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Abstract. [Purpose] To investigate the relationship between the static measurement of the transverse arch of the 
forefoot, using a 3-dimensional (3D) foot scanner, and kinetics and kinematics of gait parameters in the sagittal 
plane. [Subjects and Methods] Twenty healthy subjects participated in this study. The transverse arch of the forefoot 
was measured under three conditions as follows: condition 1, sitting; condition 2, standing; and condition 3, foot 
forward and lower leg tilting anteriorly to the maximum position with heel contact. Gait parameters were recorded 
using a 3D motion analysis system and force plate. Correlation coefficients between TAF for each comparison of 
conditions and gait parameters were calculated using the Spearman correlation analysis. [Results] Rates of the 
transverse arch of the forefoot width and height between condition 2 and condition 3 were significantly correlated 
with the anterior and posterior component of ground reaction forces, the hip joint extension angle, and the ankle 
plantar flexion moment. [Conclusion] Our study’s findings indicated that increased stiffness of the transverse arch 
of the forefoot was related to the increase in ankle plantar moment, and decreased stiffness of the transverse arch of 
the forefoot was related to the increase in hip joint extension angle during gait.
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INTRODUCTION

The foot consists of the medial and lateral longitudinal arches, and the transverse arch of the forefoot (TAF). The arch 
of the foot works as a shock absorber to attenuate weight loading during the early stance phase of gait. The arch also works 
as a rigid lever to propel body mass efficiency during the late stance phase of gait1, 2). Clinical measurements of foot arch 
structures are mainly obtained to evaluate the medial longitudinal arch using the arch height index and the navicular drop 
test1, 3–6). Several clinical research studies have reported on the relationship between athletic lower extremity disorders and 
the medial longitudinal arches of the foot. Knee joint disorders occurred more often in athletes with excessively pronated 
and supinated feet7). In long distance runners with a high arch feet, ankle joint disorders occur more often than in those 
without a high medial longitudinal arch, whereas in those with a low longitudinal medial arch, knee joint disorders occur 
more often8, 9). Furthermore, regarding relationships between the medial longitudinal arch and gait, some works of clinical 
research on the medial longitudinal arch found a correlation between the ground reaction force and structure of a medial 
arch during gait10, 11). However, the medial longitudinal arch did not have any correlation with plantar pressure and rear-foot 
motion during gait12, 13). Thus, no consensus has been reached about the relationship between the clinical measurements 
of foot posture and gait. Although the correlation between the clinical measurements of foot posture and gait has not been 
sufficiently investigated, clinicians assume that there is some correlation between the static measurement of foot posture and 
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gait, and they clinically apply this assumption when treating patients10, 13, 14).
Clinically, there is much limitation to the evaluation of lateral longitudinal and transverse arches, except the medial 

longitudinal arch15). Clinical measurements of the forefoot are important, because forefoot deformity is highly correlated 
with lower leg pain and a risk of falling16, 17). Measurements of TAF, which is part of the forefoot structure, have been 
performed using plantar pressure measurements18–20), ultrasonography21, 22), and radiographic photography23, 24). Recently, 
a 3-dimensional (3D) foot scanner25) has made it easier to measure TAF noninvasively. However, the relationship between 
static measurements of TAF and gait has not been well investigated. It has been reported that TAF spreads due to weight 
bearing placed on the forefoot during gait18, 19). Therefore, in adding the morphologic change measurements of TAF during 
weight bearing to the static measurements of TAF, the TAF becomes more efficiently understood during human activities.

Accordingly, the purpose of the present study was to investigate the relationship between the static measurement of TAF, 
using a 3D foot scanner, and kinetics and kinematics of gait parameters on the sagittal plane in healthy subjects. The results 
of this study may enable clinicians to more efficiently evaluate the TAF results of patients experiencing difficulties during 
daily activities. Moreover, the evaluation methods of TAF may be applied to elderly individuals who experience difficulty 
during gait. We hypothesized that static measurements of TAF are correlated to gait parameters (joint angle, joint moment, 
joint power, and ground reaction force).

SUBJECTS AND METHODS

Twenty subjects (10 men and 10 women) participated in this study. They were 22.6 ± 2.8 years old (mean ± SD [standard 
deviation]) and 166.0 ± 9.0 cm tall, and weighed 60.6 ± 11.1 kg. They had no lower extremity pain and disorders. We defined 
the dominant side as the side subjects’ used to kick a ball. All subjects in this study provided written informed consent, 
and the protocol was approved by the ethics committee of the Bunkyo Gakuin University Graduate School (approval No.: 
2014-MSJ01).

