing group (EWG) of the chlorine makes the
interaction between the graphene layers and the PCDD/Fs and PCBs weaker, justifying
their greater desorption [35].

5. Conclusions

ACF is a material that is commonly used as an adsorbent/remover for pollutants. In
this work, it was demonstrated that it is possible to desorb PCDD/Fs, PCBs, and chloroben-
zenes and to extend its use for analytical purposes (i.e., air sampling). A comparison of the
most common extraction procedures for chlorinated organic pollutants was presented in
this study and considered the minimum requirements of standard reference methods for
air sampling. The data presented indicated that by using Soxhlet extraction with toluene,
we can achieve the best results among the tested methods in terms of recoveries for each
class of contaminants.

6. Patents

Filing of an international patent application n. PCT/IB2021/056894 of 29 July 2021,
with the claim of the priority of the Italian application n. 102020000019936 filed on 11
August 2020.
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