TAF was measured using a 3D foot scanner (INFOOT; I-Ware Laboratory, Osaka, Japan). Three conditions were used to 
measure TAF: sitting (condition 1), standing (condition 2), and foot forward and lower leg tilting anteriorly to the maximum 
ankle dorsiflexion with heel contact (condition 3) (Fig. 1)1, 5, 6, 26). These conditions of foot posture can be frequently and 
reproducibly used in human activities, and applied easily in clinical settings. We confirmed weight bearing under each 
condition using a scale during the measurements; condition 1 is 10% of body weight, condition 2 is 50% of body weight, 
and condition 3 is 70–80% of body weight on the dominant foot1, 26). Furthermore, we confirmed that each subject could 
carry his/her weight on the forefoot in condition 3. Only the dominant foot was measured three times under each condition. 
We recorded the TAF width and height at the level of the metatarsal head for each measurement. Values of the TAF width 
and height were calculated as a mean value of thrice TAF measurements. The TAF width and TAF height were calculated 
between condition 1 and condition 2, and between condition 2 and condition 3, as the rate of each comparison, i.e., %width 
and %height, respectively. We calculated the rate of the TAF width using the following equations: between condition 1 and 
condition 2 = [(TAF width of condition 2) / (TAF width of condition 1) × 100], and between condition 2 and condition 3 = 
[(TAF width of condition 3) / (TAF width of condition 2) × 100]. We also calculated the rate of the TAF height using the 
following equations: between condition 1 and condition 2 = [(TAF height of condition 1 − TAF height of condition 2) / 
(TAF height of condition 1) × 100], and between condition 2 and condition 3 = [(TAF height of condition 2 − TAF height of 
condition 3) / (TAF height of condition 2) × 100].

Body kinematics measurements were performed using eight cameras (Vicon Motion Systems, Ltd., Oxford, UK) at a 
sampling rate of 100 Hz. Subjects were clothed in close-fitting t-shirts and shorts. Reflective markers were attached to the 
body according to the marker position of the Vicon Plug-in Gait full body model by a single investigator. All data were 
obtained with a low-pass filter using a fourth-order Butterworth filter with a cut-off frequency of 6 Hz. A force plate (AMTI, 
Watertown, MA, USA) was used to measure the ground reaction force at a sampling rate of 1,000 Hz. Subjects were asked to 
walk at a pace of 110 steps/min in bare feet. Before the measurements, each subject practiced the proper walking technique. 
The gait performance was determined as successful when the dominant foot completely touched the force plate. The gait 
trial was repeated to achieve successful gait five times. We recorded data from the stance phase during gait in each trial. 
Peak values of the joint angles; joint moments; joint powers of the hip, knee, and ankle joint; and ground reaction force in 
the sagittal plane were calculated using a Plug-in-Biomechanical Modeler (Vicon Motion Systems, Ltd.). The joint moments 
were expressed as an internal moment. Peak values of the joint power were labeled according to a previous study27). Values 
of the joint moment, joint power, and ground reaction force were normalized with regard to a subject’s body mass. The mean 
value of five successful trials was used for analysis.

The Shapiro-Wilk test was used to determine whether all data followed a normal distribution. Subsequently, we calculated 
correlation coefficients between the TAF width (%); TAF height (%) for each comparison of conditions; and joint angle, joint 
moment, joint power, and ground reaction force during gait using the Spearman correlation analysis. All data were analyzed 
using SPSS 21.0 (SPSS Japan Inc., Tokyo, Japan). The statistical significance was set at p<0.05.



415

RESULTS

The average values of TAF height and TAF width are shown in Table 1. The average change in the TAF width and TAF 
height is shown in Table 2 between condition 1 and condition 2, and between condition 2 and condition 3.

Regarding the change between condition 1 and condition 2, there was no significant correlation between the change in 
the TAF width and TAF height, and the gait variables, i.e., the joint angle, joint moment, joint power, and ground reaction 
force. Regarding the change between condition 2 and condition 3, there were significant correlations between changes in the 
TAF width and the anterior (r=0.54) and posterior component (r=0.56) of the ground reaction forces, and hip joint extension 
angles (r=0.40). Additionally, there were significant correlations between changes in the TAF height and ankle plantar flexion 
moment (r=−0.46) (Table 3).

DISCUSSION

This study showed the static measurements of TAF were correlated to ground reaction forces, ankle plantar flexion mo-
ment, and hip extension angle during gait. Therefore, the results of this study supported our hypothesis. The change in TAF 
between condition 1 (sitting) and condition 2 (standing) was not correlated with any gait parameters. The change in TAF 
between standing (condition 2) and foot forward and lower leg tilting anteriorly to the maximum ankle dorsiflexion with heel 
contact (condition 3) was statistically correlated with the anterior and posterior component of ground reaction forces, hip 
extension angle, and ankle plantar flexion moment during gait. Therefore, these results suggest that it will be useful to evalu-
ate changes in TAF between condition 2 and condition 3 to assess foot disorders and gait performances. Previous research 
studies28, 29) have reported that additional weight bearing causes a change in foot posture. However, the change in TAF 
between condition 1 and condition 2 seems too small, i.e., body weight change of only 50% was not large enough to make the 
morphologic change detectable during an evaluation, or sufficient weight was not placed to the forefoot. Consequently, the 
change in TAF between condition 1 and condition 2 was not significantly detectable during the gait performances. Although 
static measurements of the medial longitudinal arch have been obtained clinically using sitting or standing as a measurement 
position, the current study’s results suggest that a sufficient amount of weight bearing is necessary to achieve detectable 
changes in TAF to evaluate arch changes of the foot during gait performance.

Fig. 1. Evaluation of foot posture using the 3-dimensional foot scanner (INFOOT; I-Ware Laboratory, Osaka, 
Japan) under three posture conditions for transverse arch measurements of the forefoot

a. Evaluation apparatus, b. measured image of the foot, and c. evaluated postures. Condition 1 (left): sitting, 
condition 2 (middle): standing, and condition 3 (right): foot forward and lower leg tilting anteriorly to the max-
imum ankle dorsiflexion with heel contact. Weight bearing of the dominant foot is measured at each condition: 
10% body weight in condition 1, 50% body weight in condition 2, and 70–80% body weight in condition 3.

Table 1. The mean values of TAF width and TAF height at each 
condition (means ± SD)

Measurement conditions
Condition 1 Condition 2 Condition 3

TAF width (mm) 96.2 ± 6.4 98.4 ± 6.8 99.5 ± 7.5
TAF height (mm) 40.8 ± 4.5 39.1 ± 4.3 38.6 ± 4.4

TAF: transverse arch of the forefoot
Condition 1: sitting, Condition 2: standing, Condition 3: foot 
forward and lower leg tilting anteriorly to the maximum ankle 
dorsiflexion with heel contact

Table 2. The mean change of TAF width and TAF height be-
tween two conditions (means ± SD)

Measurement conditions
Condition 1 to  

Condition 2
Condition 2 to  

Condition 3
TAF width (%) 102.3 ± 0.7 100.9 ± 1.2
TAF height (%) 4.4 ± 1.9 0.84 ± 3.1
TAF: transverse arch of the forefoot
Condition 1: sitting, Condition 2: standing, Condition 3: foot 
forward and lower leg tilting anteriorly to the maximum ankle 
dorsiflexion with heel contact
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Regarding the relationship between the change in TAF and gait parameters, the change in TAF between condition 2 and 
condition 3 was significantly correlated with the anterior and posterior component of ground reaction forces during gait. 
The posterior component of the ground reaction force matches the timing of weight bearing and shock absorption during the 
early stance phase30), which suggests that the smooth, rapid spreading of TAF is important for posture stability in the early 
stance phase of gait. Moreover, since the anterior component of the ground reaction force increases weight bearing on the 
forefoot and moves body mass forward30), the change in TAF between condition 2 and condition 3 may be an indicator of the 
driving force of body mass during gait. Previous works of research have reported that TAF spreads during gait due to weight 
bearing18, 19, 31), and the TAF width increases while the TAF height decreases due to weight bearing29). Thus, changes in the 
TAF width and height between condition 2 and condition 3 would be an indicator for the tendency of forefoot spreading 
with weight bearing in each subject. Furthermore, the change in the TAF height between condition 2 and condition 3 was 
significantly correlated with ankle plantar flexion moment. Since ankle plantar flexion moment contributes as a driving force 
of body mass during the late stance phase32, 33), the lesser change in the TAF height between condition 2 and condition 3 
suggests a larger driving force of body mass by ankle plantar flexion during the late stance of gait.

When the change in the TAF width and height in this study is considered the stiffness of TAF, the larger increase in TAF 
means a low stiffness of TAF, whereas the lower increase in TAF represents a high stiffness of TAF. Therefore, when the 
increase in TAF is considered the stiffness of TAF, the results of the study indicate that the subjects with a low stiffness of 
TAF walk with low ankle plantar flexion moment and have a large hip extension angle, whereas subjects with a high stiffness 
of TAF walk with high ankle plantar flexion moment and have a small hip extension angle. Previous research studies have 
reported that individuals with a high arch foot with high stiffness produce greater work of the ankle joint during landing 
and jogging, whereas individuals with a low arch foot with low stiffness produce greater work of the hip joint to overcome 
the reduced efficacy of a flexible foot34, 35). The current study’s findings showed the same relationships as those reported in 
previous studies34, 35) that investigated the relationship between TAF stiffness and function of the hip joint and ankle joint 

Table 3. Correlation coefficients between changes of TAF width and TAF height, and joint angle, joint moment and ground reaction 
force during gait

Measurement 
conditions Rates of TAF

The peak of joint angles
Hip joint Knee joint Ankle joint

flex ext flex ext dorsi plantar
Condition 1 to 
Condition 2

TAF width −0.09 0.09 −0.04 0.13 0.08 0.19
TAF height −0.14 −0.06 0.15 0.15 −0.05 −0.15

Condition 2 to 
Condition 3

TAF width 0.07 0.40* −0.02 0.02 −0.10 0.17
TAF height −0.01 −0.01 0.09 −0.10 0.16 −0.22

Measurement 
Condition s Rates of TAF

The peak of joint moments
Hip joint Knee joint Ankle joint

ext flex ext  
(early stance) flex ext  

(late stance) dorsi plantar

Condition 1 to 
Condition 2

TAF width 0.14 0.32 0.22 0.06 0.18 0.03 0.18
TAF height −0.17 −0.23 −0.38 −0.1 −0.07 −0.39 0.01

Condition 2 to 
Condition 3

TAF width 0.04 −0.15 0.25 0.02 −0.20 −0.11 −0.11
TAF height 0.14 0.07 0.29 −0.18 0.07 0.09 −0.46*

Measurement 
Condition s Rates of TAF

The peak of ground reaction forces
Anterior component Vertical component

Min Max Max  
(early stance) Min Max  

(late stance)
Condition 1 to 
Condition 2

TAF width 0.01 0.13 0.12 −0.05 0.05
TAF height −0.18 −0.33 −0.37 0.22 −0.24

Condition 2 to 
Condition 3

TAF width 0.56* 0.54* 0.35 −0.30 0.23
TAF height 0.08 −0.09 0.13 −0.07 0.01

TAF: transverse arch of the forefoot
Condition 1: sitting, Condition 2: standing, Condition 3: foot forward and lower leg tilting anteriorly to the maximum ankle dorsi-
flexion with heel contact
flex: flexion, ext: extension, dorsi: dorsiflexion, plantar: plantarflexion
*p<0.05
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during gait. Moreover, elderly people walk with higher hip joint movement36), so the TAF of this population is easily lowered 
during weight bearing37). Therefore, the same relationships between TAF stiffness and characteristics of gait performance 
would be indicated in elderly people, as this study demonstrated. The positive correlation between high stiffness of the TAF 
and ankle plantar flexion moment may partly explain the factors of the medial tibial stress syndrome, as a previous study 
indicated relationships between high stiffness of the TAF and medial tibial stress syndrome38).

There are some limitations to this study. Only healthy subjects participated in this study, so we did not consider cases of 
elderly individuals with foot deformities. We only analyzed gait performance in this study, so we did not understand relation-
ships between TAF flexibility and sports performances, and other human body motion. Further research with participated 
elderly individuals and patients with foot deformities should confirm our findings.

In summary, the static measurement of TAF between standing and foot forward and lower leg tilting anteriorly to the 
maximum ankle dorsiflexion with heel contact was more related to gait parameters than between sitting and standing. The 
change in TAF between standing and foot forward and lower leg tilting anteriorly to the maximum ankle dorsiflexion with 
heel contact suggests that increasing TAF stiffness was related to the increase in the ankle plantar moment, and decreasing 
TAF stiffness was related to the increase in the hip joint extension angle during gait.
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